\Volume title 1
The editors
(© 2007 Elsevier All rights reserved

Chapter 1

Satisfiability solvers

Carla P. Gomes, Henry Kautz,
Ashish Sabharwal, and Bart Selman

The past few years have seen an enormous progress in thenpanfze of Boolean satisfia-
bility (SAT) solvers. Despite the worst-case exponential time of all known algorithms,
satisfiability solvers are increasingly leaving their maska general-purpose tool in areas
as diverse as software and hardware verificati8) 29, 30, 204, automatic test pattern
generation 125 197, planning [L18 177, scheduling 93], and even challenging prob-
lems from algebrag14]. Annual SAT competitions have led to the development ofethsz
of clever implementations of such solvers [€18, 18, 65, 85, 99, 107, 137, 139 148 151,
155 156, 158 159 167, 178 189 191, 217, an exploration of many new techniques [e.g.
14,92, 136, 155 159, and the creation of an extensive suite of real-world insts as well
as challenging hand-crafted benchmark problemsifef]. Modern SAT solvers provide
a “black-box” procedure that can often solve hard structym®blems with over a million
variables and several million constraints.

In essence, SAT solvers provide a generic combinatoridoriag and search plat-
form. The underlying representational formalism is prépmsal logic. However, the full
potential of SAT solvers only becomes apparent when oneidersstheir use in applica-
tions that are not normally viewed as propositional reaspiasks. For example, consider
Al planning, which is a PSPACE-complete problem. By resitiggoneself to polynomial
size plans, one obtains an NP-complete reasoning problasily @ncoded as a Boolean
satisfiability problem, which can be given to a SAT solvét], 118. In hardware and
software verification, a similar strategy leads one to aerdioundedmodel checking,
where one places a bound on the length of possible errorstrage is willing to con-
sider R9]. Another example of a recent application SAT solvers isomputing stable
models used in the answer set programming paradigm, a pavkeldwledge representa-
tion and reasoning approactq. In these applications — planning, verification, and answe
set programming — the translation into a propositionalesentation (the “SAT encoding”)
is done automatically and hidden from the user: the user dedjs with the appropriate
higher-level representation language of the applicatmmain. Note that the translation

2 1. Satisfiability solvers

to SAT generally leads to a substantial increase in prob&presentation. However, large
SAT encodings are no longer an obstacle for modern SAT salWefact, for many combi-
natorial search and reasoning tasks, the translation tof@ived by the use of a modern
SAT solver is often more effective than a custom search enginning on the original
problem formulation. The explanation for this phenomerstiat SAT solvers have been
engineered to such an extent that their performance isuliffic duplicate, even when one
tackles the reasoning problem in its original represemtéti

Although SAT solvers nowadays have found many applicatariside of knowledge
representation and reasoning, the original impetus fodévelopment of such solvers can
be traced back to research in knowledge representatiorheledrly to mid eighties, the
tradeoff between the computational complexity and theesgiveness of knowledge repre-
sentation languages became a central topic of researcth dfuhis work originated with
a seminal series of papers by Brachman and Levesque on catypiadeoffs in knowl-
edge representation, in general, and description logigsaiticular B4, 35, 36, 132, 133.
For a review of the state of the art of this work, see Chaptef tBie handbook. A key
underling assumption in the research on complexity trdddof knowledge representa-
tion languages is that the best way to proceed is to find the elegant and expressive
representation language that still allows for worst-cagdgrnmmial time inference. In the
early nineties, this assumption was challenged in two gapers on SATI54, 191]. In
the first [L54], the tradeoff between typical case complexity versus tvoase complexity
was explored. It was shown that most randomly generated B8g@mces are actually sur-
prisingly easy to solve (often in linear time), with the hestlinstances only occurring in
a rather small range of parameter settings of the randomularmodel. The second pa-
per [1L9]] showed that many satisfiable instances in the hardestrregiold still be solved
quite effectively with a new style of SAT solvers based oral®earch techniques. These
results challenged the relevance of the "worst-case” cerityl view of the world?

The success of the current SAT solvers on many real world 8steinces with millions
of variables further confirms that typical case complexitg ¢he complexity of real-world
instances of NP-complete problems is much more amenablietttiee general purpose
solution techniques than worst-case complexity resulgghinsuggest. (For some initial
insights into why real-world SAT instances can often be adlefficiently, see409.)
Given these developments, it may be worthwhile to recondiuke study of complexity
tradeoffs in knowledge representation languages by nisting on worst-case polynomial
time reasoning but to allow for NP-complete reasoning sigig that can be handled by a
SAT solver. Such an approach would greatly extend the esprrsess of representation
languages. The work on the use of SAT solvers to reason abahleanodels is a first
promising example in this regard.

1 Each year the International Conference on Theory and Agiiias of Satisfiability Testing hosts a SAT
competition or race that highlights a new group of “world'stist” SAT solvers, and presents detailed per-
formance results on a wide range of solvet29 130 193 12§. In the 2006 competition, over 30 solvers
competed on instances selected from thousands of benchrmabllems. Most of these SAT solvers can be
downloaded freely from the web. For a good source of solvieesichmarks, and other topics relevant to
SAT research, we refer the reader to the websites SAT Live!t p: // www. sat | i ve. or g) and SATLIB
(http://ww. satlib. org).

2 The contrast between typical- and worst-case complexity rppgar rather obvious. However, note that
the standard algorithmic approach in computer science Idatjely based on avoiding any non-polynomial
complexity, thereby implicitly acceding to a worst-case camwjty view of the world. Approaches based on SAT
solvers provide the first serious alternative.

http://www.satlive.org
http://www.satlib.org

Gomes et al. 3

In this chapter, we first discuss the main solution techrsqueed in modern SAT
solvers, classifying them as complete and incomplete nasthé/e then discuss recent in-
sights explaining the effectiveness of these techniquesaxtical SAT encodings. Finally,
we discuss several extensions of the SAT approach currantgr development. These
extensions will further expand the range of applicationmttude multi-agent and proba-
bilistic reasoning. For a review of the key research chgisrfor satisfiability solvers, we
refer the reader tdl[L§.

1.1 Definitions and Notation

A propositional or Boolean formula is a logic expressiontel over variables (or atoms)
that take value in the s€tFALSE, TRUE}, which we will identify with {0,1}. A truth
assignmen{or assignment for short) to a sétof Boolean variables is a map : V —
{0,1}. A satisfying assignmerior F is a truth assignmerd such that~ evaluates to 1
undero. We will be interested in propositional formulas in a certapecial form:F is

in conjunctive normal fornfCNF) if it is a conjunction (AND) of clauseswhere each
clause is a disjunction (OR) of literals, and each literal is either a variable or its negation
(NOT, —). For exampleF = (aVv —b) A (mavcvd) A (bvd)is a CNF formula with four
variables and three clauses.

The Boolean Satisfiability Problem (SAT) is the followinGiven a CNF formula F,
does F have a satisfying assignmentpis is the canonical NP-complete probledb|
134. In practice, one is not only interested in this decisioye§/no”) problem, but also
in finding an actual satisfying assignment if there exists.oAll practical satisfiability
algorithms, known as SAT solvers, do produce such an assighifrit exists.

It is natural to think of a CNF formula as a set of clauses amdh &tause as a set of
literals. We use the symbd\ to denote thempty clausei.e., the clause that contains no
literals and is always unsatisfiable. A clause with only datexdl is referred to as anit
clause. A clause with two literals is referred to abimary clause. When every clause
of F hask literals, we refer to= as ak-CNF formula. The SAT problem restricted to
2-CNF formulas is solvable in polynomial time, which for NE formulas, it is already
NP-complete. Apartial assignmentor a formulaF is a truth assignment to a subset of the
variables ofF. For a partial assignmeptfor a CNF formulaF, F |, denotes theimplified
formula obtained by replacing the variables appearing with their specified values,
removing all clauses with at least omruUE literal, and deleting all occurrences eALSE
literals from the remaining clauses.

CNF is the generally accepted norm for SAT solvers becausts agimplicity and
usefulness; indeed, many problems are naturally expressadconjunction of relatively
simple constraints. CNF also lends itself to teLL process to be described next. The
construction of Tseitin401] can be used to efficiently convert any given propositional
formula to one in CNF form by adding new variables correspagdo its subformulas.
For instance, given an arbitrary propositional formGaone would first locally re-write
each of its logic operators in terms of vV, and - to obtain, sayG = (((aAb) Vv (-aA
—=b)) A—c) Vv d. To convert this to CNF, one possibility is to add four awadyi variables
W, X, y, andz, construct clauses that encode the four relatiors (aAb), X < (-aA —b),

y < (WVX), andz+«+ (yA—c), and add to that the claugev d).

S

4 1. Satisfiability solvers

1.2 SAT Solver Technology — Complete Methods

A completesolution method for the SAT problem is one that, given thautrfprmulaF,
either produces a satisfying assignment Foor proves thaf is unsatisfiable. One of
the most surprising aspects of the relatively recent prakcprogress of SAT solvers is
that the best complete methods remain variants of a pron&ssliced several decades
ago: theDPLL procedure, which performs a backtrack search in the spapartél truth
assignments. The key feature @PLL is the efficient pruning of the search space based
on falsified clauses. Since its introduction in the early @96the main improvements
to DPLL have been smart branch selection heuristics, extensikmsglause learning and
randomized restarts, and well-crafted data structureb asdazy implementations and
watched literals for fast unit propagation. This sectiodésoted to understanding these
complete SAT solvers, also known sgstematisolvers.

1.2.1 The DPLL Procedure

The Davis-Putnam-Logemann-Loveland DPLL procedure is a complete, systematic
search process for finding a satisfying assignment for angd@olean formula or prov-
ing that it is unsatisfiable. Davis and Putnas|[came up with the basic idea behind this
procedure. However, it was only a couple of years later tteati€) Logemann, and Love-
land [54] presented it in the efficient top-down form in which it is wigt used today. It is
essentially a branching procedure that prunes the seaacie fiased on falsified clauses.

Algorithm 1, DPLL-r ecur si ve(F,p), sketches the basioPLL procedure on CNF
formulas. The idea is to repeatedly select an unassigrezdllitin the input formulaF
and recursively search for a satisfying assignmentferandF_,. The step where such
an/ is chosen is commonly referred to as tiranchingstep. Setting to TRUE or FALSE
when making a recursive call is calleddacision and is associated with@ecision level
which equals the recursion depth at that stage. The end bfreaarsive call, which takes
F back to fewer assigned variables, is calledlihektrackingstep.

A partial assignmenp is maintained during the search and output if the formulagur
out to be satisfiable. |, contains the empty clause, the corresponding clauefaim
which it came is said to beiolatedby p. To increase efficiency, unit clauses are immedi-
ately set torRUE as outlined in Algorithnd; this process is termachit propagation Pure
literals (those whose negation does not appear) are also srtbas a preprocessing step
and, in some implementations, in the simplification proadtes every branch.

Variants of this algorithm form the most widely used famifycomplete algorithms for
formula satisfiability. They are frequently implementeciniterative rather than recursive
manner, resulting in significantly reduced memory usage Key difference in the itera-
tive version is the extra step ahassigningzariables when one backtracks. The naive way
of unassigning variables in a CNF formula is computatignelpensive, requiring one to
examine every clause in which the unassigned variable appétowever, thevatched
literals scheme provides an excellent way around this and will berttestshortly.

1.2.2 Key Features of Modern DPLL-Based SAT Solvers

The efficiency of state-of-the-art SAT solvers relies hiyaon various features that have
been developed, analyzed, and tested over the last dechdse hclude fast unit propa-

Gomes et al. 5

Algorithm 1.1: DPLL- r ecur si ve(F,p)

Input : A CNF formulaF and an initially empty partial assignmemnt
Output : UNSAT, or an assignment satisfyifg
begin
(F,p) < Uni t Propagat e(F,p)
if F contains the empty clausken return UNSAT
if F has no clauses lethen

Outputp

return SAT
¢ + aliteral not assigned by /1 the branching step
if DPLL-recursive(F|,pU{¢}) = SATthen return SAT
return DPLL-r ecur si ve(F|_,,pU{-(})

end

subUni t Propagat e(F)
begin
while F contains no empty clause but has a unit clausk x
F —Flx
L p—pU{x}
return (F,p)
end

gation using watched literals, learning mechanisms, detéstic and randomized restart
strategies, effective constraint database managementséldeletion mechanisms), and
smart static and dynamic branching heuristics. We give aiflaizfsome of these below.

Variable (and value) selection heuristids one of the features that vary the most from
one SAT solver to another. Also referred to as deeision strategyit can have a signif-
icant impact on the efficiency of the solver (see elg.7] for a survey). The commonly
employed strategies vary from randomly fixing literals toxin@izing a moderately com-
plex function of the current variable- and clause-statehsas the MOMS (Maximum
Occurrence in clauses of Minimum Size) heurisfid (] or the BOHM heuristic [cf.31].
One could select and fix the literal occurring most frequeintthe yet unsatisfied clauses
(the DLIS (Dynamic Largest Individual Sum) heuristit4g]), or choose a literal based
on its weight which periodically decays but is boosted if ausle in which it appears is
used in deriving a conflict, like in the VSIDS (Variable Statdependent Decaying Sum)
heuristic [L155. Newer solvers likeBer kM n [85], Jerusat [156, M ni Sat [65], and
RSat [167] employ further variations on this theme.

Clause learning has played a critical role in the success of modern compléie S
solvers. The idea here is to cache “causes of conflict” in @isatmanner (as learned
clauses) and utilize this information to prune the searcéa different part of the search
space encountered later. We leave the details to Sett®8 which will be devoted fully
to clause learning. We will also see how clause learninggislyvexponentially improves
upon the basi®©PLL procedure.

The watched literals schemeof Moskewicz et al. 155, introduced in their solver
zChaf f, is now a standard method used by most SAT solvers for efficimmstraint prop-
agation. This technique falls in the category of lazy datacstires introduced earlier by
Zhang P17 in the solverSat o. The key idea behind the watched literals scheme, as the

6 1. Satisfiability solvers

name suggests, is to maintain and “watch” two special I¢ei@r each active (i.e., not
yet satisfied) clause that are ratLSE under the current partial assignment; these liter-
als could either be set toRUE or as yet unassigned. Recall that empty clauses halt the
DPLL process and unit clauses are immediately satisfied. Heneg;am always find such
watched literals in all active clauses. Further, as long eaase has two such literals, it
cannot be involved in unit propagation. These literals aaétained as follows. Suppose
a literal/ is set toFALSE. We preform two maintenance operations. First, for evesysd

C that had/ as a watched literal, we exami@and find, if possible, another literal to
watch (one which igRUE or still unassigned). Second, for every previously actieeise

C' that has now become satisfied because of this assignmémo 6hLSE, we make—¢ a
watched literal foiIC'. By performing this second step, positive literals are gipeority
over unassigned literals for being the watched literals.

With this setup, one can test a clause for satisfiability lnypdy checking whether at
least one of its two watched literalsigUE. Moreover, the relatively small amount of extra
book-keeping involved in maintaining watched literals slvpaid off when one unassigns
a literal/ by backtracking — in fact, one needs to do absolutely nothiing invariant about
watched literals is maintained as such, saving a substamtiaunt of computation that
would have been done otherwise. This technique has playéticalcrole in the success
of SAT solvers, in particular those involving clause leaghiEven when large numbers of
very long learned clauses are constantly added to the aftatabase, this technique allows
propagation to be very efficient — the long added clausesareven looked at unless one
assigns a value to one of the literals being watched and faitgrcauses unit propagation.

Conflict-directed backjumping, introduced by Stallman and Sussmansg, allows
a solver to backtrack directly to a decision leddf variables at levelsl or lower are the
only ones involved in the conflicts in both branches at a patimér than the branch variable
itself. In this case, it is safe to assume that there is ndisolextending the current branch
at decision level, and one may flip the corresponding variable at lev@r backtrack
further as appropriate. This process maintains the comdss of the procedure while
significantly enhancing the efficiency in practice.

Fast backjumping is a slightly different technique, relevant mostly to thewpopular
FirstUIP learning scheme used in SAT solvessasp [148 and zChaff [155. It lets
a solver to jump directly to a lower decision leweélwhen even one branch leads to a
conflict involving variables at leveld or lower only (in addition to the variable at the
current branch). Of course, for completeness, the curmamich at levet is not marked
as unsatisfiable; one simply selects a new variable and Vafulevel d and continues
with a new conflict clause added to the database and potgraialew implied variable.
This is experimentally observed to increase efficiency inyrtieenchmark problems. Note,
however, that while conflict-directed backjumping is alwdgeneficial, fast backjumping
may not be so. It discards intermediate decisions which raaally be relevant and in the
worst case will be made again unchanged after fast backjgnpi

Assignment stack shrinkingbased on conflict clauses is a relatively new technique
introduced by Nadel15€ in their solverJer usat, and is now used in other solvers as
well. When a conflict occurs because a cla@Sis violated and the resulting conflict clause
C to be learned exceeds a certain threshold length, the sbhektracks to almost the
highest decision level of the literals @ It then starts assigning ®ALSE the unassigned
literals of the violated claus&’ until a new conflict is encountered, which is expected to
result in a smaller and more pertinent conflict clause to amied.

Gomes et al. 7

Conflict Clause Minimization was introduced by &1 and 8rensson §5] in their
solverM ni Sat . The idea is to try to reduce the size of a learned conflictsd&uby
repeatedly identifying and removing any literalshthat are implied to beaLse when the
rest of the literals iIC are set taFALSE. This is achieved using the subsumption resolution
rule, which lets one derive a clausdrom (x\ A) and(—xV B) whereB C A (the derived
clauseA subsumes the anteced€rty A)). This rule can be generalized, at the expense
of extra computational cost that usually pays off, to a sagaef subsumption resolution
derivations such that the final derived clause subsumesrgi@afitecedent clause.

Randomized restarts introduced by Gomes et aB?] and further developed by Bap-
tista and Marques-Silvd. p], allow clause learning algorithms to arbitrarily stop gearch
and restart their branching process from decision level.z&l clauses learned so far are
retained and now treated as additional initial clauses. tMbshe current SAT solvers,
starting withzChaf f [155, employ very aggressive restart strategies, sometinstarte
ing after as few as 20 to 50 backtracks. This has been showaigdarhmensely in reducing
the solution time. Theoretically, unlimited restarts,fpened at the correct step, can prov-
ably make clause learning very powerful. We will discussd@nized restarts in more
details later in the chapter.

1.2.3 Clause Learning and Iterative DPLL

Algorithm 1.2 gives the top-level structure of@PLL-based SAT solver employing clause
learning. Note that this algorithm is presented here inititive format (rather than
recursive) in which it is most widely used in today’s SAT saiv.

Algorithm 1.2: DPLL- Cl auselLearning-lterative

Input : A CNF formula

Output : UNSAT, or SAT along with a satisfying assignment
begin

while TRUE do

Deci deNext Branch

while TRUE do

status— Deduce

if status = CONFLICTthen

L blevel— Anal yzeConf | i ct

if blevel = Othen return UNSAT
Backt r ack(bleve)

else ifstatus = SATthen
Output current assignment stack
return SAT

L else break

end

The procedur@eci deNext Branch chooses the next variable to branch on (and the
truth value to set it to) using either a static or a dynamicéalde selection heuristic. The
procedurebeduce applies unit propagation, keeping track of any clausestizgtbecome
empty, causing what is known as a conflict. If all clauses Hmen satisfied, it declares

8 1. Satisfiability solvers

the formula to be satisfiabfe.The procedureinal yzeConf | i ct looks at the structure

of implications and computes from it a “conflict clause” tatfe. It also computes and
returns the decision level that one needs to backtrack. tatehere is no explicit variable
flip in the entire algorithm; one simply learns a conflict dawefore backtracking, and
this conflict clause often implicitly “flips” the value of a dision or implied variable by

unit propagation. This will become clearer when we dischesdetails of conflict clause
learning and unigue implication point.

In terms of notation, variables assigned values throughatteal variable selection
processfeci deNext Br anch) are calleddecisionvariables and those assigned values as
a result of unit propagatiorbéduce) are calledmplied variables.Decisionandimplied
literals are analogously defined. Upon backtracking, the last detigriable no longer
remains a decision variable and might instead become aneidhpariable depending on
the clauses learned so far. Tthecision level of a decision variablesone more than the
number of current decision variables at the time of brargchimx. Thedecision level of an
implied variable yis the maximum of the decision levels of decision variabkeito imply
y; if yis implied a value without using any decision variable atydflas decision level zero.
The decision leveht any step of the underlyingPLL procedure is the maximum of the
decision levels of all current decision variables, and 4k&tbere is no decision variable
yet. Thus, for instance, if the clause learning algorithartstoff by branching ow, the
decision level ok is 1 and the algorithm at this stage is at decision level 1.

A clause learning algorithm stops and declares the givemut to be unsatisfiable
whenever unit propagation leads to a conflict at decisioel leero, i.e., when no variable
is currently branched upon. This condition is sometimesrrefl to as aonflict at decision
level zero

Clause learning grew out of work in artificial intelligenaseking to improve the per-
formance of backtrack search algorithms by generatingaegtions for failure (backtrack)
points, and then adding the explanations as new consti@intise original problem. The
results of Stallman and Sussmd®§], Genesereth{7], Davis [56], Dechter p8], de Kleer
and Williams p7], and others proved this approach to be quite promisinggEoperal con-
straint satisfaction problems the explanations are cédtledflicts” or “no-goods”; in the
case of Boolean CNF satisfiability, the technique becomassel learning — the reason
for failure is learned in the form of a “conflict clause” whighadded to the set of given
clauses. Despite the initial success, the early work irettgéa was limited by the large num-
bers of no-goods generated during the search, which ggnieradlved many variables and
tended to slow the constraint solvers down. Clause leamives a lot of its practical suc-
cess to subsequent research exploiting efficient lazy tlaietsres and constraint database
management strategies. Through a series of papers andasftempanying solvers, Frost
and Dechter74], Bayardo Jr. and Mirankerlp], Marques-Silva and Sakallai4g, Ba-
yardo Jr. and Schrad], Zhang P12, Moskewicz et al. 155, Zhang et al. 216], and
others showed that clause learning can be efficiently impiged and used to solve hard
problems that cannot be approached by any other technique.

In general, the learning process hidderairal yzeConf | i ct is expected to save us
from redoing the same computation when we later have anrassigt that causes conflict

3 In some implementations involving lazy data structures, selde not keep track of the actual number of
satisfied clauses. Instead, the formula is declared to bsfiabte when all variables have been assigned a truth
value and no conflict is created by this assignment.

Gomes et al. 9

due in part to the same reason. Variations of such confligediearning include different
ways of choosing the clause to learn (differégdrning schem@sand possibly allowing
multiple clauses to be learned from a single conflict. We déesduss formalize the graph-
based framework used to define and compute conflict clauses.

Implication Graph and Conflicts

Unit propagation can be naturally associated withiraplication graphthat captures all
possible ways of deriving all implied literals from decisibterals. In what follows, we
use the ternknown clauseso refer to the clauses of the input formula as well as to all
clauses that have been learned by the clause learning precdar.

Definition 1. Theimplication graph Gat a given stage dPLL is a directed acyclic graph
with edges labeled with sets of clauses. It is constructddiasvs:

Step 1: Create a node for each decision literal, labeled thihliteral. These will be
the indegree zero source node<of

Step 2: While there exists a known clauge= (I1 Vv ...Ix V1) such that-ly, ..., —lg
label nodes irG,

i. Add a node labeledlif not already present its.
ii. Add edges(l;,l),1<i <k, if not already present.

iii. Add C to the label set of these edges. These edges are thought of as
grouped together and associated with claDise

Step 3: Add toG a special “conflict” node\. For any variablex that occurs both
positively and negatively i, add directed edges frormand—x to A.

Since all node labels i@ are distinct, we identify nodes with the literals labelihgin.
Any variablex occurring both positively and negatively @is aconflict variable andx as
well as—x areconflict literals G contains econflictif it has at least one conflict variable.
DPLL at a given stage hascanflictif the implication graph at that stage contains a conflict.
A conflict can equivalently be thought of as occurring whemtbsidual formula contains
the empty claus@.

By definition, an implication graph may not contain a conféitall, or it may contain
many conflict variables and several ways of deriving anylsitigral. To better understand
and analyze a conflict when it occurs, we work with a subgrdpmdmplication graph,
called theconflict graph(see Figurel.l), that captures only one among possibly many
ways of reaching a conflict from the decision variables usinifj propagation.

Definition 2. A conflict graph His any subgraph of an implication graph with the follow-
ing properties:

(@ H containsA\ and exactly one conflict variable.
(b) All nodes inH have a path ta\.

(c) Every nodel in H other thanA either corresponds to a decision literal or has
precisely the nodesly,-ly, ..., —lg as predecessors whefle VIo V... VI VI) is
a known clause.

10 1. Satisfiability solvers

a cut corresponding
to clause (—a v — b)

conflict
variable

reason side conflict side

Figure 1.1: A conflict graph

While an implication graph may or may not contain conflictspaftict graph always
contains exactly one. The choice of the conflict graph is phitie strategy of the solver.
A typical strategy will maintain one subgraph of an implioatgraph that has properties
(b) and (c) from Definitior®, but not property (a). This can be thought of agwgue infer-
encesubgraph of the implication graph. When a conflict is reactigd,unique inference
subgraph is extended to satisfy property (a) as well, riesyillh a conflict graph, which is
then used to analyze the conflict.

Conflict clauses

For a subsedt of the vertices of a graph, tleglge-cuihenceforth called a cut) correspond-
ing toU is the set of all edges going from verticedlrto vertices not irJ.

Consider the implication graph at a stage where there is #icoand fix a conflict
graph contained in that implication graph. Choose any ctitérconflict graph that has all
decision variables on one side, called tbason sideand/ as well as at least one conflict
literal on the other side, called tlw@nflict side All nodes on the reason side that have at
least one edge going to the conflict side formaaseof the conflict. The negations of the
corresponding literals forms tto@nflict clauseassociated with this cut.

Learning Schemes

The essence of clause learning is captured byléhening schemeaised to analyze and
learn the “cause” of a failure. More concretely, differentsin a conflict graph separating
decision variables from a set of nodes containgnd a conflict literal correspond to
different learning schemes (see Figlr8). One may also define learning schemes based
on cuts not involving conflict literals at all such as a schesuggested by Zhang et al.
[218, but the effectiveness of such schemes is not clear. Thdsaat be considered
here.

It is insightful to think of thenondeterministischeme as the most general learning
scheme. Here we select the cut nondeterministically, dhgpsvhenever possible, one
whose associated clause is not already known. Since we paateslly branch on the

Gomes et al. 11

Decision clause 1UIP clause
(pvgv—b) t

,
-p , , / /
/ / g g
/
; /
/ ; : ;
:
] 1 1 !
a ! '
:
@ i ' [
. .
. .
.

b @

X - X3
rel - sat clause FirstNewCut clause
(—av-b) (X VX,V X3)

Figure 1.2: Learning schemes corresponding to differetsticthe conflict graph

same last variable, nondeterministic learning subsunasiley multiple clauses from a
single conflict as long as the sets of nodes on the reason kitle corresponding cuts
form a (set-wise) decreasing sequence. For simplicity, Wessume that only one clause
is learned from any conflict.

In practice, however, we employ deterministic schemes. ddwsionscheme 216,
for example, uses the cut whose reason side comprises @latecariablesr el sat [18]
uses the cut whose conflict side consists of all implied emat the current decision
level. This scheme allows the conflict clause to have exactéyvariable from the current
decision level, causing an automatic flip in its assignmgunubacktracking. In the ex-
ample depicted in Figuré.2, the decision clausgpV qV —b) hasb as the only variable
from the current decision level. After learning this corifidtause and backtracking by
unassigningy, the truth values op andq (both FALSE) immediately imply—b, flipping
the value ofb from TRUE to FALSE.

This nice flipping property holds in general for alhique implication pointgUIPs)
[148. A UIP of an implication graph is a node at the current decideveld such that any
path from the decision variable at lewkto the conflict variable as well as its negation must
go through it. Intuitively, it is asinglereason at levell that causes the conflict. Whereas
rel sat uses the decision variable as the obvious WRsp [148 and zChaf f [155
useFirstUIP, the one that is “closest” to the conflict variabt&.asp also learns multiple
clauses when faced with a conflict. This makes it typicaltyuiee fewer branching steps
but possibly slower because of the time lost in learning antpropagation.

The concept of UIP can be generalized to decision levels dkiaa the current one.
The1UIP schemeorresponds to learning the FirstUIP clause of the curreaisibn level,
the 2UIP schemeo learning the FirstUIP clauses of both the current level e one
before, and so on. Zhang et &21[g present a comparison of all these and other learning
schemes and conclude that 1UIP is quite robust and outpesfall other schemes they
consider on most of the benchmarks.

Another learning scheme, which underlies the proof of ardwoto be presented in
the next section, is thEirstNewCutscheme 21]. This scheme starts with the cut that is
closest to the conflict literals and iteratively moves itlb&mwvard the decision variables
until a conflict clause that is not already known is found;deethe name FirstNewCut.

12 1. Satisfiability solvers

1.2.4 A Proof Complexity Perspective

Propositional proof complexity is the study of the struetof proofs of validity of mathe-
matical statements expressed in a propositional or Bodteam Cook and Reckhowdp]
introduced the formal notion of a proof system in order talgtmathematical proofs from
a computational perspective. They defined a propositiordfsystem to be an efficient
algorithmA that takes as input a propositional statenféand a purported proaf of its
validity in a certain pre-specified format. The crucial pedy of A is that for all invalid
statementsS it rejects the paifS,) for all 7, and for all valid statementS, it accepts
the pair(S,) for some proofrt. This notion of proof systems can be alternatively formu-
lated in terms of unsatisfiable formulas — those thatranese for all assignments to the
variables.

They further observed that if there is no propositional pystem that admits short
(polynomial in size) proofs of validity of all tautologiese., if there exist computation-
ally hard tautologies for every propositional proof systémen the complexity classes NP
and co-NP are different, and henceZPNP. This observation makes finding tautological
formulas (equivalently, unsatisfiable formulas) that ammputationally difficult for vari-
ous proof systems one of the central tasks of proof compleggtearch, with far reaching
consequences to complexity theory and Computer Sciencenergl. These hard formu-
las naturally yield a hierarchy of proof systems based orsibes of proofs they admit.
Tremendous amount of research has gone into understartdsmgi¢rarchical structure.
Beame and Pitass2P] summarize many of the results obtained in this area.

To understand current complete SAT solvers, we focus on thef gystem called
resolution denoted henceforth eRES. It is a very simple system with only one rule
which applies to disjunctions of propositional variablesl @heir negationsta or b) and
((NOT a) OR c) together imply(b OR c¢). Repeated application of this rule suffices to de-
rive an empty disjunction if and only if the initial formula unsatisfiable; such a derivation
serves as a proof of unsatisfiability of the formula.

Despite its simplicity, unrestricted resolution as defiabdve (also calledeneral res-
olution) is hard to implement efficiently due to the difficulty of fimdj good choices of
clauses to resolve; natural choices typically yield hugeaste requirements. Various re-
strictions on the structure of resolution proofs lead ts [gswerful but easier to implement
refinements that have been studied extensively in proof toqty Those of special in-
terest to us ar&ree-like resolutionwhere every derived clause is used at most once in the
refutation, andegular resolutionwhere every variable is resolved upon at most one in any
“path” from the initial clauses to the empty clause. Whilesta@nd other refinements are
sound and complete as proof systems, they differ vastifficieficy. For instance, in a se-
ries of results, Bonet et al3p], Bonet and Galesd3], and Buresh-Oppenheim and Pitassi
[39] have shown that regular, ordered, linear, positive, negaand semantic resolution
are all exponentially stronger than tree-like resolution.the other hand, Bonet et a8
and Alekhnovich et al.g] have proved that tree-like, regular, and ordered resmiugire
exponentially weaker thaRES.

Most of today’s complete SAT solvers implement a subset@fésolution proof sys-
tem. However, till recently, it wasn't clear where exactly tthey fit in the proof system
hierarchy and how do they compare to refinements of resolstich as regular resolution.
Clause learning and random restarts can be considered twadbeftthe most important
ideas that have lifted the scope of modern SAT solvers fropeemental toy problems

Gomes et al. 13

to large instances taken from real world challenges. Despierwhelming empirical ev-
idence, for many years not much was known of the ultimatengthes and weaknesses of
the two.

Beame, Kautz, and Sabharwall] 179 answered several of these questions in a for-
mal proof complexity framework. They gave the first precibaracterization of clause
learning as a proof system call&@L and began the task of understanding its power by
relating it to resolution. In particular, they showed thattwa new learning scheme called
FirstNewCut, clause learning can provide exponentialbyrtsr proofs than any proper re-
finement of general resolution satisfying a natural setiiction property. These include
regular and ordered resolution, which are already knowretmbch stronger than the or-
dinary DPLL procedure which captures most of the SAT solvers that dorneairporate
clause learning. They also showed that a slight variantaafsg learning with unlimited
restarts is as powerful as general resolution itself.

From the basic proof complexity point of view, only familiebunsatisfiable formulas
are of interest because only proofs of unsatisfiability carldsge; minimum proofs of
satisfiability are linear in the number of variables of thenfala. In practice, however,
many interesting formulas are satisfiable. To justify thprapch of using a proof system
CL, we refer to the work of Achlioptas, Beame, and Moll&} vho have shown how
negative proof complexity results for unsatisfiable forasutan be used to derive time
lower bounds for specific inference algorithms, especialL, running on satisfiable
formulas as well. The key observation in their work is thatobe hitting a satisfying
assignment, an algorithm is very likely to explore a largsatisfiable part of the search
space that corresponds to the first bad variable assignment.

Proof complexity does not capture everything we intuitivedean by the power of a
reasoning system because it says nothing about how difftdslto find shortest proofs.
However, it is a good notion with which to begin our analysss&use the size of proofs
provides a lower bound on the running time of any implemémtadf the system. In the
systems we consider, a branching function, which detersniviéch variable to split upon
or which pair of clauses to resolve, guides the search. Ativegaroof complexity result
for a system (“proofs must be large in this system”) tellshat & family of formulas is
intractable even with a perfect branching function; likesyia positive result (“small proofs
exist”) gives us hope of finding a good branching functioa., ia branching function that
helps us uncover a small proof.

We begin with an easy to prove relationship betwe@nL (without clause learning)
and tree-like resolution (for a formal proof, see ely.9).

Proposition 1. For a CNF formula F, the size of the small®RLL refutation of F is equal
to the size of the smallest tree-like resolution refutatidf .

The interesting part is to understand what happens wheeelaarning is brought into
the picture. It has been previously observed by Lynce andjv&s-Silva 144 that clause
learning can be viewed as adding resolvents to a tree-lg@uton proof. The following
results show further that clause learning, viewed as a gitipoal proof systencL, is
exponentially stronger than tree-like resolution. Thiplains, formally, the performance
gains observed empirically when clause learning is add&dta based solvers.

14 1. Satisfiability solvers

Clause Learning Proofs

The notion of clause learning proofs connects clause legmnith resolution and provides
the basis for the complexity bounds to follow. If a given falaF is unsatisfiable, the
clause learning baseawPLL process terminates with a conflict at decision level zemc&i
all clauses used in this final conflict themselves follow cliseor indirectly fromF, this
failure of clause learning in finding a satisfying assigntreanstitutes a logical proof of
unsatisfiability ofF. In an informal sense, we denote ©y the proof system consisting of
all such proofs; this can be made precise using the notiobiErzching sequenc2]]. The
results below compare the sizes of proofginwith the sizes of (possibly restricted) reso-
lution proofs. Note that clause learning algorithms canarseof many learning schemes,
resulting in different proofs.

We next define what it means for a refinement of a proof systebetoatural and
proper. Letés(F) denote the length of the short refutation of a formklander a proof
systemS

Definition 3 ([21, 179]). For proof systemSandT, and a functionf : N — [1,),
¢ Sisnaturalif for any formulaF and restrictiorp on its variableszs(F|p) < ¢s(F).
e Sis arefinemenbdf T if proofs in Sare also (restricted) proofs h.

e Sis f(n)-proper as a refinement of if there exists a witnessing famil{F,} of
formulas such thats(F,) > f(n) - %7 (F,). The refinement igxponentially-proper

if f(n)=2""" andsuper-polynomially-propeif f(n)=n®®.

Under this definition, tree-like, regular, linear, posiivnegative, semantic, and or-
dered resolution are natural refinement&B8E, and further, tree-like, regular, and ordered
resolution are exponentially-proped7, 6].

Now we are ready to state the somewhat technical theoretmigethe clause learning
process to resolution, whose corollaries are nonethekesg te understand. The proof
of this theorem is based on an explicit construction of dteddproof-trace extension”
formulas, which interestingly allow one to translatey known separation result between
RES and a natural proper refinemebbf RES into a separation betweat andS.

Theorem 1([21,179). For any f(n)-proper natural refinement S &ES and forCL using
the FirstNewCut scheme and no restarts, there exist forsn{fia} such thatés(F,) >
f(n)-CeL(Fn).

Corollary 1. CL can provide exponentially shorter proofs than tree-lilegular, and or-
dered resolution.

Corollary 2. EitherCL is not a natural proof system or it is equivalent in stren@tiRES.

We remark that this leaves open the possibility thatmay not be able to simulate
all regular resolution proofs. In this context, MacKenZié has used arguments similar
to those of Beame et all9] to prove that a natural variant of clause learning can iddee
simulate all of regular resolution.

Finally, let CL-- denote the variant afL where one is allowed to branch on a literal
whose value is already set explicitly or because of unit agapion. Of course, such a

Gomes et al. 15

relaxation is useless in ordinabpPLL; there is no benefit in branching on a variable that
doesn’t even appear in the residual formula. However, wahse learning, such a branch
can lead to an immediate conflict and allow one to learn a keflicoclause that would
otherwise have not been learned. This property can be usptbte thatRES can be
efficiently simulated by L-- with enough restarts. In this context, a clause learningrseh
will be callednon-redundantf on a conflict, it always learns a clause not already known.
Most of the practical clause learning schemes are non-gthin

Theorem 2 ([21, 179). CL-- with any non-redundant scheme and unlimited restarts is
polynomially equivalent t&ES.

We note that by choosing the restart points in a smart waytogether with restarts
can be converted into@mpletealgorithm for satisfiability testing, i.e., for all unsdtéble
formulas given as input, it will halt and provide a proof ofsatisfiability [L5, 92]. The
theorem above makes a much stronger claim about a sliglgntasf CL, namely, with
enough restarts, this variant can always find proofs of isf&iility that are as short as
those ofRES.

1.2.5 Symmetry Breaking

One aspect of many theoretical as well as real-world problérat merits attention is the
presence ofymmetryor equivalenceamongst the underlying objects. Symmetry can be
defined informally as a mapping of a constraint satisfagbiablem (CSP) onto itself that
preserves its structure as well as its solutions. The cdrefegymmetry in the context of
SAT solvers and in terms of higher level problem objects &t legplained through some
examples of the many application areas where it naturattyiec For instance, in FPGA
(field programmable gate array) routing used in electrodé&sign, all available wires or
channels used for connecting two switch boxes are equivalenur design, it does not
matter whether we use wire #1 between connector X and casm¥ctor wire #2, or
wire #3, or any other available wire. Similarly, in circuitogkeling, all gates of the same
“type” are interchangeable, and so are the inputs to a nheilf§min AND or OR gate (i.e.,

a gate with several inputs); in planning, all identical ®xeat need to be moved from
city A to city B are equivalent; in multi-processor schedgli all available processors are
equivalent; in cache coherency protocols in distributemhmating, all available identical
caches are equivalent. A key property of such objects isthan selectind of them, we
can choosewithout loss of generalityanyk. This without-loss-of-generality reasoning is
what we would like to incorporate in an automatic fashion.

The question of symmetry exploitation that we are inteeste@ddressing arises when
instances from domains such as the ones mentioned abovargskated into CNF formulas
to be fed to a SAT solver. A CNF formula consists of constsamer different kinds of
variables that typically represent tuples of these higbllebjects (e.g. wires, boxes, etc.)
and their interaction with each other. For example, durhmegroblem modeling phase,
we could have a Boolean varialg that isTRUE iff the first end of wirew is attached
to connectorc. When this formula is converted into DIMACS format for a SAT\vaD,
thesemantic meaningf the variables, that, say, variable 1324 is associatel wiite #23
and connector #5, is discarded. Consequently, in thislatos, the global notion of the
obvious interchangeability of the set of wire objects i¢,l@nd instead manifests itself
indirectly as a symmetry between the (numbered) variadi¢seoformula and therefore

16 1. Satisfiability solvers

also as a symmetry within the set of satisfying (or un-sgtigf) variable assignments.
These sets of symmetric satisfying and un-satisfying assémts artificially explode both
the satisfiable and the unsatisfiable parts of the searcle sgheclatter of which can be a
challenging obstacle for a SAT solver searching for a satigfassignment.

One of the most successful techniques for handling symnretygth SAT and general
CSPs originates from the work of Pugé&6p], who showed that symmetries can l®-
kenby adding one lexicographic ordering constraint per symynetrawford et al. 49|
showed how this can be done adding a set of simple “lex-cainss’” orsymmetry breaking
predicateSBPS) to the input specification to weed out all but the letkjefirst solutions.
The idea is to identify the group of permutations of variahteat keep the CNF formula
unchanged. For each such permutatigrclauses are added so that for every satisfying
assignment for the original problem, whose permutatiario) is also a satisfying as-
signment, only the lexically-first of and (o) satisfies the added clauses. In the context
of CSPs, there has been a lot of work in the area of SBPs. Redi&mith 165 extended
the idea to value symmetries, Pugét {] applied it to products of variable and value sym-
metries, and Walsi2D7] generalized the concept to symmetries acting simultasigan
variables and values, on set variables, etc. Pugéd jhas recently proposed a technique
for creating dynamic lex-constraints, with the goal of miiding adverse interaction with
the variable ordering used in the search tree.

In the context of SAT, value symmetries for the high-leveiables naturally manifest
themselves as low-level variable symmetries, and work oRs3tas taken a different path.
Tools such ashat t er by Aloul et al. [7] improve upon the basic SBP technique by using
lex-constraints whose size is only linear in the number oiatdes rather than quadratic.
Further, they use graph isomorphism detectors$ikecy by Darga et al. 0] to generate
symmetry breaking predicates only for the generators ohtpebraic groups of symme-
try. This latter problem of computing graph isomorphismywhueer, is not known to have
any polynomial time algorithms, and is conjectured to betijrbetween the complexity
classes P and NP [c124]. Hence, one must resort to heuristic or approximate swisti
Further, while there are formulas for which few SBPs suffibe, number of SBPs one
needs to add in order to break symmetries can be exponential. This is typically handled
in practice by discarding “large” symmetries, i.e., thaselving too many variables with
respect to a fixed threshold. This may, however, sometinmsgtrim a much slower SAT
solutions in domains such as clique coloring and logistics.

A very different and indirect approach for addressing syinynis embodied in SAT
solvers such aBBS by Aloul et al. [B], pbChaf f by Dixon et al. p2], and Gal ena by
Chai and Kuehlmanml], which utilize non-CNF formulations known as pseudo-Bxaoi
inequalities. Their logic reasoning are based on what ie@¢dhe Cutting Planes proof
system which, as shown by Cook et &7], is strictly stronger than resolution on which
DPLL type CNF solvers are based. Since this more powerfuwfpsgstem is difficult to
implement in its full generality, pseudo-Boolean solveiteimimplement only a subset of
it, typically learning only CNF clauses or restricted psedgbolean constraints upon a
conflict. Pseudo-Boolean solvers may lead to purely syictagpresentational efficiency
in cases where a single constraint suclgasy, + ... + Yk < 1 is equivalent tc('g) binary
clauses. More importantly, they are relevant to symmetgabse they sometimes allow
implicit encoding. For instance, the single constraint Xo+ . .. +X, < movernvariables
captures the essence of the pigeonhole forRt&,, overnmvariables which is provably
exponentially hard to solve using resolution-based methwithout symmetry consider-

Gomes et al. 17

ations. This implicit representation, however, is notaié in certain applications such
as clique coloring and planning that we discuss. In factuftsatisfiable clique coloring
instances, even pseudo-Boolean solvers provably reggi@nential time.

One could conceivably keep the CNF input unchanged but madlakf solver to detect
and handle symmetries during the search phase as they @dthwugh this approach is
quite natural, we are unaware of its implementation in a geipeirpose SAT solver besides
sEgSat z by Li et al. [138], which has been shown to be effective on matrix multiplmat
and polynomial multiplication problems. Symmetry handloturing search has been ex-
plored with mixed results in the CSP domain using framewbtkikesSBDD and SBDS [e.g.
66, 67, 79, 82]. Related work in SAT has been done in the specific areas ofaatic test
pattern generation by Marques-Silva and Sakall@¥[and SAT-based model checking by
Shtrichman 192. In both cases, the solver utilizes global informationadéd at a stage
to make subsequent stages faster. In other domain-specificam symmetries in prob-
lems relevant to SAT, Fox and Longg] propose a framework for handling symmetry in
planning problems solved using the planning graph framkew®dhey detect equivalence
between various objects in the planning instance and usdrtfirmation to reduce the
search space explored by their planner. Unlike typical $a3ed planners, this approach
does not guarantee plans of optimal length when multiple{ganflicting) actions are al-
lowed to be performed at each time step in parallel. Foralpathis issue does not arise
in theSyntChaf f approach for SAT to be mentioned shortly.

Dixon et al. p1] give a generic method of representing and dynamically taaing
symmetry in SAT solvers using algebraic techniques thatapiae polynomial size un-
satisfiability proofs of many difficult formulas. The streéhgf their work lies in a strong
group theoretic foundation and comprehensiveness in manell possible symmetries.
The computations involving group operations that undeHgr current implementation
are, however, often quite expensive.

When viewing complete SAT solvers as implementations of fpsgstems, the chal-
lenge with respect to symmetry exploitation is to push thaéeulying proof system up in
the weak-to-strong proof complexity hierarchy withouturming the significant cost that
typically comes from large search spaces associated wittplex proof systems. While
most of the current SAT solvers implement subsets of thduBen proof system, a differ-
ent kind of solver calle&ynChaf f [179 180 brings it up closer teymmetric resolutian
a proof system known to be exponentially stronger than véisol [202, 126]. More criti-
cally, it achieves this in a time- and space-efficient manimerestingly, whileSynChaf f
involves adding structure to the problem description,ilit says within the realm of SAT
solvers (as opposed to using a constraint programming (@#pach), thereby exploiting
the many benefits of the CNF form and the advances in statieeedrt SAT solvers.

As a structure-aware solvedyntChaf f incorporates several new ideas, including sim-
ple but effective symmetry representation, multiway brang based on variable classes
and symmetry sets, and symmetric learning as an extensiolawge learning to multi-
way branches. Two key places where it differs from earliggrapches are in using high
level problem description to obtain symmetry informatiams{ead of trying to recover it
from the CNF formula) and in maintaining this informationngdynically but without us-
ing a complex group theoretic machinery. This allows it ter@ome many drawbacks
of previously proposed solutions. It is shown, in particuthat straightforward annota-
tion in the usual PDDL specification of planning problemsrisggh to automatically and
quickly generate relevant symmetry information, whichumtmakes the search for an op-

18 1. Satisfiability solvers

timal plan several orders of magnitude faster. Similargenfince gains are seen in other
domains as well.

1.3 SAT Solver Technology — Incomplete Methods

An incompletamethod for solving the SAT problem is one that does not peted guar-
antee that it will eventually either report a satisfyingigssent or prove the given formula
unsatisfiable. Such a method is typically run with a predis@t,lafter which it may or may
not produce a solution. Unlike the systematic solvers basedn exhaustive branching
and backtracking search, incomplete methods are bassibamastic local searchr SLS.

On many classes of problems, such incomplete methods fors&ificantly outperform
DPLL-based methods. Since the early 1990’s, there has been anlems amount of
research on designing, understanding, and improving keEaich methods for SAT [e.g.
71,94, 95,99, 102 103 105 139, 166, 186 as well as on hybrid approaches that attempt
to combine DPLL and local search methods [8,@6, 150 175. We begin this section by
discussing two methods that played a key role in the sucdéssad search in SAT, namely
GSAT [19]] andwal ksat [189. We will then explore the phase transition phenomenon in
random SAT and a relatively new local search technique ¢&lervey Propagation. We
note that there are also solution techniques based on theettid.agrangianZ05, 211]
and on the interior point method 13, which we will not discuss.

The original impetus for trying a local search method ors§iathility problems was the
successful application of such methods for finding solitinlargeN-queens problems,
first using a connectionist system by Adorf and JohnsEngnd then using greedy local
search by Minton et al1p3. It was originally assumed that this success simply ingida
thatN-queens was agasyproblem, and researchers felt that such techniques woiliid fa
practice for SAT. In particular, it was believed that locadsch methods would easily get
stuck in local minima, with a few clauses remaining unsatikfiTheGSAT experiments
showed, however, that certain local search strategies déieeach global minima, in many
cases much faster than any systematic search strategies.

GSAT is based on a randomized local search techniq4é [1627. The basicGSAT
procedure, described as Algorithh8, starts with a randomly generated truth assignment.
It then greedily changes (‘flips’) the assignment of the alale that leads to the greatest
decrease in the total number of unsatisfied clauses. Suchditg repeated until either
a satisfying assignment is found or a pre-set maximum nurob#lips (MAX -FLIPS) is
reached. This process is repeated as needed, up to a maxiimuwx eTRIES times.

Selman et al.19]] showed thatGSAT substantially outperformed even the best back-
tracking search procedures of the time on various classesratilas, including randomly
generated formulas and SAT encodings of graph coloringlena®[L12. The search of
GSAT typically begins with a rapid greedy descent towards a begsignment, followed
by a long sequences of “sideways” moves. Each sequencesviayd moves is referred to
as aplateau Experiments indicate that in practicG&AT spends most of its time moving
from plateau to plateau, which motivates studying variowslifications in order to speed
up this processl87, 188. One of the most successful strategies is to introduceerinte
the search in the form of uphill moves, which forms the basth® now well-known local
search method for SAT callathl ksat [189.

Gomes et al. 19

Algorithm 1.3: GSAT (F)

Input : A CNF formulaF

Parameters : IntegersmAX -FLIPS, MAX -TRIES
Output : A satisfying assignment fd¥, or FAIL
begin

for i — 1to MAX-TRIESdO
o «— arandomly generated truth assignmentRor
for j < 1to MAX-FLIPSdO
if o satisfies Rhen return o /1 success
v« a variable flipping which results in the greatest decrease
(possibly negative) in the number of unsatisfied clauses
Flipvino

return FAIL /1 no satisfying assignnment found

end

Wal ksat interleaves the greedy moves@SAT with random walk moves of a standard
Metropolis search. It further focuses the search by alwalgstng the variable to flip from
an (randomly chosen) unsatisfied cla@sdf there is a variable i€ flipping which does
not turn any currently satisfied clauses to unsatisfied,ds fthis variable (the “freebie”
move). Otherwise, with a certain probability, it flips a rand literal of C (the “random
walk” move), and with the remaining probability, it flips ariable inC that minimizes
thebreak-counti.e., the number of currently satisfied clauses that beaamatisfied (the
“greedy” move).Wal ksat in presented in detail as Algorithin4. One of its parameters,
in addition to the maximum number of tries and flips, istioése pe [0, 1], which controls
how often are uphill moves considered during the stochaeticch.

When one compares the biased random walk strategwilofsat on hard random 3-
CNF formulas against basigSAT, the simulated annealing process of Kirkpatrick et al.
[120, and a pure random walk strategy, the biased random wabiegrosignificantly out-
performs the other method$g§. In the years following the development @4l ksat ,
many similar methods have been shown to be highly effectiveat only random formu-
las but on many classes of structured instances, such adirgsmf circuit design prob-
lems, Steiner tree problems, problems in finite algebra Admpdanning [cf. 105. Various
extensions of the basic process have also been explorell,asudynamic search poli-
cies likeadapt - novel ty [103, incorporating unit clause elimination as in the solver
Uni t Wl k [99], and exploiting problem structure for increased efficiefi66. Recently,
it was shown that the performance of stochastic solvers aryrs@uctured problems can
be further enhanced by using new SAT encodings that arertessig be effective for local
search 16§.

1.3.1 The Phase Transition Phenomenon in RandokSAT

One of the key mativations in the early 1990’s for studyingamplete, stochastic meth-
ods for solving SAT problems was the finding tibgLL-based systematic solvers perform
quite poorly on certain randomly generated formulas. Qisrsa randonk-CNF formula

F onnvariables generated by independently creatirdauses as follows: for each clause,
selectk distinct variables uniformly at random out of thevariables and negate each vari-

20 1. Satisfiability solvers

Algorithm 1.4: Wl ksat (F)

Input : A CNF formulaF

Parameters : IntegersmAX -FLIPS, MAX -TRIES; noise parametep € [0, 1]
Output : A satisfying assignment fd¥, or FAIL

begin

for i +— 1to MAX-TRIESdO

o «— arandomly generated truth assignmentfor
for j < 1to MAX-FLIPSdO
if o satisfies Rthen return o /'l success
C « an unsatisfied clause &fchosen at random
if 3 variable xe C with break-count = Ghen
LV(—X /1 the freebie nove
else
With probability p: /1 the random wal k nove
Vv« a variable inC chosen at random
With probability 1— p: /'l the greedy nove
v+ a variable inC with the smallest break-count
| Flipvino
return FAIL /'l no satisfying assignment found

end

able with probability 0.5. WheF is chosen from this distribution, Mitchell, Selman, and
Levesque 154 observed that the median hardness of the problems is veglyréharacter-
ized by a key parameter: tlofause-to-variable ratiom/n, typically denoted bya. They
observed that problem hardness peaks in a critically caingtl region determined ly
alone. The left pane of Figurk3 depicts the now well-known “easy-hard-easy” pattern
of SAT and other combinatorial problems, as the key paranfetehis casen) is varied.
For random 3-SAT, this region has been experimentally shovine aroundx ~ 4.26 (see
[48, 121 for early results), and has provided challenging benchsas a test-bed for SAT
solvers.

‘Threshold for 3SAT

4000

o8 20--variabl e formlas ——
o 40--variable formias —+—
3500 |- !oa 50--variabl e formilas -5 |

3000 - @
2500 1

2000 |

#of DPcalls

|
1500 - ; 5

Fraction of unsatisfiable formulae

DDDDD

++++

2 s L L L
Ratio of clauses-to-variables 3 35 4 a5 5 55 6 65 7

Figure 1.3: The phase transition phenomenon in random 34 Computational hard-
ness peaks at ~ 4.26. Right: Problems change from being mostly satisfiable dstiyn
unsatisfiable. The transitions sharpen as the number @tfhlas grows.

Gomes et al. 21

This critically constrained region marks a stark transitiot only in the computational
hardness of random SAT instances but also in their satibfialtgelf. The right pane of
Figure1.3 shows the fraction of random formulas that are unsatisfjase function of
o. We see that nearly all problems withbelow the critical region (the under-constrained
problems) are satisfiable. Asapproaches and passes the critical region, there is a sudden
change and nearly all problems in this over-constrainenegre unsatisfiable. Further,
asn grows, this phase transition phenomenon becomes shampeharper, and coincides
with the region in which the computational hardness pealke rElative hardness of the
instances in the unsatisfiable region to the right of the @h@asisition is consistent with the
formal result of Chéatal and Szemeédi [43] who, building upon the work of Haker9§],
proved that large unsatisfiable rand&r@NF formulas almost surely require exponential
size resolution refutations, and thus exponential lengiis of anyDPLL-based algorithm
proving unsatisfiability. This formal result was subsedlyerefined and strengthened by
others [cf.23, 20, 44].

Relating the phase transition phenomenon for 3-SAT tossiedil physics, Kirkpatrick
and Selman21] showed that the threshold has characteristics typicahabp transitions
in the statistical mechanics of disordered materials. Rlsfs have studied phase tran-
sition phenomena in great detail because of the many iniegeshanges in a system’s
macroscopic behavior that occur at phase boundaries. ifiel tgol for the analysis of
phase transition phenomena is caliimite-size scalingnalysis. This approach is based on
rescaling the horizontal axis by a factor that is a functibn.arhe function is such that the
horizontal axis is stretched out for larger In effect, rescaling “slows down” the phase-
transition for higher values of, and thus gives us a better look inside the transition. From
the resulting universal curve, applying the scaling fumcthackwards, the actual transition
curve for each value af can be derived. This approach also localizes the 50%- sdutisfi
point for any value of, which allows one to generate the hardest possible randS®T3-
instances.

Interestingly, it is still not formally known whether theegen exists a critical constant
a¢ such that as grows, almost all 3-SAT formulas withh < o, are satisfiable and almost
all 3-SAT formulas witha > o, are unsatisfiable. In this respect, Friedgi2][provided
the first positive result, showing that there exisfarectiona¢(n) depending om such that
the above threshold property holds. In a series of papessarehers have narrowed down
the gap between upper bounds on the threshold for 3-SAT18,$8, 122 109, 63], the
best so far being 4.596, and lower bounds [6%9.38, 73, 1, 4, 114, 97], the best so far
being 3.52.

1.3.2 A New Technique for Randonk-SAT: Survey Propagation

We end this section with a brief mention of Survey Propaga{®P), an exciting new
algorithm for solving hard combinatorial problems. It wasocdvered in 2002 by Mezard,
Parisi, and Zecchinalp]], and is so far the only known method successful at solving
random 3-SAT instances with one million variables and beyiomear-linear time in the
most critically constrained region.

The SP method is quite radical in that it tries to approximaséng an iterative process
of local “message” updates, certain marginal probabdlitilated to the set of satisfying
assignments. It then assigns values to variables with thst exdreme probabilities, sim-
plifies the formula, and repeats the process. This strategferred to as SP-inspired dec-

22 1. Satisfiability solvers

imation. In effect, the algorithm behaves like the usbBLL-based methods, which also
assign variable values incrementally in an attempt to findtsfying assignment. How-

ever, quite surprisingly, SP almost never has to backtratlkther words, the “heuristic

guidance” from SP is almost always correct. Note that, @gtngly, computing marginals

on satisfying assignments is strongly believed to be muctiénahan finding a single sat-
isfying assignment (#P-complete vs. NP-complete). Naleis, SP is able to efficiently
approximate certain marginals on random SAT instances sesl this information to suc-

cessfully find a satisfying assignment.

SP was derived from rather complex statistical physics odsthspecifically, the so-
calledcavity methoddeveloped for the study of spin glasses. The method is atifrébm
well-understood, but in recent years, we are starting taesats that provide important
insights into its workings [e.dL52, 37, 11, 146, 3, 127]. Close connections to belief prop-
agation (BP) methodslp4 more familiar to computer scientists have been subsetjuent
discovered. In particular, it was shown by Braunstein ancthma B7] (later extended by
Maneva, Mossel, and Wainwright46]) that SP equations are equivalent to BP equations
for obtaining marginals over a special class of combinatatbjects, called covers. In this
respect, SP is the first successful example of the use of alpitibic reasoning technique
to solve a purely combinatorial search problem. The recemkwf Kroc et al. L27] em-
pirically established that SP, despite the extremely lamgayre of random formulas which
violate the standard tree-structure assumptions undegrtiie BP algorithm, is remarkably
good at computing marginals over these covers objects ga fandom 3-SAT instances.

Unfortunately, the success of SP is currently limited talan SAT instances. Itis an
exciting research areato further understand SP and applgdessfully to more structured,
real-world problem instances.

1.4 Runtime Variance and Problem Structure

The performance of backtrack-style search methods candraryatically depending on
the way one selects the next variable to branch on (the ‘deriselection heuristic”) and
in what order the possible values are assigned to a varittide'yalue selection heuris-
tic”). The inherent exponential nature of the search preegpears to magnify the unpre-
dictability of search procedures. In fact, it is not unconmb@ observe a backtrack search
procedure “hang” on a given instance, whereas a differemtistec, or even just another
randomized run, solves the instance quickly. A related phamon is observed in random
problem distributions that exhibit an “easy-hard-easyttgra in computational complex-
ity, concerning so-called “exceptionally hard” instaricesch instances seem to defy the
“easy-hard-easy” pattern, they occur in the under-coimgtdaarea, but they seem to be
considerably harder than other similar instances and esestehthan instances from the
critically constrained area. This phenomenon was firsttiied by Hogg and Willimans in
graph coloring and by Gent and Walsh in satisfiability praige[78, 101]. An instance is
considered to be exceptionally hard, for a particular ealgorithm, when it occurs in the
region where almost all problem instances are satisfialelethe under constrained area),
but, for a given algorithm, is considerably harder to sohantother similar instances, and
even harder than most of the instances in the critically traimed areaq8, 101, 194.
However, subsequent research showed that such instamcestanherently difficult; for
example, by simply renaming the variables or by consideaimlifferent search heuristic

Gomes et al. 23

such instances can be easily solvéfl(, 195. Therefore, the “hardness” of exceptionally
hard instances does not reside in the instapeese but rather in the combination of the
instance with the details of the search method. This is tagaewhy researchers studying
the hardness of computational problems use the median taatkaze search difficulty,
instead of the mean, since the behavior of the mean tendsgoiteerratic [87].

1.4.1 Fatand Heavy Tailed behavior

The study of the full runtime distributions of search methed instead of just the moments
and median — has been shown to provide a better charactenizdtsearch methods and
much useful information in the design of algorithms. In jzartr, researchers have shown
that the runtime distributions of complete backtrack seanethods reveal intriguing char-
acteristics of such search methods: quite often completittzek search methods exhibit
fat andheavy-tailecbehavior [L01, 87, 75].

The notion offat-tailednesss based on the conceptkiiirtosis Thekurtosisis defined
aspla/ 2 (U is the fourth central moment about the mean g the second central mo-
ment about the meaneg., the variance). If a distribution has a high central peakland
tails, than the kurtosis is in general large. Kuetosisof the standard normal distribution is
3. A distribution with akurtosislarger than 3 igat-tailed or leptokurtic Examples of dis-
tributions that are characterized fat-tails are the exponential distribution, the lognormal
distribution, and the Weibull distribution.

Heavy-tailed distributions have “heavier” tails than failed distributions; in fact they
have some infinite moments,g, they can have infinite mean, or infinite variance, etc.
More rigorously, a random variabk with probability distribution functior (-) is heavy-
tailed if it has the so-called Pareto like decay of the tais;

1-F(x)=PriX>x ~Cx 9 x>0,

wherea > 0 andC > 0 are constants. Whend.a < 2, X has infinite variance, and infinite
mean and variance whend0a <= 1. The log-log plot of - F(x) of a Pareto-like distri-
bution (i.e., the survival function) shows linear behawidth slope determined by. Like
heavytailed distributionsfat-tailed distributions have long tails, with a consideratlgss
of probability concentrated in the tails. Nevertheless,t#ils offat-tailed distributions are
lighter thanheavytailed distributions.

DPLL style complete backtrack search methods have beenrstmwxhibit heavy-
tailed behavior, both in random instances and real-wodthimces. Examples domains are
QCP B7], scheduling 89], planningP2], model checking, and graph coloringd6, 111].
Several formal models generating heavy-tailed behavisearch have been proposd@,[
209 210 111, 86]. If a runtime distribution of a backtrack search methodeasvy-tailed,
it will produce runs over several orders of magnitude, sorteemely long but also some
extremely short. Methods like randomization and restayttotexploit this phenomenon.

1.4.2 Backdoors

Insight into heavy-tailed behavior comes from considetiagkdoor variables. These are
variables which, when set, give us a polynomial subproblataitively, a small backdoor
set explains how a backtrack search method can get “luckyeotain runs, where back-
door variables are identified early on in the search and setigint way. Formally, the

24 1. Satisfiability solvers

definition of a backdoor depends on a particular algoritreferred to asub-solverthat
solves a tractable sub-case of the general constraintasditish problem 209.

Definition 4. A sub-solver Agiven as input a CSE, satisfies the following:

i. Trichotomy: A either rejects the inp&, or “determines’C correctly (as unsatisfiable
or satisfiable, returning a solution if satisfiable),

ii. Efficiency: Aruns in polynomial time,

iii. Trivial solvability: A can determine i€ is trivially true (has no constraints) or trivially
false (has a contradictory constraint),

iv. Self-reducibility: if A determine<, then for any variable& and valuev, thenA deter-
minesClv/x].#

For instanceA could be an algorithm that enforces arc consistency. Usiadéfinition
of sub-solver we can now formally define the concept of baokdet. LetA be a sub-
solver, andC be a CSP. A nonempty subsgbf the variables is dackdoorin C for A if
for someas : S— D, Areturns a satisfying assignment®fag|. Intuitively, the backdoor
corresponds to a set of variables, such that when set dgrréed sub-solver can solve
the remaining problem. A stronger notion of the backdoonsaters both satisfiable and
unsatisfiable (inconsistent) problem instances. A nongrapbsetS of the variables is
a strong backdooiin C for A if for all as: S— D, A returns a satisfying assignment or
concludes unsatisfiability @[ag].

Szeider 199 considers the parameterized complexity of the problemtodtiver a SAT
instance has a weak or strong backdoor set of Isiaeless for DPLL style sub-solvers,
i.e., subsolvers based on unit propagation and/or puralligimination. He shows that
detection of weak and strong backdoor sets is unlikely to xedfparameter tractable.
Nishimura et al. 157 provide more positive results for detecting backdoor sdtsre the
sub-solver solves Horn or 2-CNF formulas, both of which aredr time problems. They
prove that the detection of such a strong backdoor set is-fieedmeter tractable, while
the detection of a weak backdoor set is not. The explanakiahthey offer for such a
discrepancy is quite interesting: for strong backdoor eatsonly has to guarantee that
the chosen set of variables gives a subproblem with the aheggactic class; for weak
backdoor sets, one also has to guarantee satisfiabilityedithplified formula, a property
that cannot be described syntactically.

Dilkina et al. [60] study the tradeoff between the complexity of backdoor céta and
the backdoor size. They prove that adding certain obviotsrisistency checks to the un-
derlying class can make the complexity of backdoor detagtimp from being within NP
to being both NP-hard and coNP-hard. On the positive sigég,thow that this change can
dramatically reduce the size of the resulting backdoorgyTdiso explore the differences
between so-called deletion backdoors and strong backdimoparticular with respect to
the class of renamable Horn formulas.

Concerning the size of backdoors, random formulas do natapp have small back-
door sets. For example, for random 3-SAT problems, the bamkdet appears to be a
constant fraction (roughly 30%) of the total number of vhlés [L0g. This may explain
why the current DPLL based solvers have not made significamrpss on hard randomly

“We useC|v/x] to denote the simplified CSP obtained by setting the value ridlviex to vin C.

Gomes et al. 25

generated instances. Empirical results based on reatiwmtances suggest a more pos-
itive picture. Structured problem instances can have mingty small sets of backdoor
variables, which may explain why current state of the arvessl are able to solve very
large real-world instances. For example the logisticsashping problem instance, (log.d)
has a backdoor set of just 12 variables, compared to a toteafy 7,000 variables in the
formula, using the polynomial time propagation techniqoiehe SAT solver, Satz135.
Hoffmann et al. L0(proved the existence atrongbackdoor sets of size juS(logn) for
certain families of logistics planning problems and bloaksld problems.

Figure 1.4: Constraint graph of a real-world instance fromlbgistics planning domain.
The instance in the plot has 843 vars and 7,301 clauses. @kddua set for this instance
w.r.t. unit propagation has size 16 (not necessarily thermim backdoor set). Left:
Constraint graph of the original constraint graph of théainse. Center: Constraint graph
after setting 5 variables and performing unit propagatiorite graph. Right: Constraint
graph after setting 14 variables and performing unit pragiag on the graph.

Even though computing backdoor sets is typically intraletgh99, if we bound the
size of the backdoor, heuristics and techniques like raizition and restarts may never-
theless be able to uncover a small backdoor in pracfidé€][Dequen and Dubois intro-
duced a heuristic for DPLL based solvers that exploits th®namf backbone that outper-
forms other heuristics on random 3-SAT problers8, 64].

1.4.3 Restarts

One way to exploit heavy-tailed behavior is to add restarts backtracking procedure. A
sequence of short runs instead of a single long run may be a efif@ctive use of compu-
tational resources. Gomes et al. proposed a rapid randtomznd restart (RRR) to take
advantage of heavy-tailed behavior and boost the efficiehcpmplete backtrack search
procedures92]. In practice, one gradually increases the cutoff to maintampleteness
([92]). Gomes et al. have proved formally that a restart stravatfya fix cutoff eliminates
heavy-tail behavior and therefore all the moments of a restiategy are finited8].

When the underlying runtime distribution of the randomizeatpdure is fully known,
the optimal restart policy is a fixed cutoff42). When there is na priori knowledge about
the distribution, Lubyet al. also provide ainiversal strategyhich minimizes the expected
cost. This consists of runs whose lengths are powers of tgbeach time a pair of runs of
a given length has been completed, a run of twice that lesgthmediately executed. The

26 1. Satisfiability solvers

universal strategy is of the form:,1,2,1,1,2.4,1,1,2,4.8,---. Although the universal
strategy of Lubyet al.is provably within a constant log factor of the optimal fixadaff,
the schedule often converges too slowly in practice. Waistoduced a restart strategy,
inspired by Lubyet al’s analysis, in which the cutoff value increases geomdtyi¢206|.
The advantage of such a strategy is that it is less sengititleetdetails of the underlying
distribution. State-of-the-art SAT solvers now routinege restarts. In practice, the solvers
use a default cutoff value, which is increased, linearhgrgwgiven number of restarts,
guaranteeing the completeness of the solver in the [ib38[Another important feature
is that they learn clauses across restarts.

effect of restarts (cutoff 4) 1000000

1 T S e T
Thby,

no restarts

100000

10000 \/

000t ¢ 1 1000 T T T T T
1 10 100 1000 10000 100000 1000000

log(cutoff)

log (backtracks)

001 F with restarts

fraction unsolved

0.0001 L L
1 10 1000
total number of backiracks

(@) (b)
Figure 1.5: Restarts: (a) Tail (1F(x)) as a function of the total number of backtracks
for a QCP instance, log-log scale; the left curve is for a fumlue of 4; and, the right
curve is without restarts. (b) The effect of different ctitedlues on solution cost for the
logistics.d planning problem. Graph adapted fr@v, Bg].

In reality, we will be somewhere between full and no knowkedd the runtime distri-
bution. Horvitz et al. 106 introduce a Bayesian framework for learning predictivedeis
of randomized backtrack solvers based on this situatioteriekng that work, Kautz et al.
[115 considered restart policies that can factor in informatiased on real-time observa-
tions about a solver’s behavior. In particular, they introel anoptimalpolicy for dynamic
restarts that considers observations about solver behaMiey also consider the depen-
dency between runs. They give a dynamic programming approegenerate the optimal
restart strategy, and combine the resulting policy with-tie@e observations to boost per-
formance of backtrack search methods.

Variants of restart strategies include randomized backing [143, and the random
jump strategy 213 which has been used to solve a dozen previously open prabilem
finite algebra. Finally, one can also take advantage of thle Wariance of combinatorial
search methods by combining several algorithms into a fplaot” and running them in
parallel or interleaving them on a single processor.

Gomes et al. 27

1.5 Beyond SAT: Quantified Boolean Formulas and Model Counting

We end this chapter with a brief overview of two importantidems that extend beyond
propositional satisfiability testing and will lie at the Ineaf the next generation automated
reasoning systems: Quantified Boolean Formula (QBF) rélag@nd counting the num-
ber of models (solutions) of a problem. These problems ptesscinating challenges
and pose new research questions. Efficient algorithms ésetlwill have a significant im-
pact on many application areas that are inherently beyond 84ch as adversarial and
contingency planning, unbounded model checking, and fib$iEc reasoning.

These problems can be solved, in principle and to some extpréctice, by extending
the two most successful frameworks for SAT algorithms, Agn@PLL and local search.
However, there are some interesting issues and choicesutisatwhen extending SAT-
based techniques to these harder problems. In generad, phelslems require the solver
to, in a sense, be cognizant alf solutionsin the search space, thereby reducing the ef-
fectiveness and relevance of commonly used SAT heuriséisggded for quickly zooming
in on a single solution. The resulting scalability challerttas drawn many satisfiability
researchers to these problems.

1.5.1 QBF Reasoning

A Quantified Boolean Formula (QBF) is a Boolean formula in ebhvariables are quan-
tified as existentialH) or universal). We will use the term QBF fototally quantified
(also known as closed) Boolean formulas in prenex foeginning (for simplicity) withd:

F= 3. KV wd. wd? Q... ™

whereM is a Boolean formula referred to as theatrix of F, x' above are distinct and
include all variables appearing M, andQ is 3 if kis odd andv if kis even. Defining/; =
{xil,...x}“)} and using associativity within each level of quantificatiore can simplify
the notation td= = 3V; YW, 3Vs ... QW M. A QBF solver is an algorithm that determines
the truth value of such formulds, i.e., whether there exist values of variable¥insuch
that for every assignment of values to variable¥4rthere exist values of variablesVfa,
and so on, such thM is satisfied (i.e., evaluates tRUE).

QBF reasoning extends the scope of SAT to domains requidrgraarial analysis,
like conditional planningZ72, unbounded model checking T4, 25], and discrete games
[81]. As a simple applied example, consider a two-player gamerg/keach player has a
discrete set of actions. Here a winning strategy for a pléger partial game tree that,
for every possible game play of the opponent, indicates loopvdceed so as to guarantee
a win. This kind of reasoning is more complex than the siraglent reasoning that SAT
solvers offer, and requires modeling and analyzing adviatsactions of another agent
with competing interests. Fortunately, such problems aglyeand naturally modeled
using QBF. The QBF approach thus supports a much richengéttan SAT. However, it
also poses new and sometimes unforeseen challenges.

In terms of the worst-case complexity, deciding the truta @BF is PSPACE-complete
[198 whereas SAT is “only” NP-complete Even with very few quantification levels, the

5Assuming P# NP, PSPACE-complete problems are significantly harder thawdwiplete problems; cf.
[163.

28 1. Satisfiability solvers

explosion in the search space is tremendous in practicahéfuas the winning strategy
example indicates, even a solution to a QBF may require exqt@l space to describe,
causing practical difficultie24].

Nonetheless, several tools for deciding the truth of a giR&F (QBF solvers) have
been developed. These includ®LL-style search based solvers likeaffle [217),
QUBE [83], Senprop [131], Eval uate [40], Deci de [173, and QRSat [16(; local
search methods likeal kQSAT [80]; skolemization based solvers likKi zzo [25]; g-
resolution 123 based solvers lik&uant or [27]; and symbolic, BDD based tools like
QVRES and@BDD[161]. Most of these solvers extend the concepts underlying SNess.

In particular, they inherit conjunctive normal form (CNF)the input representation, which
has been the standard for SAT solvers for over a decadendifygrsome solvers also em-
ploy disjunctive normal form (DNF) to cache partial solutsofor efficiency R1§.

We focus here oDPLL-based QBF solvers. The working of these solvers is not very
different from that ofbPLL-based SAT solvers. The essential difference is that when th
DPLL process branches on an universal variatilg setting it torRUE and finds that branch
to be satisfiable, it must also verify that the brameh FALSE is also satisfiable. The need
to be able to do this “universal reasoning” and explore boéimbhes of universal variables
has, as expected, a substantial impact on the efficiencyeafdiver.

In a series of papers, Zhang and Malil[], Letz [131], and Giunchiglia et al.§4]
described how the clause learning techniques from SAT caxtemded tsolution learn-
ing for QBF. The idea is to not only cache small certificates ofatis§ability of sub-
formulas (as learned CNF clauses), but also to cache sndificaes of satisfiability of
sub-formulas (as learned DNF “terms”, also referred toudme3. This can, in principle, be
very useful because not only does a QBF solver need to detsatisfiability efficiently,
it needs to also detect satisfiability efficiently and repdit

Another interesting change, which is now part of most QBVex@, is related to unit
propagation. This stems from the observation that if thebées with the deepest quantifi-
cation level in a clause are universal, they cannot helgfyatiat clause. The clause can
effectively ignore these universal variables. This alsaygla role in determining which
clauses are learned upon reaching a conflict, and also had eaiwnterpart about existen-
tial variables in a DNF term.

While the performance of QBF solvers has been promisingskating a QBF into a
(much larger) SAT specification and using a good SAT solveften faster in practice — a
fact well-recognized and occasionally exploit@d,[25, 182). This motivates the need for
further investigation into the design of QBF solvers andsjide fundamental weaknesses
in the modeling methods used.

It has been recently demonstrated by Samulowitz et al. tteefficiency of QBF
solvers can be improved significantly — much more so than SMNess — by employing
certain pre-processing techniques to the formula at the veginning L84 or using in-
ference techniques, such as those based on binary clanges, fty [183. These methods
typically involve adding a certain type of easy-to-comprésolvents as redundant con-
straints to the problem, with the hope of achieving fasteppgation. Results show that
this works very well in practice.

Any QBF reasoning task has a natural game playing interjpatat a high level.
Using this fact, Ansotegui et all{)] describe a general framework for modeling adversarial
tasks as QBF instances. They view a probRms a two-player gamé with a bounded
number of turns. This is different from the standard intetation of a QBF as a game

Gomes et al. 29

[163; in their approach, one must formulate the higher levebfgmP as a gam& before
modeling it as a QBF. The sets of “rules” to which the existdrand universal players of
G are bound may differ from one player to the other. Ansotegail.€[10] observe that
typical CNF-based encodings for QBF suffer from the “illegearch space issue” where
the solver finds it artificially hard to detect certain illégaoves made by the universal
player. They propose the use of special indicator variablaisflag the occurrence of such
illegal moves, which is then exploited by their solver toqeuhe search space.

Another recent proposal by Sabharwal et 4B]], implemented in the QBF solver
Duaf f I e which extendsQuaf f | e, is a new generic QBF modeling technique that uses
a dual CNF-DNF representation. The dual representatiorsiders the above game-
theoretic view of the problem. The key idea is to exploit endtomy between the players:
rules for the existential player are modeled as CNF clau$les,negations of) rules for
the universal player modeled as DNF terms, and game stateriafion split equally into
clauses and terms. This symmetric dual format places “emsglonsibility” on the two
players, in stark contrast with other QBF encodings whicld t® leave most work for the
existential player. This representation has several ddgas over pure-CNF encodings
for QBF. In particular, it allows unit propagatiacross quantifierand avoids the illegal
search space issue altogether.

Anindependent dual CNF-DNF approach of Zha2gd converts a full CNF encoding
into a logically equivalent full DNF encoding and providestinto the solver. In contrast,
Duaf f | e exploits the representational power of DNF to simplify thedal and make it
more compact, while addressing some issues associatepwighCNF representations.
Both of these dual CNF-DNF approaches are different frory fubn-clausal encodings,
which also have promise but are unable to directly explgitdadvances in CNF-based
SAT solvers. Recently, Benedetti et &6] have proposed “restricted quantification” for
pure-CNF encodings for QCSPs. This general technique ssiesehe illegal search space
issue and is applicable also to QBF solvers other than tlheg@te search based.

1.5.2 Model Counting

Propositional model counting is the problem of computing ttumber of models for a
given propositional formula, i.e., the number of distinerigble assignments for which
the formula evaluates torRUE. This problem generalizes SAT and is known to be a #P-
complete problem, which means that it is no easier thanspiQBF with an unbounded
number of “there exist” and “forall” quantifiers in its vables P0(. For comparison,
notice that SAT can be thought of as a QBF with exactly onel lef/&here exist” quan-
tification.

Effective model counting procedures would open up a rangeeaf applications. For
example, various probabilistic inference problems, sulBayesian net reasoning, can
be effectively translated into model counting problems 16 141, 52, 13]. Another
application is in the study of hard combinatorial probleswg;h as combinatorial designs,
where the number of solutions provides further insights the problem. Even finding a
single solution can be a challenge for such problems: cogrktie number of solutions is
much harder yet. Not surprisingly, the largest formulas ae solve the model counting
problem with state-of-the-art model counters are signitigasmaller than the formulas
we can solve with the best SAT solvers.

30 1. Satisfiability solvers

The earliest practical approach for counting models isdbasean extension of system-
aticDPLL-based SAT solvers. The idea is to simply explore the coraigearch tree for an
n-variable formula, associating Rolutions with a search tree branch if that branch leads
to a solution at decision leval—t. By using appropriate multiplication factors and contin-
uing the search after a single solution is fouRel, sat [17] is able to provide incremental
lower bounds on the model count as it proceeds, and finallypctes the exact model
count. Newer tools such a&achet [185 often improve upon this by using techniques
such as component cachintf].

Another approach to model counting is to convert the fornmitiaa form from which
the count can be deduced easily. The topl [51] uses this knowledge compilation
technique to convert the given CNF formula into decompasaiglgation normal form
(DDNF) [53] and compute the model count.

All exact counting methods, especially those based®®rL search, essentially attack
a #P-complete problem “head on” — by searching the raw coatbiial search space.
Consequently, these algorithms often have difficulty scglip to larger problem sizes.
We should point out that problems with a higher solution ¢@re not necessarily harder
to determine the model count of. In fagel sat can compute the true model count of
highly under-constrained problems with many “don’t caratigbles and a lot of models
by exploiting big clusters in the solution space. The moaeinting problem is instead
much harder for more intricate combinatorial problems whire solutions are spread
much more finely throughout the combinatorial space.

Wei and Selmang08 use Markov Chain Monte Carlo (MCMC) sampling to compute
an approximation of the true model count. Their model caymgpr oxCount , is able
to solve several instances quite accurately, while scafingh better than botRel sat
andCachet as problem size increases. The drawbackmdr oxCount is that one is not
able to provide any hard guarantees on the model count it at@apTo output a number
close to the true count, this counting strategy requirefotmi sampling from the set of
solutions, which is generally very difficult to achieve. &mm sampling from the solution
space is much harder than just generating a single sollM@&MC methods can provide
theoretical convergence guarantees but only in the lingtegally after an exponential
number of steps.

Interestingly, the inherent strength of most state-ofdheSAT solvers comes actu-
ally from the ability to quickly narrow down to a certain pior of the search space the
solver is designed to handle best. Such solvers therefarplsasolutions in a highly non-
uniform manner, making them seemingly ill-suited for modelinting, unless one forces
the solver to explore the full combinatorial space. An gniing question is whether there
is a way around this apparent limitation of the use of stétte-art SAT solvers for model
counting.

MBound [90] is a new method for model counting, which interestinglysiaay com-
plete SAT solver “asis.” It follows immediately that the reafficient the SAT solver used,
the more powerful its counting strategy becomeBound is inspired by recent work on
so-called “streamlining constraints9]], in which additional, non-redundant constraints
are added to the original problem to increase constraintagration and to focus the search
on a small part of the subspace, (hopefully) still contajnsolutions. This strategy was
earlier shown to be successful in solving very hard combimeltdesign problems, with
carefully created, domain-specific streamlining constgi In contrastMBound uses a
domain-independent streamlining technique.

Gomes et al. 31

The central idea of the approach is to use a special type dforaly chosen con-
strains as streamliners, namelgRr or parity constraints on the problem variables. Such
constraints require that an odd number of the involved tegbe set tarRUE. (This re-
quirement can be translated into the usual CNF form by udildifianal variables201].)
MBound works by repeatedly adding a numlsa&rf such constraints to the formula and feed-
ing the result to a state-of-the-art complete SAT solveraA&ery high level, each random
XOR constraint will cut the search space approximately in Hadf, intuitively, if after the
addition ofs xOR’s the formula is still satisfiable, the original formula nibsve at least of
the order of 2 models. More rigorously, it can be shown that if we perfarexperiments
of addings randomxoR constraints and our formula remains satisfiable in each tase
with probability at least - 2-9t, our original formula will have at least2® satisfying
assignments for ang > 1. As a result, by repeated experiments or by weakening the
claimed bound, one can arbitrarily boost the confidenceerdver bound count. Similar
results can also be derived for the upper bound. A surprifdature of this approach is
that it does not depend at all on the how the solutions arglaistd throughout the search
space. It relies on the very special properties of randoritypaonstraints, which in effect
provide a good hash function, randomly dividing the solsidnto two near-equal sets.
Such constraints were first used by Valiant and Vazira@d] in a randomized reduction
from SAT to the related problem Unique SAT.

Bibliography

(1]
(2]
(3]
(4]
(3]

(6]
(7]
(8]
El
(10]
(11]
(12]
(13]
(14]
(15]

(16]

(17]
(18]

(19]

D. Achlioptas. Setting 2 variables at a time yields a new lower boundaiadom 3-SAT. In
32st STOCpages 28-37, Portland,OR, May 2000.

D. Achlioptas, P. Beame, and M. Molloy. A sharp threshold in promhplexity. In33rd
STOC pages 337-346, Crete, Greece, July 2001.

D. Achlioptas and F. Ricci-Tersenghi. On the solution-space gegroétiandom constraint
satisfaction problems. 188th STOCpages 130-139, Seattle, WA, May 2006.

D. Achlioptas and G. Sorkin. Optimal myopic algorithms for randor@A&F. In 41st FOC$
pages 590-600, Redondo Beach, CA, Nov. 2000. IEEE.

H. Adorf and M. Johnston. A discrete stochastic neural networbkrélgn for constraint
satisfaction problems. Imtl. Joint Conf. on Neural Networkpages 917-924, San Diego,
CA, 1990.

M. Alekhnovich, J. Johannsen, T. Pitassi, and A. Urquhart. Aooeential separation between
regular and general resolution. 3dth STOCpages 448-456, Mor#al, Canada, May 2002.
F. A. Aloul, I. L. Markov, and K. A. Sakallah. Shatter: Efficientraynetry-breaking for
Boolean satisfiability. 1%0th DAC pages 836—839, Anahein, CA, June 2003.

F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah. PBS: Adidrack-search pseudo-
Boolean solver and optimizer. Bth SAT pages 346-353, Cincinnati, OH, May 2002.
Anbulagan, D. N. Pham, J. K. Slaney, and A. Sattar. Old resolutieatsnmodern SLS. In
20th AAA| pages 354-359, Pittsburgh, PA, July 2005.

C. Ansotegui, C. P. Gomes, and B. Selman. The Achilles’ heelBF.Qn 20th AAA| pages
275-281, Pittsburgh, PA, July 2005.

E. Aurell, U. Gordon, and S. Kirkpatrick. Comparing beliefs \ays, and random walks. In
17th NIPS Vancouver, Canada, Dec. 2004.

F. Bacchus. Enhancing Davis Putnam with extended binary cl@asemning. 1n8th AAA|
pages 613-619, Edmonton, Canada, July 2002.

F. Bacchus, S. Dalmao, and T. Pitassi. Algorithms and complexgyltse for #SAT and
Bayesian inference. 4nd FOCSpages 340-351, Cambridge, MA, Oct. 2003.

F. Bacchus and J. Winter. Effective preprocessing with hygselution and equality reduc-
tion. In 6th SAT volume 2919 oL NCS pages 341-355, Santa Margherita, Italy, May 2003.
L. Baptista and J. P. Marques-Silva. Using randomization andilegata solve hard real-world
instances of satisfiability. 16th CP, pages 489—-494, Singapore, Sept. 2000.

R. J. Bayardo Jr. and D. P. Miranker. A complexity analysis afcgpbounded learning algo-
rithms for the constraint satisfaction problem. 18th AAA| pages 298-304, Portland, OR,
Aug. 1996.

R. J. Bayardo Jr. and J. D. Pehoushek. Counting models usimgected components. 17th
AAAI, pages 157-162, Austin, TX, July 2000.

R. J. Bayardo Jr. and R. C. Schrag. Using CSP look-back igeés to solve real-world SAT
instances. In4th AAA| pages 203-208, Providence, RI, July 1997.

P. Beame, R. Impagliazzo, T. Pitassi, and N. Segerlind. Memoizati DPLL: Formula
caching proof systems. IRroc., 18th Annual IEEE Conf. on Comput. Complexjisiges
225-236, Aarhus, Denmark, July 2003.

33

34 BIBLIOGRAPHY

[20] P. Beame, R. Karp, T. Pitassi, and M. Saks. On the Complexity shtikfiability Proofs for
Randonmk-CNF Formulas. 1180th STOCpages 561-571, Dallas, TX, May 1998.

[21] P. Beame, H. Kautz, and A. Sabharwal. Understanding anebsing the potential of clause
learning.JAIR 22:319-351, Dec. 2004.

[22] P. Beame and T. Pitassi. Propositional Proof Complexity: PasseRteFuture. ICurrent
Trends in Theoretical Computer Scienpages 42—70. World Scientific, 2001.

[23] P.W.Beame and T. Pitassi. Simplified and improved resolution losendss. In37th FOCS
pages 274-282, Burlington, VT, Oct. 1996. IEEE.

[24] M. Benedetti. Extracting certificates from quantified Boolean forswla19th IJCAl pages
47-53, Edinburgh, Scotland, July 2005.

[25] M. Benedetti. sKizzo: a suite to evaluate and certify QBFs20th CADE volume 3632 of
LNCS pages 369-376, Tallinn, Estonia, July 2005.

[26] M. Benedetti, A. Lallouet, and J. Vautard. QCSP made practicairyevof restricted quan-
tification. In20th IJCAI pages 38—-43, Hyderabad, India, Jan. 2007.

[27] A. Biere. Resolve and expand. Tith SAT volume 3542 oL NCS pages 59-70, Vancouver,
BC, Canada, May 2004. Selected papers.

[28] A. Biere, A. Cimatti, E. M. Clarke, M. Fuijita, and Y. Zhu. Symbolic nede¢thecking using
SAT procedures instead of BDDs. 36th DAG pages 317-320, New Orleans, LA, June 1999.

[29] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model ckieg without BDDs. In
5th TACASpages 193-207, Amsterdam, the Netherlands, Mar. 1999.

[30] P. Bjesse, T. Leonard, and A. Mokkedem. Finding bugs in anaaipltroprocessor using
satisfiability solvers. IiProc. 13th Int. Conf. on Computer Aided Verificati@®01.

[31] M. Bohm and E. Speckenmeyer. A fast parallel SAT-solver — efficienkdvad balancing.
Annals of Math. and Al17(3-4):381-400, 1996.

[32] M.L.Bonet,J.L.Esteban, N. Galesi, and J. Johansen. Onldtézeecomplexity of resolution
refinements and cutting planes proof syste8i&\M J. Comput.30(5):1462-1484, 2000.

[33] M. L. Bonetand N. Galesi. Optimality of size-width tradeoffs forakesion. Comput. Com-
plx., 10(4):261-276, 2001.

[34] R.J.BrachmanandH. J. Levesque. The tractability of subsumiptivame based description
languages. IMAAI'84, pages 34-37, 1984.

[35] R.J.Brachman and H. J. Levesque, editétsadings in Knowledge Representatidorgan
Kaufmann, 1985.

[36] R. J. Brachman and J. Schmolze. An overview of the KL-ONEwKBadge representation
system.Cognitive Scienged(2):171-216, 1985.

[37] A. Braunstein and R. Zecchina. Survey propagation as localiledum equations.J. Stat.
Mech, P06007, 2004. URbttp:/ /1 anl . ar Xi v. or g/ cond- mat / 0312483.

[38] A.Broder, A. Frieze, and E. Upfal. On the satisfiability and maximaatisfiability of random
3-CNF formulas. IrProc., 4th SODAJan. 1993.

[39] J.Buresh-Oppenheim and T. Pitassi. The complexity of resolugiimements. 1i1.8th Annual
IEEE Symp. on Logic in Comput. S@ages 138-147, Ottawa, Canada, June 2003.

[40] M. Cadoli, M. Schaerf, A. Giovanardi, and M. Giovanardi. An aigonm to evaluate quantified
Boolean formulae and its experimental evaluatidnAuto. Reas28(2):101-142, 2002.

[41] D. Chai and A. Kuehlmann. A fast pseudo-Boolean constrailves. In 40th DAG pages
830-835, Anahein, CA, June 2003.

[42] H.Chen, C. Gomes, and B. Selman. Formal models of heavydtadeavior in combinatorial
search. In7th CP, 2001.

[43] V. Chvatal and E. Szemédi. Many hard examples for resolutiod.. Assoc. Comput. Mach.
35(4):759-768, 1988.

[44] M. Clegg, J. Edmonds, and R. Impagliazzo. Using thél®er basis algorithm to find proofs
of unsatisfiability. In28th STOCpages 174-183, Philadelphia, PA, May 1996.

[45] S. A. Cook. The complexity of theorem proving proceduresCémf. Record of 3rd STQC

http://lanl.arXiv.org/cond-mat/0312483

[46]
[47]
(48]
[49]
[50]
[51]
[52]

(53]
[54]

[55]
[56]

[57]
(58]

[59]
(60]
(61]
[62]
(63]
(64]
(65]
[66]
[67]
[68]
(69]
[70]

[71]

35

pages 151-158, Shaker Heights, OH, May 1971.

S. A. Cook and R. A. Reckhow. The relative efficiency of prsifional proof systems.
J. Symb. Logic44(1):36-50, 1977.

W. Cook, C. R. Coullard, and G. Turan. On the complexity of cuttitapg proofs. Discr.
Applied Mathematicsl8:25—-38, 1987.

J. Crawford and L. Auton. Experimental results on the crogs-pwint in satisfiability prob-
lems. InProc. AAAI-93 pages 21-27, Washington, DC, 1993.

J. M. Crawford, M. L. Ginsberg, E. M. Luks, and A. Roy. Syrimy-breaking predicates for
search problems. I6th KR pages 148-159, Cambridge, MA, Nov. 1996.

P. T. Darga, M. H. Liffiton, K. A. Sakallah, and I. L. Markov. pboiting structure in symmetry
detection for CNF. Ift1st DAG pages 518-522, San Diego, CA, June 2004.

A. Darwiche. New advances in compiling CNF into decomposablati@mgnormal form. In
Proc., 16th Euro. Conf. on Apages 328-332, Valencia, Spain, Aug. 2004.

A. Darwiche. The quest for efficient probabilistic inferencdy 2005. Invited Talk, IJCAI-
05.

A. Darwiche and P. Marquis. A knowledge compilation maglR, 17:229-264, 2002.

M. Davis, G. Logemann, and D. Loveland. A machine progranitieorem provingCACM,
5:394-397, 1962.

M. Davis and H. Putnam. A computing procedure for quantificati@otih CACM, 7:201—
215, 1960.

R. Davis. Diagnostic reasoning based on structure and beha¥Viohl, 24(1-3):347-410,
1984.

J. de Kleer and B. C. Williams. Diagnosing multiple faulis Al, 32(1):97-130, 1987.

R. Dechter. Learning while searching in constraint-satisfacti@ilpms. In5th AAA| pages
178-185, Philadelphia, PA, Aug. 1986.

G. Dequen and O. Dubois. Kcnfs: An efficient solver for ramdio-SAT formulae. In6th
SAT, 2003.

B. Dilkina, C. P. Gomes, and A. Sabharwal. Tradeoffs in the derity of backdoor detection.
In 13th CR, Providence, RI, Sept. 2007.

H. E. Dixon, M. L. Ginsberg, E. M. Luks, and A. J. Parkes. @>izing Boolean satisfiability
II: Theory. JAIR 22:481-534, 2004.

H. E. Dixon, M. L. Ginsberg, and A. J. Parkes. Generalizing IBao satisfiability I: Back-
ground and survey of existing worlAIR, 21:193-243, 2004.

O. Dubois, Y. Boufkhad, and J. Mandler. Typical random 3F$#xmulae and the satisfiability
threshold. InProc., 11th SODApages 126—127, San Francisco, CA, Jan. 2000.

O. Dubois and G. Dequen. A backbone search heuristic foiiaffisolving of hard 3-SAT
formulae. In18th IJCA| 2003.

N. Eén and N. &rensson. MiniSat: A SAT solver with conflict-clause minimization.8th
SAT St. Andrews, U.K., June 2005.

T. Fahle, S. Schamberger, and M. Sellmann. Symmetry breakinggh CP, volume 2239 of
LNCS pages 93-107, Paphos, Cyprus, Nov. 2001.

F. Focacci and M. Milano. Global cut framework for removiygsnetries. Iri7th CP, volume
2239 ofLNCS pages 77-92, Paphos, Cyprus, Nov. 2001.

M. Fox and D. Long. The detection and exploitation of symmetry in milag problems. In
16th 1JCA| pages 956-961, July 1999.

J. Franco. Probabilistic analysis of the pure literal heuristic for #tesf&ability problem.
Annals of Operations Researcti273-289, 1983.

J. Franco and M. Paull. Probabilistic analysis of the Davis-Putnacepiure for solving the
satisfiability problemDiscr. Applied Mathematic$:77-87, 1983.

J. Frank, P. Cheeseman, and J. Stutz. Where gravity fails:| seaach topology.JAIR, 7:
249-281, 1997.

36

[72]
(73]
[74]

[75]

[76]
[77]

(78]
[79]

(80]

(81]
(82]

(83]

[84]
[85]
[86]
[87]
[88]

(89]

[90]
[91]
[92]

(93]

[94]

[95]

BIBLIOGRAPHY

E. Friedgut. Sharp thresholds of graph properties, ancktba&t problem. Journal of the
American Mathematical Societ$2:1017-1054, 1999.

A. Frieze and S. Suen. Analysis of two simple heuristics on a ranidstance of k- SAT.
J. Alg, 20(2):312—-355, 1996.

D. Frost and R. Dechter. Dead-end driven learning12th AAA| pages 294-300, Seattle,
WA, Aug. 1994.

D. Frost, I. Rish, and L. Vila. Summarizing CSP hardness with cantiis probability dis-
tributions. InProceedings of the Fourteenth National Conference on Atrtificial Inteligen
(AAAI-97) pages 327-334, New Providence, RI, 1997. AAAI Press.

M. Gelfond. Answer sets. In F. van Harmelen, V. Lifschitz, andF®rter, editors;The
Handbook of Knowledge Representati&tsevier, Oxford, 2006.

M. R. Genesereth. The use of design descriptions in automatedadiag J. Al, 24(1-3):
411-436, 1984.

I. Gent and T. Walsh. Easy problems are sometimes i, 70:335-345, 1994.

I. P. Gent, W. Harvey, T. Kelsey, and S. Linton. Generic sbddgisomputational group
theory. In8th CP, volume 2833 oL.NCS pages 333-347, Kinsale, Ireland, Sept. 2003.

I. P. Gent, H. H. Hoos, A. G. D. Rowley, and K. Smyth. Using sastft local search to solver
quantified Boolean formulae. 18th CP, volume 2833 ofLNCS pages 348-362, Kinsale,
Ireland, Sept. 2003.

I. P. Gent and A. G. Rowley. Encoding Connect-4 using quantBiedlean formulae. 1i2nd
Intl. Work. Modelling and Reform. CSPpages 78-93, Kinsale, Ireland, Sept. 2003.

I. P. Gent and B. M. Smith. Symmetry breaking in constraint progning. InProc., 14th
Euro. Conf. on Alpages 599-603, Berlin, Germany, Aug. 2000.

E. Giunchiglia, M. Narizzano, and A. Tacchella. QUBE: A systemdeciding quantified
Boolean formulas satisfiability. lhst IJCAR volume 2083 oL.NCS pages 364—369, Siena,
Italy, June 2001.

E. Giunchiglia, M. Narizzano, and A. Tacchella. Learning formfifeed Boolean logic satis-
fiability. In 18th AAA| pages 649—654, Edmonton, Canada, July 2002.

E. Goldberg and Y. Novikov. BerkMin: A fast and robust salvea In DATE, pages 142-149,
Paris, France, Mar. 2002.

C. Gomes, C. Fernandez, B. Selman, and C. Bessiere. Statistigales across constrained-
ness regions. 1h0th CR, 2004.

C. Gomes, B. Selman, and N. Crato. Heavy-tailed distributions inbawatorial search. In
3rd CP, pages 121-135, 1997.

C. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed pihena in satisfiability and
constraint satisfaction problems. Auto. Reas24(1/2):67-100, 2000.

C. Gomes, B. Selman, K. McAloon, and C. Tretkoff. Randomizafio backtrack search:
Exploiting heavy-tailed profiles for solving hard scheduling problems4tinint. Conf. Art.
Intel. Planning Syst.1998.

C. P. Gomes, A. Sabharwal, and B. Selman. Model counting: v steategy for obtaining
good bounds. I21th AAA| pages 54—61, Boston, MA, July 2006.

C. P. Gomes and M. Sellmann. Streamlined constraint reasonintdth CP, volume 3258
of LNCS pages 274-289, Toronto, Canada, Oct. 2004.

C. P. Gomes, B. Selman, and H. Kautz. Boosting combinatoriatBélarough randomization.
In 15th AAA| pages 431-437, Madison, WI, July 1998.

C. P. Gomes, B. Selman, K. McAloon, and C. Tretkoff. Randatiim in backtrack search:
Exploiting heavy-tailed profiles for solving hard scheduling problems4tinint. Conf. Art.
Intel. Planning Systpages 208—213, Pittsburgh, PA, June 1998.

J. Gu. Efficient local search for very large-scale satisfiabiligbpgms.Sigart Bulletin 3(1):
8-12,1992.

J. Gu, P. W. Purdom, J. Franco, and B. J. Wah. Algorithms fo8ttisfiability (SAT) Problem:

37

A Survey. InSatisfiability (SAT) ProblenDIMACS, pages 19—-151. American Mathematical
Society, 1997.

[96] D.Habet, C. M. Li, L. Devendeville, and M. Vasquez. A hybrid egach for SAT. In8th CP,
volume 2470 oLNCS pages 172-184, Ithaca, NY, Sept. 2002.

[97] M. Hajiaghayi and G. Sorkin. The satisfiability threshold for rand®8AT is at least 3.52,
2003. URLht t p: // arxi v. or g/ abs/ mat h/ 0310193.

[98] A. Haken. The intractability of resolutiomheoretical Comput. S¢i39:297-305, 1985.

[99] E. A. Hirsch and A. Kojevnikov. UnitWalk: A new SAT solver that sdecal search guided
by unit clause eliminationAnnals Math. and Al43(1):91-111, 2005.

[100] J. Hoffmann, C. Gomes, and B. Selman. Structure and probluness: Asymmetry and
DPLL proofs in SAT-based planning. filth CR 2005.

[101] T. Hogg and C. Williams. Expected gains from parallelizing constsatving for hard prob-
lems. InProceedings of the Twelfth National Conference on Atrtificial Intelligen@eX(04),
pages 1310-1315, Seattle, WA, 1994. AAAI Press.

[102] H. Hoos. On the run-time behaviour of stochastic local seardbridigns for SAT. InPro-
ceedings of AAAI-9Pages 661-666. AAAI Press, 1999.

[103] H. H. Hoos. An adaptive noise mechanism for WalkSAT. 1Bth AAA| pages 655-660,
Edmonton, Canada, July 2002.

[104] H. H. Hoos and T. $itzle. SATLIB: An online resource for research on SAT. In|. P. Gen
H. van Maaren, and T. Walsh, editorSAT2000 pages 283-292. I0S Press, 2000. URL
http://ww. satlib. org.

[105] H. H. Hoos and T. $itzle. Stochastic Local Search: Foundations and ApplicatioM®rgan
Kaufmann, San Francisco, CA, USA, 2004.

[106] E.Horvitz, Y. Ruan, C. Gomes, H. Kautz, B. Selman, and D. hiag. A bayesian approach
to tackling hard computational problems. 1ith UA|, 2001.

[107] M. Huele, J. van Zwieten, M. Dufour, and H. van Maaren. NMagq: Implementing additional
reasoning into an efficient lookahead SAT solver.7th SAT volume 3542 oLLNCS pages
345-359, Vancouver, BC, Canada, May 2004. Springer.

[108] Y. Interian. Backdoor sets for random 3-SAT.@th SAT 2003.

[109] S. Janson, Y. C. Stamatiou, and M. Vamvakari. Bounding thatigfigbility threshold of
random 3-SAT.Random Struct.s and Algl7(2):103-116, 2000.

[110] R. G. Jeroslow and J. Wang. Solving propositional satisfiabilitpleras. Annals of Math.
and Al 1(1-4):167-187, 1990.

[111] H. Jia and C. Moore. How much backtracking does it take to calodom graphs? rigorous
results on heavy tails. 1h0th CP, 2004.

[112] D.Johnson, C. Aragon, L. McGeoch, and C. Schevon. Opditioiz by simulated annealing:
an experimental evaluation; part @perations Researc!39, 1991.

[113] A. Kamath, N. Karmarkar, K. Ramakrishnan, and M. Resen@emputational experience
with an interior point algorithm on the satisfiability problem. Rroceedings of Integer Pro-
gramming and Combinatorial Optimizatippages 333—-349, Waterloo, Canada, 1990. Math-
ematical Programming Society.

[114] A. C. Kaporis, L. M. Kirousis, and E. G. Lalas. The probabilistialysis of a greedy satisfi-
ability algorithm. Random Structures and Algorithn8(4):444-480, 2006.

[115] H. Kautz, E. Horvitz, Y. Ruan, C. Gomes, and B. Selman. Dyinaestart policies. Iri8th
AAA|, 2002.

[116] H. Kautz and B. Selman. The state of SADiscrete Applied Mathematic455(12):1514—
1524, 2007.

[117] H. A. Kautz and B. Selman. Planning as satisfiabilityPhoc., 10th Euro. Conf. on Apages
359-363, Vienna, Austria, Aug. 1992.

[118] H.A.Kautz and B. Selman. Pushing the envelope: Planningpgitpnal logic, and stochas-
tic search. Inl3th AAA| pages 1194-1201, Portland, OR, Aug. 1996.

http://arxiv.org/abs/math/0310193
http://www.satlib.org

38 BIBLIOGRAPHY

[119] P. Kilby, J. Slaney, S. Thiebaux, and T. Walsh. Backbonesactdoors in satisfiability. In
20th AAA] 2005.

[120] S. Kirkpatrick, D. Gelatt Jr., and M. Vecchi. Optimization by simtéebannealingScience
220(4598):671-680, 1983.

[121] S. Kirkpatrick and B. Selman. Critical behavior in the satisfiability aidom boolean ex-
pressionsScience264:1297-1301, May 1994.

[122] L. M. Kirousis, E. Kranakis, and D. Krizanc. Approximating thesatisfiability threshold of
random formulas. IfProceedings of the Fourth Annual European Symposium on Algorithms
pages 27-38, Barcelona, Spain, Sept. 1996.

[123] H. Kleine-Buning, M. Karpinski, and A. Figel. Resolution for quantified Boolean formulas.
Information and Computatiqri17(1):12—-18, 1995.

[124] J. Kdbler, U. Sclining, and J. Tan. The Graph Isomorphism Problem: its Structural Com-
plexity. Birkhauser Verlag, 1993. ISBN 0-8176-3680-3.

[125] H. Konuk and T. Larrabee. Explorations of sequential ATPBgiBoolean satisfiability. In
11th VLSI Test Symposiypages 85-90, 1993.

[126] B. Krishnamurthy. Short proofs for tricky formula&cta Inf, 22:253-274, 1985.

[127] L.Kroc, A. Sabharwal, and B. Selman. Survey propagativisited. In23rd UAI, Vancouver,
BC, July 2007. To appear.

[128] D.Le Berre, O. Roussel, and L. Simon (Organizers). SAT/Zfimpetition, May 2007. URL
http://ww. sat conpetition. org/2007.

[129] D. Le Berre and L. Simon (Organizers). SAT 2004 competitiorayM2004. URL
http://ww. sat conpetition. org/2004.

[130] D. Le Berre and L. Simon (Organizers). SAT 2005 competitiompe]2005. URL
http://ww. sat conpetition. org/2005.

[131] R. Letz. Lemma and model caching in decision proceduresuantified Boolean formulas.
In Proc. of the TABLEAUXvolume 2381 oLNCS pages 160-175, Copenhagen, Denmark,
July 2002.

[132] H. J. Levesque and R. J. Brachman. A fundamental tradte&ffowledge representation and
reasoning. In R. J. Brachman and H. J. Levesque, edRaradings in Knowledge Represen-
tation, pages 41-70. Morgan Kaufmann, 1985.

[133] H.J. Levesque and R. J. Brachman. Expressivenessastdlility in knowledge representa-
tion and reasoningComputational Intelligence3(2):78-93, 1987.

[134] L. Levin. Universal sequential search probleri@soblems of Information Transmissio®(3):
265-266, 1973. Originally in Russian.

[135] C. Liand Anbulagan. Heuristics based on unit propagationdtisf&ability problems. 1r15th
IJCAI, 1997.

[136] C. M. Li. Integrating equivalency reasoning into Davis-Putnawmcedure. Inl7th AAA|
pages 291-296, Austin, TX, July 2000.

[137] C. M. Li and Anbulagan. Heuristics based on unit propagatiosdtisfiability problems. In
15th 1IJCAl pages 366—371, Nagoya, Japan, Aug. 1997.

[138] C. M. Li, B. Jurkowiak, and P. W. Purdom. Integrating symmaéingaking into a DLL proce-
dure. InSAT, pages 149-155, Cincinnati, OH, May 2002.

[139] X.Y. Li, M. F. M. Stallmann, and F. Brglez. QingTing: A local sehrsat solver using an
effective switching strategy and an efficient unit propagatior6tinSAT pages 53-68, Santa
Margherita, Italy, May 2003.

[140] S.Linand B. Kernighan. An efficient heuristic algorithm for thevéieng-salesman problem.
Operations Resear¢l21:498-516, 1973.

[141] M. L. Littman, S. M. Majercik, and T. Pitassi. Stochastic Boolean Bakgity. J. Auto. Reas.
27(3):251-296, 2001.

[142] M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of Megas algorithms.nf.
Process. Letf.47:173-180, 1993.

http://www.satcompetition.org/2007
http://www.satcompetition.org/2004
http://www.satcompetition.org/2005

39

[143] I. Lynce, L. Baptista, and J. Marques-Silva. Stochastic sydtes@arch algorithms for satis-
fiability. In 4th SAT 2001.

[144] 1. Lynce and J. P. Marques-Silva. An overview of backtraghreh satisfiability algorithms.
Annals Math. and AI37(3):307-326, 2003.

[145] P. D. MacKenzie, July 2005. Private communication.

[146] E. N. Maneva, E. Mossel, and M. J. Wainwright. A new look awveyrpropagation and its
generalizations. 1A6th SODApages 1089-1098, VVancouver, Canada, Jan. 2005.

[147] J. P. Marques-Silva. The impact of branching heuristics ingsiipnal satisfiability algo-
rithms. In9th Portuguese Conf. on Avolume 1695 olLNCS pages 62,74, Portugal, Sept.
1999.

[148] J. P. Marques-Silva and K. A. Sakallah. GRASP — a new sedgohitam for satisfiability. In
ICCAD, pages 220-227, San Jose, CA, Nov. 1996.

[149] J. P. Marques-Silva and K. A. Sakallah. Robust search algasifbr test pattern generation.
In 27th FTCSpages 152-161, Seattle, WA, June 1997.

[150] B. Mazure, L. Sais, and E. Gregoire. Boosting complete teclesidiianks to local search
methods. IrProc. Math and Al 1996.

[151] M. Mezard, G. Parisi, and R. Zecchina. Analytic and AlgorithmituSon of Random Satis-
fiability Problems.Science297(5582):812—-815, 2002.

[152] M. Mézard and R. Zecchina. Random k-satisfiability problem: From an anabftition to
an efficient algorithmPhy. Rev. E66:056126, Nov. 2002.

[153] S. Minton, M. Johnston, A. Philips, and P. Laird. Solving largalsconstraint satisfaction an
scheduling problems using a heuristic repair methoProteedings AAAI-9(ages 17-24.
AAAI Press, 1990.

[154] D. Mitchell, B. Selman, and H. Levesque. Hard and easy distribsitaf sat problems. In
Proc. AAAI-92 pages 459-465, San Jose, CA, 1992.

[155] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S.liKlaChaff: Engineering an
efficient SAT solver. 1Ii38th DAC pages 530-535, Las Vegas, NV, June 2001.

[156] A. Nadel. The Jerusat SAT solver. Master’s thesis, Hebreivddsity of Jerusalem, 2002.

[157] N. Nishimura, P. Ragde, and S. Szeider. Detecting backdt®mstn respect to horn and
binary clauses. 1@th SAT 2004.

[158] E. Nudelman, A. Devkar, Y. Shoham, K. Leyton-Brown, andHd Hoos. SATzilla: An
algorithm portfolio for SAT, 2004. In conjunction with SAT-04.

[159] R. Ostrowski, E. Gggoire, B. Mazure, and L. Sais. Recovering and exploiting structural
knowledge from cnf formulas. 18th CP, volume 2470 oL NCS pages 185-199, Ithaca, NY,
Sept. 2002. SV.

[160] C. Otwell, A. Remshagen, and K. Truemper. An effective QBIver for planning problems.
In Proc. MSV/AMCSpages 311-316, Las Vegas, NV, June 2004.

[161] G. Panand M. Y. Vardi. Symbolic decision procedures for QBFLOth CP, number 3258 in
LNCS, pages 453-467, Toronto, Canada, Sept. 2004.

[162] C. Papadimitriou and K. Steiglitombinatorial OptimizationPrentice-Hall, Inc., 1982.

[163] C. H. PapadimitriouComputational ComplexityAddison-Wesley, 1994.

[164] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible imfere
Morgan Kaufmann, 1988.

[165] K. E. Petrie and B. M. Smith. Symmetry breaking in graceful geapn8th CP, volume 2833
of LNCS pages 930-934, Kinsale, Ireland, Sept. 2003.

[166] D. N.Pham, J. Thornton, and A. Sattar. Building structure intollsearch for SAT. 1i20th
IJCAI, pages 2359-2364, Hyderabad, India, Jan. 2007.

[167] K. Pipatsrisawat and A. Darwiche. RSat 1.03: SAT solver digsan. Technical Report
D-152, Automated Reasoning Group, Computer Science Departmeb4,2006.

[168] S. D. Prestwich. Variable dependency in local search: Ptieveis better than cure. 1h0th
SAT, Lisbon, Portugal, May 2007.

40 BIBLIOGRAPHY

[169] J.-F. Puget. On the satisfiability of symmetrical constrained setisfaproblems. Innt.
Symp. on Method. for Intel. Systolume 689 oLLNCS pages 350-361, Trondheim, Norway,
June 1993.

[170] J.-F. Puget. Dynamic lex constraints. 18th CR, volume 4204 ofLNCS pages 453—-467,
Sept. 2006.

[171] J.-F. Puget. An efficient way of breaking value symmetrie1ith AAA| Boston, MA, July
2006.

[172] J. Rintanen. Constructing conditional plans by a theorem pré#éR, 10:323-352, 1999.

[173] J. Rintanen. Improvements to the evaluation of quantified Booleamulae. In16th IJCAI|
pages 1192-1197, Stockholm, Sweden, July 1999.

[174] J. Rintanen. Partial implicit unfolding in the Davis-Putnam procedar quantified Boolean
formulae. In8th Intl. Conf. Logic for Prog., Al, and Reasonolume 2250 oLNCS pages
362-376, Havana, Cuba, Dec. 2001.

[175] 1. Rish and R. Dechter. To guess or to think? hybrid algorithm$&®F. In Proceedings of
the Conference on Principles of Constraint Programming (CP-p&yes 555-556, 1996.

[176] D. Roth. On the hardness of approximate reasoningl, 82(1-2):273-302, 1996.

[177] S. J. Russell and P. NorvidArtificial Intelligence: A Modern ApproachPrentice Hall, 2nd
edition, 2002.

[178] L. Ryan. Efficient algorithms for clause-learning SAT solveviaster’s thesis, University of
British Columbia, Vancouver, 2003.

[179] A. Sabharwal. Algorithmic Applications of Propositional Proof ComplexityPhD thesis,
University of Washington, Seattle, 2005.

[180] A. Sabharwal. SymChaff: A structure-aware satisfiability solver20th AAA| pages 467—
474, Pittsburgh, PA, July 2005.

[181] A. Sabharwal, C. Ansotegui, C. P. Gomes, J. W. Hart, and Bn&e QBF modeling: Ex-
ploiting player symmetry for simplicity and efficiency. Bth SAT volume 4121 ofLNCS
pages 353-367, Seattle, WA, Aug. 2006.

[182] H. Samulowitz and F. Bacchus. Using SAT in QBF1ltth CR, volume 3709 of NCS pages
578-592, Sitges, Spain, Oct. 2005.

[183] H. Samulowitz and F. Bacchus. Binary clause reasoning in QB&thl SAT volume 4121 of
LNCS pages 353-367, Seattle, WA, Aug. 2006.

[184] H. Samulowitz, J. Davies, and F. Bacchus. Preprocessing @BE2th CR, volume 4204 of
LNCS pages 514-529, Nantes, France, Sept. 2006.

[185] T. Sang, F. Bacchus, P. Beame, H. A. Kautz, and T. Pitassinb@dng component caching
and clause learning for effective model counting7th SAT Vancouver, Canada, May 2004.

[186] D. Schuurmans and F. Southey. Local search charactenstiosomplete SAT procedures. In
Proc. of the 17th National Conf. on Articial Intelligence (AAAI-20Qtgges 297-302, 2000.

[187] B. Selman and H. Kautz. Domain-independent extensions to GSé{Ving large structured
satisfiability problems. 113th IJCAIl pages 290-295, France, 1993.

[188] B. Selman, H. Kautz, and B. Cohen. Noise strategies for locathke InProc. AAAI-94
pages 337-343, Seattle, WA, 1994.

[189] B. Selman, H. Kautz, and B. Cohen. Local search strategiesfsfiability testing. InD. S.
Johnson and M. A. Trick, editor§liques, Coloring, and Satisfiability: the Second DIMACS
Implementation Challenge. DIMACS Series in Discrete Mathematics andefivad Com-
puter Sciencevolume 26, pages 521-532. American Mathematical Society, 1996.

[190] B. Selman and S. Kirkpatrick. Finite-Size Scaling of the ComputatiGoat of Systematic
Search Artificial Intelligence 81(1-2):273-295, 1996.

[191] B. Selman, H. J. Levesque, and D. G. Mitchell. A new method dbviisg hard satisfiability
problems. InlOth AAA| pages 440-446, San Jose, CA, July 1992.

[192] O. Shtrichman. Accelerating bounded model checking of sgfetgerties. Form. Meth. in
Sys. Des.1:5-24, 2004.

41

[193] C. Sinz (Organizer). SAT-race 2006, Aug. 2006. URL
http://fmv.jku.at/sat-race- 2006.

[194] B. M. Smith and S. A. Grant. Sparse constraint graphs andoéroally hard problems. In
14th 1JCAl volume 1, pages 646—654, Montreal, Canada, Aug. 1995.

[195] B. M. Smith and S. A. Grant. Modelling exceptionally hard constraatisfaction problems.
In 3rd CP, volume 1330 oL NCS pages 182-195, Austria, Oct. 1997.

[196] R. M. Stallman and G. J. Sussman. Forward reasoning anadepey-directed backtracking
in a system for computer-aided circuit analysisAl, 9:135-196, 1977.

[197] P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincent€limbinatorial test genera-
tion using satisfiabilitylEEE Trans. CAD and 1C15(9):1167-1176, 1996.

[198] L. J. Stockmeyer and A. R. Meyer. Word problems requiringogential time. InConf.
Record of 5th STO(ages 1-9, Austin, TX, Apr.-May 1973.

[199] S. Szeider. Backdoor sets for DLL solveds Auto. Reas2006. Special issue on SAT 2005.
To appear.

[200] S. Toda. On the computational power of PP aikl In30th FOCSpages 514-519, 1989.

[201] G. S. Tseitin. On the complexity of derivation in the propositionaldalke. In A. O. Slisenko,
editor, Studies in Constructive Mathematics and Mathematical Logic, Patto68.

[202] A. Urquhart. The symmetry rule in propositional logiDiscr. Applied Mathematic96-97:
177-193, 1999.

[203] L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unigliations. Theoretical
Comput. Scj.47(3):85-93, 1986.

[204] M. N. Velev and R. E. Bryant. Effective use of Boolean satisliigtprocedures in the formal
verification of superscalar and vliw microprocessarsSymb. Compyt35(2):73-106, 2003.

[205] B. W. Wah and Y. Shang. A discrete Lagrangian-based glamich method for solving
satisfiability problemsJ. of Global Optimization12(1):61-99, 1998.

[206] T.Walsh. Search in a small world. I6th IJCA] 1999.

[207] T. Walsh. General symmetry breaking constraintsl2th CP, volume 4204 o£.NCS pages
650-664, Sept. 2006.

[208] W. Wei and B. Selman. A new approach to model counting8tmSAT volume 3569 of
LNCS pages 324-339, St. Andrews, U.K., June 2005.

[209] R. Williams, C. Gomes, and B. Selman. Backdoors to typical casglexity. In18th IJCA|
20083.

[210] R. Williams, C. Gomes, and B. Selman. On the connections betwaskubors, restarts, and
heavy-tailedness in combinatorial search6th SAT 2003.

[211] Z. Wu and B. W. Wah. Trap escaping strategies in discrete Lggmarmmethods for solv-
ing hard satisfiability and maximum satisfiability problems. 16th AAA| pages 673—-678,
Orlando, FL, July 1999.

[212] H. Zhang. SATO: An efficient propositional prover. 1dth CADE volume 1249 oLLNCS
pages 272-275, Townsville, Australia, July 1997.

[213] H. Zhang. A random jump strategy for combinatorial searchnt@rnational Symposium on
Al and Math Fort Lauderdale, FL, 2002.

[214] H. Zhang and J. Hsiang. Solving open quasigroup problemsdppopitional reasoning. In
Proceedings of the International Computer Synkfsinchu, Taiwan, 1994.

[215] L. Zhang. Solving QBF by combining conjunctive and disjunctieenmal forms. In21th
AAAI, pages 143-149, Boston, MA, July 2006.

[216] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Effitieonflict driven learning
in a Boolean satisfiability solver. i€CAD, pages 279-285, San Jose, CA, Nov. 2001.

[217] L. Zhang and S. Malik. Conflict driven learning in a quantified Ban satisfiability solver.
In ICCAD, pages 442-449, San Jose, CA, Nov. 2002.

[218] L. Zzhang and S. Malik. Towards a symmetric treatment of satisiaand conflicts in quan-
tified Boolean formula evaluation. Bth CP, pages 200-215, Ithaca, NY, Sept. 2002.

http://fmv.jku.at/sat-race-2006

	Satisfiability solvers
	Carla P. Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman
	Definitions and Notation
	SAT Solver Technology -- Complete Methods
	SAT Solver Technology -- Incomplete Methods
	Runtime Variance and Problem Structure
	Beyond SAT: Quantified Boolean Formulas and Model Counting

	Bibliography

