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Abstract

In the recently proposed SCC-recursive approach to ar-
gumentation semantics, the strongly connected compo-
nents of an argumentation framework are used as the
basic elements for the incremental construction of ex-
tensions. In this paper we argue that a finer decompo-
sition, considering some suitably defined internal sub-
structures of strongly connected components, called au-
tonomous fragments, may be appropriate and support,
in some cases, more intuitive results than the origi-
nal approach. We cast this proposal within the SCC-
recursive framework, show that it satisfies some funda-
mental requirements and provide some examples of its
potential advantages.

Introduction
The notion of SCC-recursiveness has recently been intro-
duced (Baroni, Giacomin, & Guida 2005; Baroni & Gia-
comin 2004a) as a general scheme for argumentation seman-
tics. On one hand, SCC-recursiveness is able to encompass
most significant existing proposals such as grounded seman-
tics (Pollock 1992) and preferred semantics (Dung 1995),
on the other hand, it provides a sound basis for the defini-
tion and investigation of novel semantics proposals. In par-
ticular, the SCC-recursive CF2 semantics (Baroni & Gia-
comin 2004b; Baroni, Giacomin, & Guida 2005) has been
shown to produce intuitively plausible results in some cases,
involving odd-length cycles, which are quite problematic for
other semantics. The definition of SCC-recursiveness stands
on some widely accepted basic principles which can be re-
garded as a common ground for any argumentation seman-
tics: the conflict free principle, the reinstatement principle
(Prakken & Vreeswijk 2001), and the directionality princi-
ple. In particular, the last one suggests that defeat depen-
dencies among arguments can be taken into account follow-
ing the partial order induced by the decomposition of the
graph representation of an argumentation framework into
Strongly Connected Components (SCCs). In some cases it
emerges however that this decomposition is, in a sense, still
“too rough” to capture some intuitively significant aspects of
the defeat graph topology and a further decomposition may
be appropriate. This work starts from this observation and
presents a preliminary investigation about why and how such
a finer decomposition can be carried out in the framework of

SCC-recursive semantics. The paper is organized as follows.
In the following section we recall the necessary background
concepts on SCC-recursiveness, while in the next one we in-
troduce some motivating examples for our investigation. We
then introduce the notion of autonomous fragments within
a strongly connected component and show how this notion
can be exploited within the SCC-recursive scheme. After
exemplifying the application of the proposed approach, we
conclude the paper with some final remarks.

SCC-recursiveness
We first give an account of SCC-recursiveness as introduced
in (Baroni, Giacomin, & Guida 2005). The approach lies
in the frame of the general theory of abstract argumentation
frameworks proposed by Dung (Dung 1995).

Definition 1 An argumentation framework is a pair AF =
〈A,→〉, where A is a set, and →⊆ (A × A) is a binary
relation on A, called attack relation.

In the following we will always assume that A is finite. An
argumentation framework AF = 〈A,→〉 can be represented
as a directed graph, called defeat graph, where nodes are the
arguments and edges correspond to the elements of the at-
tack relation. In the following, the nodes that attack a given
argument α are called defeaters of α and form a set which is
denoted as parentsAF(α):
Definition 2 Given an argumentation framework AF =
〈A,→〉 and a node α ∈ A, we define parentsAF(α) =
{β ∈ A | β → α}. If parentsAF(α) = ∅, then α is called
an initial node.

Since we will frequently consider properties of sets of ar-
guments, it is useful to extend to them the notations defined
for the nodes:

Definition 3 Given an argumentation framework AF =
〈A,→〉, a node α ∈ A and two sets S, P ⊆ A, we define:

S → α ≡ ∃β ∈ S : β → α

α → S ≡ ∃β ∈ S : α → β

S → P ≡ ∃α ∈ S, β ∈ P : α → β

outparentsAF(S) = {α ∈ A | α /∈ S ∧ α → S}
In Dung’s theory, an argumentation semantics is defined

by specifying the criteria for deriving, given a generic argu-
mentation framework, the set of all possible extensions, each



one representing a set of arguments considered to be accept-
able together. Typically an argument is considered justified
if and only if it belongs to all extensions. Given a generic
argumentation semantics S, the set of extensions prescribed
by S for a given argumentation framework AF = 〈A,→〉
is denoted as ES(AF). If it holds that ∀AF, |ES(AF)| = 1,
then the semantics S is said to follow the unique-status ap-
proach, otherwise it is said to follow the multiple-status ap-
proach (Prakken & Vreeswijk 2001).

SCC-recursiveness is a property of the extensions which
relies on the graph theoretical notion of strongly connected
components (SCCs).

Definition 4 Given an argumentation framework AF =
〈A,→〉, the binary relation of path-equivalence between
nodes, denoted as PEAF ⊆ (A×A), is defined as follows:

• ∀α ∈ A, (α, α) ∈ PEAF

• given two distinct nodes α, β ∈ A, (α, β) ∈ PEAF if and
only if there is a path from α to β and a path from β to α.

The strongly connected component of AF are the
equivalence classes of nodes under the relation of path-
equivalence. The set of the SCCs of AF is denoted as
SCCSAF. A particular case is represented by the empty
argumentation framework: when AF = 〈∅, ∅〉 we assume
SCCSAF = {∅}.

We extend to SCCs the notion of parents, namely the set
of the other SCCs that attack a SCC S, which is denoted
as sccparAF(S), and we introduce the definition of proper
ancestors, denoted as sccancAF(S):
Definition 5 Given an argumentation framework AF =
〈A,→〉 and a SCC S ∈ SCCSAF, we define

sccparAF(S) = {P ∈ SCCSAF | P �= S and P → S}
and

sccancAF(S) = sccparAF(S)∪
⋃

P∈sccparAF(S)

sccancAF(P )

A SCC S such that sccparAF(S) = ∅ is called initial.
It is well-known that the graph obtained by considering

SCCs as single nodes is acyclic. In other words, SCCs can
be partially ordered according to the relation of attack. Fol-
lowing the above definition, initial SCCs are those which
are not preceded by any other one in this partial order. Of
course, in any argumentation framework there is at least
one initial SCC. This fact lies at the heart of the definition
of SCC-recursiveness, which is based on the intuition that
extensions can be built incrementally starting from initial
SCCs and following the above mentioned partial order. In
other words, the choices concerning extension construction
carried out in an initial SCC do not depend on those con-
cerning the other ones, while they directly affect the choices
about the subsequent SCCs and so on.

While the basic underlying intuition is rather simple,
the formalization of SCC-recursiveness is admittedly rather
complex and involves some additional notions. Due to space
limitations, we can only give here a quick account, while
referring the reader to (Baroni, Giacomin, & Guida 2005)
for more details and examples. First of all, the choices in

the antecedent SCCs determine a partition of the nodes of a
generic SCC S into three subsets:

Definition 6 Given an argumentation framework AF =
〈A,→〉, a set E ⊆ A and a set S ⊆ A, we define:

• DAF(S, E) = {α ∈ S | (E ∩ outparentsAF(S)) → α}
• PAF(S, E) = {α ∈ S | (E ∩ outparentsAF(S)) �→

α ∧ ∃β ∈ (outparentsAF(S) ∩ parentsAF(α)) : E �→
β ∧ α �→ β}

• UAF(S, E) = S \ (DAF(S, E) ∪ PAF(S, E)) =
= {α ∈ S | (E ∩ outparentsAF(S)) �→ α ∧ ∀β ∈
(outparentsAF(S) ∩ parentsAF(α)) E ∪ {α} → β}
Definition 6 is a generalized version (useful for the sequel

of the paper) of the corresponding Definition 18 of (Baroni,
Giacomin, & Guida 2005). In words, the set DAF(S, E)
consists of the nodes of S attacked by E from outside S,
the set UAF(S, E) includes any node α of S that is not at-
tacked by E from outside S and is defended by E or de-
fends itself (i.e. the defeaters of α from outside S are all
attacked by E or by α itself), and PAF(S, E) includes any
node α of S that is not attacked by E from outside S and
is not defended by E or by itself (i.e. at least one of the
defeaters of α from outside S is not attacked by E nor
by α). It is easy to verify that, when S is a SCC, as in
the original Definition 18 of (Baroni, Giacomin, & Guida
2005), DAF(S, E), PAF(S, E) and UAF(S, E) are deter-
mined only by the elements of E that belong to the SCCs
in sccancAF(S) and it may not be the case that a node
α ∈ S defends itself against an attack coming from outside
S. Regarding E as a part of an extension which is being
constructed, the idea is then that arguments in DAF(S, E),
being attacked by nodes in E, cannot be chosen in the con-
struction of the extension E (i.e. do not belong to E ∩ S).
Selection of arguments to be included in E is therefore re-
stricted to (S \ DAF(S, E)) = (UAF(S, E) ∪ PAF(S, E)),
which, for ease of notation, will be denoted in the following
as UPAF(S, E).

To formalize this aspect, we define the restriction of an
argumentation framework to a given subset of its nodes:

Definition 7 Let AF = 〈A,→〉 be an argumentation frame-
work, and let S ⊆ A be a set of arguments. The restriction
of AF to S is the argumentation framework AF↓S = 〈S,→
∩(S × S)〉.

Inspired by the reinstatement principle, we require the se-
lection of nodes within a SCC S to be carried out on the
restricted argumentation framework AF↓UPAF(S,E) without
taking into account the attacks coming from DAF(S, E).

Combining these ideas and skipping some details not
strictly necessary in the context of the present paper, we can
finally recall the definition of SCC-recursiveness:

Definition 8 A given argumentation semantics S is SCC-
recursive if and only if for any argumentation framework
AF = 〈A,→〉, ES(AF) = GF(AF,A), where for any
AF = 〈A,→〉 and for any set C ⊆ A, the function
GF(AF, C) ⊆ 2A is defined as follows:
for any E ⊆ A, E ∈ GF(AF, C) if and only if

• in case |SCCSAF| = 1, E ∈ BFS(AF, C)



• otherwise, ∀S ∈ SCCSAF

(E ∩ S) ∈ GF(AF↓UPAF(S,E), UAF(S, E) ∩ C)

where BFS(AF, C) is a function, called base function, that,
given an argumentation framework AF = 〈A,→〉 such that
|SCCSAF| = 1 and a set C ⊆ A, gives a subset of 2A.

Since this definition is somewhat arduous to examine in
its full detail, we just give some “quick and dirty” indica-
tions which are useful for the sequel of the paper (in partic-
ular, we do not consider the meaning of the parameter C in
the description, as not necessary for the comprehension of
this paper). The set of extensions ES(AF) of an argumenta-
tion framework AF is given by GF(AF,A), namely by the
invocation of the function GF which receives as parameters
an argumentation framework (in this case the whole AF) and
a set of arguments (in this case the whole A). The function
GF(AF, C) is defined recursively. The base of the recursion
is reached when AF consists of a unique SCC: in this case
the set of extensions is directly given by the invocation of a
semantic-specific base function BFS(AF, C). In the other
case, for each SCC S of AF the function GF is invoked re-
cursively on the restriction AF↓UPAF(S,E).

Note that the restriction concerns UPAF(S, E), namely
the part of S which “survives” the attacks of the preced-
ing ones in the partial order. The definition also has a con-
structive interpretation, which suggests an effective (recur-
sive) procedure for computing all the extensions of an ar-
gumentation framework AF = 〈A,→〉 once a specific base
function characterizing the semantics is assigned. A partic-
ular role in this context is played by the initial SCCs. In
fact, for any initial SCC I , since by definition there are no
outer attacks, the set of defended nodes coincides with I , i.e.
UPAF(I, E) = UAF(I, E) = I for any E. This gives rise
to the invocation GF(AF↓I , I) for any initial SCC I . Since
AF↓I obviously consists of a unique SCC, according to Def-
inition 8 the base function BFS(AF↓I , I) is invoked, which
returns the extensions of AF↓I according to the semanticsS.
Therefore, the base function can be first computed on the ini-
tial SCCs, where it directly returns the extensions prescribed
by the semantics. Then, the results of this computation are
used to identify, within the subsequent SCCs, the restricted
argumentation frameworks on which the procedure is recur-
sively invoked.

All SCC-recursive semantics “share” this general scheme
and only differ by the specific base function adopted. It
has been shown that all semantics encompassed by Dung’s
framework are SCC-recursive and the relevant base func-
tions have been identified. Among them, in the follow-
ing we will mainly refer to grounded semantics (denoted as
GR) and preferred semantics (denoted as PR) considered
the “best” representatives of the unique-status and multiple-
status approach respectively.

Moreover, defining and experimenting new SCC-
recursive semantics is quite easy since it simply amounts
to defining a base function operating on single-SCC argu-
mentation frameworks. As shown in (Baroni, Giacomin, &
Guida 2005), the base function has only to respect two very
simple conditions in order to ensure that the resulting exten-
sions satisfy the fundamental requirements of being conflict-

free and of agreement with grounded semantics.
As to the conflict-free property, it is sufficient that the base

function returns only conflict-free subsets.

Definition 9 A semantics S satisfies the conflict-free prop-
erty if and only if ∀AF, ∀E ∈ ES(AF) E is conflict-free.

Definition 10 The base function of a SCC-recursive seman-
tics S is conflict-free if and only if ∀AF = 〈A,→〉 and
∀C ⊆ A each element of BFS(AF, C) is conflict-free.

Proposition 1 (Theorem 48 of (Baroni, Giacomin, & Guida
2005)) Given a SCC-recursive semantics S, if its base func-
tion is conflict-free then S satisfies the conflict-free property.

As to the agreement with grounded semantics, it is suffi-
cient that the base function properly deals just with the sim-
plest case of non-empty argumentation framework (a single
node not attacking itself).

Proposition 2 (Theorem 52 of (Baroni, Giacomin, & Guida
2005)) Let S be a SCC-recursive semantics identified by a
conflict-free base function such that

BFS(〈{α}, ∅〉, {α}) = {{α}}

For any argumentation framework AF = 〈A,→〉, ∀E ∈
ES(AF), the grounded extension GE(AF) ⊆ E.

Thanks to these properties, four original SCC-recursive
semantics have been defined in (Baroni, Giacomin, & Guida
2005) in a relatively straightforward way. In particular, the
SCC-recursive semantics called CF2 (Baroni & Giacomin
2003; Baroni, Giacomin, & Guida 2005) has been shown to
provide a good behavior in several critical examples, while
featuring a very simple base function: BF CF2(AF, C) =
MCFAF, where MCFAF denotes the set made up of all the
maximal conflict-free sets of AF (note that the parameter C
plays no role at all in this case).

Motivating examples
In the SCC-recursive approach, SCCs play the role of ba-
sic decomposition elements on which the semantics-specific
base function is applied. In CF2 semantics, as well as in
the SCC-recursive formulation of grounded, stable, and pre-
ferred semantics, the base function does not take into ac-
count the “internal topology” of the SCC to which it is ap-
plied. Roughly speaking, since all elements of a SCC are
mutually reachable, it has been implicitly assumed in (Ba-
roni, Giacomin, & Guida 2005) that they can be treated as
“equivalent” in the construction of extensions.

Though this hidden assumption is reasonable in most sit-
uations, there are cases where it can be regarded as question-
able.

As a first example, consider the argumentation framework
AF1 represented in Figure 1. AF1 clearly consists of a
single SCC, so its extensions in a SCC-recursive seman-
tics are directly obtained by applying the base function to
the whole AF1. In the case of CF2 semantics it turns out
that ECF2(AF1) = MCFAF1 = {{β}, {γ}}. According to
both grounded and preferred semantics, the only extension
in this case is the empty set: EPR(AF1) = EGR(AF1) =



Figure 1: A self-defeating node within a three-length cycle
(AF1).

{∅}. Therefore in all these semantics no argument is in-
cluded in all the prescribed extensions and can be consid-
ered justified. However, this result can be questioned. In
fact, one may object that the node α, being self-defeating,
is intrinsically weak and should not be able to affect the
justification status of the arguments it attacks. In this per-
spective, α should be ruled out, β, not receiving attacks any-
more, should be regarded as justified and, as a consequence,
γ should not be justified. While this kind of behavior is not
supported by any of the above mentioned semantics, it could
be obtained by a sort of ad-hoc rule or by some form of graph
preprocessing devoted to suppress all self-defeating nodes.

Other examples call however for a more general
approach to this kind of situation. Consider the
argumentation framework AF2 represented in Fig-
ure 2, which also consists of a unique SCC. Ac-
cording to CF2 semantics we have ECF2(AF2) =
MCFAF2 = {{α, δ}, {α, ε}, {γ, δ}, {β, ε}}, while
EPR(AF2) = EGR(AF2) = {∅}. Again, no argument is
justified according to any of the above semantics. While
this may sound very reasonable, other interpretations are
possible, depending on the meaning ascribed to odd-length
cycles. In fact, it can be noted that arguments α, β, and γ
form a three length cycle, independently of δ and ε. CF2
semantics is based on the idea that even- and odd-length
cycles share the same nature and should be treated equally
(Baroni & Giacomin 2003) in a “length-independent” way.
However, as pointed out in (Prakken & Vreeswijk 2001),
a different point view is also possible where “odd defeat
loops are of an essentially different kind than even defeat
loops”. For instance, one might state that odd-length cycles
are like paradoxes, i.e. situations where nothing can be
believed, while even-length cycles are like dilemmas, i.e.
situations where a choice needs to be made. According
to this view, the arguments α, β, and γ should in a sense
“annul” each other and lose the power of affecting other
nodes, leaving then δ undefeated and, consequently, ε
defeated. It has to be acknowledged that the choice of
the “most appropriate” result is a matter of debate and
may depend on case-specific considerations too (Horty
2002) and that some critical examples may be dealt with

Figure 2: A three-length cycle within a five-length
cycle(AF2).

by applying some rationality postulates at the level of
argument structure and construction (Caminada & Amgoud
2005). At an abstract level, it is however desirable that
the alternative view presented above can be encompassed
within the general SCC-recursive scheme. As it emerges
from the above examples, this requires, first of all, the
capability to distinguish some significant substructures (the
self-defeating node in the first case, the three length-cycle
in the second case) within a single SCC: this aspect is dealt
with in the next section.

Decomposing a SCC into autonomous
fragments

We follow the idea of identifying, within a SCC S, the sub-
sets of nodes that can be considered “autonomously” in the
incremental construction of extensions. These subsets will
be called autonomous fragments and the set of autonomous
fragments of S will be denoted as AU(S). A first intuitive
requirement is that each fragment is strongly connected by
itself and, while respecting this property, is as small as possi-
ble. Moreover, to be autonomous, fragments should not “in-
terfere”, namely should not intersect each other. To define
significant minimal strongly connected fragments within a
“conventional” SCC we need to modify the definition of path
equivalence, substituting the clause that each node is always
path-equivalent to itself with the requirement that the node
is self-defeating.

Definition 11 Given an argumentation framework AF =
〈A,→〉 and a set Q ⊆ A, let AF′ = AF↓Q. The bi-
nary relation of path-mutuality restricted to Q, denoted as
PMQ ⊆ (Q × Q), is defined as follows:

• ∀α ∈ Q, (α, α) ∈ PMQ if and only if (α, α) ∈→;
• given two distinct nodes α, β ∈ Q, (α, β) ∈ PMQ if and

only if in AF′ there is a path from α to β and a path from
β to α.

We define the notion of fragments of a SCC S as follows.

Definition 12 Given a non-empty argumentation frame-
work AF = 〈A,→〉 and a SCC S ∈ SCCSAF, a non-empty
set F ⊆ S is called a fragment of S if and only if ∀α, β ∈ F ,



(α, β) ∈ PMF . The set of fragments of S is denoted as
FR(S).

Note that α and β are not necessarily distinct in Definition
12 and that the fragments belonging to FR(S) generally
intersect each other. In particular, S ∈ FR(S) unless S
consists of a unique non self-defeating argument, namely
S = {α} and AF↓S = 〈{α}, ∅〉 (such a SCC will be called
monadic). We have therefore the guarantee that FR(S) �= ∅
if S is not monadic.

The set AU(S) of autonomous fragments of a non
monadic SCC S is derived from FR(S) by applying the
following algorithm.

Definition of algorithm AU

Step 1
let Σ = FR(S);
BEGIN MAIN LOOP
Step 2
let Σmin = {F ∈ Σ | �G ∈ Σ : G � F};
Step 3
let AU(S) = {F ∈ Σmin | ∀G ∈ Σmin : G �= F,
F ∩ G = ∅};
Step 4
if AU(S) �= ∅
then

EXIT;
else
let Σ = Σ \ Σmin;
goto Step 2;

endif
END MAIN LOOP

In Step 1 the variable Σ is initialized to contain the set
of all fragments of S. Then the algorithm enters a loop. In
Step 2 the set Σmin of the elements of Σ which are mini-
mal with respect to set inclusion is identified, according to
the intuition that autonomous fragments are as small as pos-
sible. In Step 3 the condition of non interference is veri-
fied, by selecting for inclusion into AU(S) the elements of
Σmin which have empty intersection with any other element
of Σmin (note that it may be the case that no such element
exist in Σmin at a given iteration of the main loop). If a non-
empty AU(S) has been identified in Step 3, then in Step 4
the algorithm terminates, otherwise all elements of Σmin are
dropped from Σ and a new iteration of the main loop begins.

Proposition 3 Let S be a non monadic SCC of an argumen-
tation framework AF, then algorithm AU is guaranteed to
terminate by producing a non-empty set AU(S).

Recall that, since S is non monadic, S ∈ FR(S) and there-
fore S ∈ Σ since the initialization of Σ in Step 1. Moreover,
the finiteness of S ensures that Σ is finite. Then two situ-
ations may occur. If it holds that Σ = {S}, then clearly
Σmin = {S} is assigned in Step 2 and AU(S) = {S} is
assigned in Step 3, which determines algorithm termination.
Otherwise Σ � {S} and S /∈ Σmin since the other elements
of Σ are proper subsets of S. Then two cases are possible:
the algorithm terminates with a non-empty AU(S) or a new

Figure 3: Two three-length cycles within a four-length
cycle(AF3).

iteration begins after subtracting Σmin from Σ. In the new
iteration it still holds that S ∈ Σ and we can iterate the same
reasoning: then, the finiteness of Σ ensures that one of the
two termination cases considered above is reached in a finite
number of iterations. �

To complete the definition of AU(S), the cases of a
monadic SCC and of an empty SCC (which occurs only in
an empty argumentation framework) have to be covered.

Definition 13 Given an argumentation framework AF =
〈A,→〉 and a SCC S ∈ SCCSAF, the set of autonomous
fragments of S, denoted as AU(S), is defined as follows:

• AU(S) = {S}, if S is monadic or S = ∅;

• AU(S) is the result of applying algorithm AU to S, oth-
erwise.

By inspection of Step 3 of algorithm AU , it can be noted
that the elements of AU(S) are disjoint.

Let us now examine some examples of application of al-
gorithm AU . Every argumentation framework AF i con-
sidered in the following consists of a single SCC Si (i.e.
SCCSAFi

= {Si}), which coincides with the set of all argu-
ments of AFi. In the case of AF1 (Figure 1), FR(S1) =
{{α}, S1} and algorithm AU terminates in one iteration
with AU(S1) = Σmin = {{α}}.

In the case of AF2 (Figure 2), FR(S2) = {{α, β, γ}, S2}
and algorithm AU terminates in one iteration with
AU(S2) = Σmin = {{α, β, γ}}.

Consider now AF3 (Figure 3). FR(S3) =
{{α, β, γ}, {β, γ, δ}, S3}. Then in the first iteration of
the main loop Σmin = {{α, β, γ}, {β, γ, δ}}, and, since
the intersection of the two elements of Σmin is not empty,
AU(S) = ∅ in Step 3 and Σ = {S3} results in the else
branch of Step 4. In the subsequent iteration, the algorithm
terminates with AU(S3) = {S3} = {{α, β, γ, δ}}.

In AF4 (Figure 4), FR(S4) = {{α, β}, {γ, δ}, S4}.
Then in the first iteration of the main loop Σmin =
{{α, β}, {γ, δ}} and, since the intersection of the two el-
ements of Σmin is empty, the algorithm terminates with
AU(S4) = {{α, β}, {γ, δ}}.



Figure 4: Two two-length cycles within a four-length
cycle(AF4).

Figure 5: Two two-length cycles within a four-length cycle
with a self-defeating node(AF5).

In AF5 (Figure 5), FR(S5) = {{δ}, {α, β}, {γ, δ}, S5}.
Then in the first iteration of the main loop Σmin =
{{α, β}, {δ}} and, since the intersection of the two elements
of Σmin is empty, the algorithm terminates with AU(S5) =
{{α, β}, {δ}}.

Exploiting autonomous fragments in
SCC-recursive semantics

Let us now continue our investigation by looking for a way
to take into account the notion of autonomous fragment
within the SCC-recursive scheme. Since this notion is in-
troduced at the level of single SCCs, the most direct way
is considering it within the definition of the base function,
which operates at this level. Each base function BF consid-
ered in (Baroni, Giacomin, & Guida 2005) directly selects
a set of subsets of a SCC S. An AU-aware base function
(denoted in the following as BF ′) should instead take into
account the autonomous fragments of S. Our intuition is
that each autonomous fragment represents the minimal topo-
logical unit to which some semantics-specific principle can

be applied for extension construction. Therefore, we sug-
gest that a semantics-specific fragment function FF is ap-
plied to each autonomous fragment F and returns a set of
subsets of F . Each of these subsets is regarded as an el-
ementary building block in extension construction. More-
over, if AU(S) = {S} the result should be the same as in
the non AU-aware case, therefore FF should be equal to
BF in this case. More articulated considerations need to
be applied when |AU(S)| �= 1 or Y(AU(S)) �= S (where
Y(Q) �

⋃
P∈Q P , given that Q is a set of sets). Let us

consider orderly these cases.
If |AU(S)| �= 1, several autonomous fragments are con-

sidered separately and, for each autonomous fragment F i,
a set of subsets of Fi is produced by FF . They need then
to be combined: the most direct way is considering all pos-
sible combinations of these subsets except those which in-
fringe the conflict-free principle. In other words, all possible
conflict-free combinations obtained by selecting one subset
for each Fi are considered.

If Y(AU(S)) = S, i.e. the whole S has been considered
since autonomous fragments are a partition of S, the above
mentioned combinations represent the result of the applica-
tion of BF ′ to S. Otherwise, there are some elements of S
which are not included in any autonomous fragment. We fol-
low the idea that the inclusion in the extensions of the other
elements of S should be determined by the choices carried
out within the autonomous fragments AU(S). In a sense,
autonomous fragments are evaluated first, then the results of
this evaluation are taken into account when the remaining
elements of S (if any) are considered.

In line with the fundamental principles of SCC-
recursiveness, this amounts to invoke recursively the gen-
eral function GF on a restricted argumentation framework,
derived taking into account the choices in AU(S).

Having provided an outline of the underlying ideas, we
need to put them in formal terms.

Let BFS be the base function of a SCC-recursive seman-
tics S; the corresponding AU-aware base function BF ′

S is
defined as follows.

Definition 14 Given a SCC-recursive semantics S with
base function BFS(AF, C), the corresponding AU-aware
base functionBF ′

S(AF, C) is a function that given an argu-
mentation framework AF = 〈A,→〉 such that |SCCSAF| =
1 (i.e. SCCSAF = {A}) and a set C ⊆ A, gives a subset of
2A as follows:
E ∈ BF ′

S(AF, C) if and only if E is conflict-free and
(E ∩ Y(AU(A))) ∈ UCFS(AU(A), AF, C) and
if A \ Y(AU(A)) �= ∅, ∀S ∈ SCCSAF↓A\Y(AU(A))

(E ∩ S) ∈ GF ′(AF↓UPAF(S,E), UAF(S, E) ∩ C)

where

• UCFS(Σ, AF, C) is a function which given a set Σ of
disjoint subsets of A returns a set of subsets of Y(Σ) as
follows: E ∈ UCFS(Σ, AF, C) if E is conflict-free and
∀Q ∈ Σ, E ∩ Q = BFS(AF↓Q, C ∩ Q);

• GF ′ is the general recursive function in the AU -aware
scheme (see Definition 15 below).



Definition 14 is rather complex and not really elegant.
This reflects the preliminary state of this investigation: de-
vising a simpler formulation is one of the directions of future
work. To illustrate its main features we note that:

• the base function BF is applied to each autonomous frag-
ment and the resulting sets are combined in all possible
conflict-free manners (through function UCF);

• the output of UCF is used directly as output of BF ′

if the union of all autonomous fragments Y(AU(A))
completely covers the SCC A, since in this case A \
Y(AU(A)) = ∅ and therefore the second part of the defi-
nition does not apply;

• in particular, the AU-aware base function BF ′ coin-
cides with BF when there is only one autonomous
fragment coinciding with the SCC A itself, since
UCFS({A}, AF, C) is invoked in this case, leading to
E ∩A = BFS(AF↓A, C ∩ A) = BFS(AF, C);

• if A \ Y(AU(A)) �= ∅, the construction of the output
of BF ′ proceeds recursively using the output of UCF
as starting point and invoking the general SCC-recursive
function GF ′ “as usual” on the parts of A not covered by
Y(AU(A)), i.e. on the SCCs of the restricted argumenta-
tion framework AF↓A\Y(AU(A)).

Besides complications, taking into account the internal
structure of SCCs has another downside: there are cases
where BF ′

S(AF, C) = ∅. This may happen, for instance,
when A\Y(AU(A)) = ∅ and UCFS(AU(A), AF, C) = ∅,
i.e. the autonomous fragments cover the whole SCC and
there are no conflict-free combinations of the subsets se-
lected within them. This would lead to the unpleasant situa-
tion of non-existence of extensions for some argumentation
frameworks. A (still not elegant) solution consists in intro-
ducing a provision for this case in the semantics definition.

Definition 15 Given a SCC-recursive semantics S with
base function BFS(AF, C), the corresponding AU -aware
semantics S ′ is defined as follows: for any argumentation
framework AF = 〈A,→〉, ES′(AF) = GF ′(AF,A), where
for any AF = 〈A,→〉 and for any set C ⊆ A, the function
GF ′(AF, C) ⊆ 2A is defined as follows:
for any E ⊆ A, E ∈ GF ′(AF, C) if and only if

• in case |SCCSAF| = 1, E ∈ BF∗
S(AF, C)

• otherwise, ∀S ∈ SCCSAF (E ∩ S) ∈
GF ′(AF↓UPAF(S,E), UAF(S, E) ∩ C)

where BF∗
S(AF, C) = BF ′

S(AF, C) if BF ′
S(AF, C) �=

∅, BF∗
S(AF, C) = {∅} otherwise.

Essentially an AU -aware semantics is just a SCC-
recursive semantics with a special base function BF ∗,
which, apart a particular case, coincides with the AU-aware
base function BF ′. In turn, BF ′ exploits the original base
function BF in the cases where a SCC does not admit sig-
nificant autonomous fragments.

Proving fundamental properties of AU -aware semantics
turns out to be relatively easy, in virtue of its adherence to
the general SCC-recursive scheme, whose properties are an-
alyzed in (Baroni, Giacomin, & Guida 2005).

Let us consider well-foundedness of recursion first.

Proposition 4 Recursion in Definition 14 is well-founded.

Definition 14 involves an indirect recursion: it invokes the
GF ′ function on each SCC S of AF↓A\Y(AU(A)) and such
function in turn invokes the AU -aware base function BF ′

S
in the first branch of Definition 15. To verify the well-
foundedness of this indirect recursion, first note that since
AU(A) �= ∅ (Proposition 3) and, by Definition 12, ∀F ∈
AU(A) F �= ∅, it turns out that Y(AU(A)) �= ∅. As a con-
sequence, the restricted argumentation framework consid-
ered in the recursive branch AF↓A\Y(AU(A)) (and therefore
also any of its SCCs) has a strictly lesser number of argu-
ments than |A|. Observe also that if A \ Y(AU(A)) = ∅,
the recursive part of Definition 14 is not invoked. This im-
plies that subsequent invocations (if any) of the recursive
branch of BF ′

S (reached through GF ′) operate on progres-
sively smaller non-empty argumentation frameworks. Due
to the hypothesis of finiteness of A, this leads to consider
the case where BF ′

S is invoked on an argumentation frame-
work AF = 〈A,→〉 such that |A| = 1. Such argumen-
tation framework consists necessarily of a unique SCC: by
Definition 13, in this case it holds AU(A) = {A}, and, as
a consequence, A \ Y(AU(A)) = ∅ which represents the
non-recursive case of Definition 14. �

Proposition 5 The definition of an AU -aware SCC-
recursive semantics S ′ is well-founded.

The definition of an AU -aware SCC-recursive semantics
is a case of the general SCC-recursive scheme with a well-
defined base function (Proposition 4). Then the conclusion
directly derives from the properties of the general SCC-
recursive scheme shown in (Baroni, Giacomin, & Guida
2005). �

In the same line, we now show that an AU-aware SCC-
recursive semantics S ′ shares with its non AU-aware ver-
sion the fundamental properties of being conflict-free and
agreeing with grounded semantics.

Proposition 6 Any AU -aware SCC-recursive semantics S ′

satisfies the conflict-free property.

As recalled in Proposition 1, for any SCC-recursive se-
mantics T , if its base function BFT is conflict-free then
T satisfies the conflict-free property. Since S ′ is a special
case of SCC-recursive semantics, where BF ∗

S plays the role
of BFT , it is sufficient to show that BF∗

S is conflict free,
namely that all elements of BF ∗

S(AF, C) are conflict free.
By Definition 15, this in turn corresponds to require that
BF ′

S(AF, C) is conflict-free, which holds by Definition 14.
�

As to agreement with grounded semantics, it has to be
verified that if the sufficient condition for agreement stated
in Proposition 2 is satisfied by BF , then it is satisfied also
by BF∗.

Proposition 7 If a SCC-recursive semantics S satisfies the
hypothesis of Proposition 2, the corresponding AU-aware
semantics S ′ satisfies it as well.

We need to show that BF∗
S(〈{α}, ∅〉, {α}) = {{α}}.

This immediately follows from the fact that 〈{α}, ∅〉



is an argumentation framework consisting of a sin-
gle monadic SCC and therefore BF ∗

S(〈{α}, ∅〉, {α}) =
BF ′

S(〈{α}, ∅〉, {α}) = BFS(〈{α}, ∅〉, {α}) = {{α}}. �

Putting AU-aware semantics at work
Having shown that, despite its rather articulated form, our
attempt to define AU-aware semantics preserves the funda-
mental properties that are desirable for any semantics, its
practical impact remains to be analyzed. First, let us remark
that in all the examples discussed in (Baroni, Giacomin, &
Guida 2005) every SCC S is such that AU(S) = {S} and
therefore no differences emerge when considering an AU -
aware semantics wrt. its non AU-aware version. Let us now
review the motivating examples introduced above, examin-
ing the behavior of the AU -aware versions of preferred and
CF2 semantics, denoted as PR′ and CF2′ respectively.

Since all examples involve an argumentation framework
AFi consisting of a single SCC Si, Definition 15 directly
leads to consider the following invocation of the AU-aware
base function: ES′(AFi) = BF ′

S(AFi, Si).
Example 1. Let us start with AF1 (Figure 1), recalling

that AU(S1) = {{α}} and, therefore, Y(AU (S1)) = {α}.
Since Y(AU(S1)) � S1 both parts of Definition 14 ap-
ply. The first part states that for any extension E, E ∩
Y(AU(S1)) = UCFS(AU(S1), AF1, S1). Since AU(S1)
contains just one element, UCFS(AU(S1), AF1, S1) =
BFS(AF1↓{α}, {α}). Since AF1↓{α} consists of a single
self-defeating argument and BF S(AF1↓{α}, {α}) = {∅}
either with S = CF2 or S = PR, it turns out that
E ∩ {α} = ∅. In words, α can not be included in any exten-
sion.

Then, according to the second part of Definition 14, E∩T
is computed recursively for all T ∈ SCCSAF1↓S1\{α} =
{{β}, {γ}}. Following the SCC order within AF1↓S1\{α},
{β} has to be considered first, yielding E ∩ {β} =
GF ′(AF1↓UPAF1 ({β},E), UAF1({β}, E) ∩ S1).Since E ∩
Y(AU(S1)) = E ∩ {α} = ∅, it turns out that β is
not attacked by E nor is defended by E from the attack
coming from α, therefore UPAF1({β}, E) = {β} and
UAF1({β}, E) = ∅. As a consequence, E ∩ {β} =
GF ′(AF1↓{β}, ∅), which by the first clause of Definition 14
yields E∩{β} = BF ′

S′(〈{β}, ∅〉, ∅), resulting in E∩{β} =
{β} with S = CF2, and in E ∩ {β} = ∅ with S = PR.

Turning to {γ}, we have E ∩ {γ} ∈
GF ′(AF1↓UPAF1 ({γ},E), UAF1({γ}, E) ∩ S1). In the
case of CF2 semantics, since E ∩ {β} = {β} for any E,
we have UPAF1({γ}, E) = UAF1({γ}, E) = ∅, which
skipping some further purely formal steps leads to consider
the empty argumentation framework and therefore to
conclude E ∩ {γ} = ∅. In the case of preferred semantics,
it holds that UPAF1({γ}, E) = {γ}, UAF1({γ}, E) = ∅,
which (skipping again some steps) gives E ∩ {γ} = ∅.

Summing up, we obtain ECF2′(AF1) = {{β}}, while
EPR′(AF1) = ∅. This shows that the AU-aware version
of CF2 semantics provides a different (and intuitively more
acceptable) result wrt. the non AU-aware one.

Example 2. In the case of AF2 (Figure 2), AU(S2) =
{{α, β, γ}}. As to the first part of Definition 14, for any ex-

tension E, E∩Y(AU(S2)) = UCFS(AU(S2), AF2, S2) =
BFS(AF2↓{α,β,γ}, {α, β, γ}). Here the two semantics
differ since in the case of preferred semantics E ∩
{α, β, γ} ∈ BFPR(AF2↓{α,β,γ}, {α, β, γ}) = {∅},
while in the case of CF2-semantics E ∩ {α, β, γ} ∈
BFCF2(AF2↓{α,β,γ}, {α, β, γ}) = {{α}, {β}, {γ}}. In
both cases, E ∩ T has to be computed recursively for all
T ∈ SCCSAF2↓S2\{α,β,γ} = {{δ}, {ε}}, on the basis of the
choices carried out for E ∩ {α, β, γ}.

Let us examine the case of preferred semantics first,
where there is just one choice for E ∩ {α, β, γ} = ∅. Fol-
lowing the SCC order within AF2↓S2\{α,β,γ}, {δ} has to
be considered first. Since {δ} is exactly in the same situ-
ation as {β} in Example 1, skipping the analogous formal
steps made explicit in Example 1 we obtain E ∩ {δ} = ∅.
Consequently, when considering the subsequent SCC of
AF2↓S2\{α,β,γ}, namely {ε}, we are in a completely anal-
ogous situation as for {γ} in Example 1 and we obtain
E ∩ {ε} = ∅.

In summary, we obtain EPR′(AF2) = EPR(AF2) = {∅}.
Let us turn to CF2-semantics, where there are three

choices for E ∩ {α, β, γ}, namely {α}, {β}, and {γ}, each
being the starting point for the construction of one or more
extensions, to be completed by possibly adding elements of
AF2↓S2\{α,β,γ}.

Consider first the case where E ∩ {α, β, γ} = {α}. We
note that in this case E defends δ by attacking β, and there-
fore UPAF2({δ}, E) = UAF2({δ}, E) = {δ}. Thus δ and
ε are in the same situation as β and γ respectively in AF1.
This leads to E ∩ {δ} = {δ} and E ∩ {ε} = ∅, obtaining a
first extension E1 = {α, δ}.

Let us now examine the case E ∩ {α, β, γ} = {β}.
In this case E attacks δ, and therefore UPAF2({δ}, E) =
UAF2({δ}, E) = ∅; skipping some purely formal steps this
clearly leads to E ∩ {δ} = ∅. As a consequence, it turns
out that UPAF2({ε}, E) = UAF2({ε}, E) = {ε}, which
leads to E ∩ {ε} = {ε}, thus obtaining a second extension
E2 = {β, ε}.

Finally, assume E ∩ {α, β, γ} = {γ}. In this case E
neither attacks nor defends δ, therefore UAF2({δ}, E) = ∅,
while UPAF2({δ}, E) = {δ}. Since only UPAF2({δ}, E)
is relevant in the definition of BFCF2, this gives rise to E ∩
{δ} = {δ} and, consequently, E∩{ε} = ∅, obtaining a third
extension E3 = {γ, δ}.

Summing up, ECF2′(AF2) = {{α, δ}, {β, ε}, {γ, δ}} �=
ECF2(AF2) = {{α, δ}, {α, ε}, {β, ε}, {γ, δ}}. As to the
justification status of arguments, the difference does not
manifest itself, since, according to the AU -aware version
of CF2 semantics too, no argument is included in all exten-
sions. It is however interesting that the extension {α, ε} is
not prescribed by the AU -aware version of CF2 semantics,
as not compatible with the idea of choosing first within the
autonomous fragment {α, β, γ} and then propagating the ef-
fects on the rest of the argumentation framework.

Neither the AU -aware version of preferred semantics nor
of CF2 captures the intuition underlying the example that
the three-length cycle {α, β, γ} could be regarded as a sort
of “null element”, leaving δ undefeated and γ defeated. The



search for a semantics featuring this kind of behavior re-
mains open.

Example 3. Consider now AF3 (Figure 3). Since
AU(S3) = {S3} the behavior of any non AU -aware seman-
tics and of its AU -aware version is the same and therefore
will not be discussed here.

Example 4. In AF4 (Figure 4), AU(S4) =
{{α, β}, {γ, δ}}. In this case Y(AU(S4)) = S4, and
therefore ES′(AF4) = UCFS(AU(S4), AF4, S4). This
means that first the base function BFS is evaluated sepa-
rately for AF4↓{α,β} and AF4↓{γ,δ}. Both fragments con-
sist of a couple of rebutting arguments, a prototypical case
often referred to as “Nixon diamond” where any multiple-
status semantics admits two extensions, each correspond-
ing to the choice of one of the arguments. We have there-
fore BFS(AF4↓{α,β}, S4 ∩ {α, β}) = {{α}, {β}}, and
BFS(AF4↓{γ,δ}, S4∩{γ, δ}) = {{γ}, {δ}} both with S =
PR and S = CF2. All conflict free combinations of the
elements of {{α}, {β}} and {{γ}, {δ}} are then returned
by function UCF , yielding ES′(AF4) = {{α, δ}, {β, γ}} =
ES(AF4) both with S = PR and S = CF2. Therefore, in
this case the use of AU-aware semantics does not give rise
to different results.

Example 5. Differences appear instead in AF5 (Figure
5), where AU(S5) = {{α, β}, {δ}}.

First, UCFS(AU(S5), AF5, S5) has to be evaluated,
which requires in turn evaluating BF S(AF5↓Q, S5 ∩ Q)
for Q ∈ {{α, β}, {δ}}. We have BFS(AF5↓{α,β}, S5 ∩
{α, β}) = {{α}, {β}}, and BFS(AF5↓{δ}, S5 ∩ {δ}) =
{∅} both with S = PR and S = CF2.

Considering the conflict free combinations, we derive
UCFS(AU(S5), AF5, S5) = {{α}, {β}}.

Therefore, with both semantics, we have two starting
choices for E ∩ Y(AU(S5)), namely {α} and {β}. The
restricted argumentation framework AF5↓{γ} remains to be
considered, which clearly consists of a single SCC {γ}.
Consider first the case E∩Y(AU(S5)) = {α}; since E does
not attack γ and γ defends itself against the attack coming
from δ, we have UPAF5({γ}, E) = UAF5({γ}, E) = {γ},
and therefore we obtain BF S(AF5↓{γ}, S5 ∩ {γ}) = {γ},
both with S = PR and S = CF2. This leads to consider
E = {α, γ} which, not being conflict free, is not compatible
with Definition 14 and is discarded.

The development of the case E ∩ Y(AU(S5)) = {β}
is analogous and leads to consider E = {β, γ} which is
conflict free and compatible with Definition 14.

In summary, ES′(AF5) = {{β, γ}} both with S = PR
and S = CF2. Note that this is the same result as for
non AU -aware preferred semantics, since EPR(AF5) =
{{β, γ}} while a difference appears for CF2 semantics
where ECF2(AF5) = {{β, γ}, {α}}.

Thus the AU -aware version of CF2 semantics agrees
with preferred semantics in this case (while the non AU -
aware version does not) and achieves a behavior which is
intuitively plausible if self-defeating arguments are consid-
ered as “null elements” in an argumentation framework.

Conclusions
We have provided an initial investigation about the poten-
tial use of the novel notion of autonomous fragments within
SCC-recursive argumentation semantics. The presented re-
sults are quite preliminary and further work is needed in or-
der to improve the definition of AU -aware semantics and
explore more deeply its properties. Though our analysis has
started from specific examples, we remark that the aim of
the paper is not to achieve a “better” treatment of particular
cases but rather to suggest an interesting perspective about
argumentation semantics design. In fact, it emerges that dif-
ferent solutions are obtained by changing the semantics be-
havior with respect to topology, e.g. choosing between the
AU-aware and the non AU -aware version of a semantics,
without affecting the underlying notion of extension, rep-
resented by the base function BF . This suggest that the
“design” of an argumentation semantics can be conceived as
composed, in a modular way, by the answers to two “orthog-
onal” questions: i) how to take into account the defeat graph
topology in extension construction and ii) which principles
rule the identification of extensions within the basic topo-
logical entities considered. Identifying alternative answers
to these questions and properly combining and comparing
them appears to be a very interesting research line to pursue.
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