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Abstract

In argumentation theory, Dung’s ab-
stract framework provides a unifying
view of several alternative seman-
tics based on the notion of exten-
sion. Recently, a new semantics has
been introduced to solve the prob-
lems related to counterintuitive re-
sults produced by literature propos-
als. In this semantics, extensions
can be decomposed and constructed
along the strongly connected compo-
nents of the defeat graph. This pa-
per proves that this property holds
also in the context of all seman-
tics encompassed by Dung’s frame-
work, showing that strongly con-
nected components may play a gen-
eral role in the definition and compu-
tation of argumentation semantics.
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nected Components.

1 Introduction

Argumentation theory is a framework for
practical and uncertain reasoning where com-
monsense reasoning, dealing with incomplete
and uncertain information, is modeled as the
process of constructing and comparing argu-
ments for propositions. Since different ar-
guments may support contradictory conclu-
sions, the core problem consists in determin-
ing which arguments emerge undefeated from

conflict, on the basis of a given argumenta-
tion semantics. In order to analyze and com-
pare different kinds of semantics, Dung [4] has
proposed an abstract framework able to en-
compass a large variety of proposals. Since
all existing semantics give rise to counterin-
tuitive results in some cases, in [1] a new se-
mantics has been proposed, showing that it is
able to overcome these limitations. The defi-
nition of this semantics exploits the notion of
strongly connected components (SCCs) of the
graph representing the argumentation frame-
work, in order to constrain the set of exten-
sions prescribed by the semantics. While this
notion has not been previously considered in
the context of other semantics, we show in
this paper that in all semantics encompassed
by Dung’s framework there is a fundamental
relationship between extensions and strongly
connected components: all the definitions of
extension given at a global graph level can be
replaced by equivalent definitions given at the
local level of strongly connected components.

The paper is organized as follows. Section 2
recalls the necessary basic concepts, Section 3,
4, 5, and 6 analyze the relationships between
SCCs and Dung’s admissible, complete, pre-
ferred, and grounded extensions respectively,
while Section 7 concludes the paper.

2 Basic concepts

2.1 Argumentation framework

The general theory proposed by Dung [4] is
based on the primitive notion of argumenta-
tion framework :



Definition 1 An argumentation framework
is a pair AF = 〈A,→〉, where A is a set of
arguments and → is a binary relation of ‘at-
tack’ between them.

In case A is finite, an argumentation frame-
work 〈A,→〉 can be represented as a directed
graph, called defeat graph, where nodes are
the arguments and edges correspond to the
elements of the attack relation →.
In the following, nodes that attack a given
α ∈ A are called defeaters of α, and form a
set denoted as parents(α):

Definition 2 Given an argumentation
framework AF = 〈A,→〉 and a node α ∈ A,
we define parents(α) = {β ∈ A | β → α}. If
parents(α) = ∅, then α is called initial.

Since we will frequently consider properties
of sets of arguments, it is useful to extend to
them the notations defined for the nodes. In
particular, we extend the binary relation of
attack and the notion of defeaters:

Definition 3 Given an argumentation
framework AF = 〈A,→〉, a node α ∈ A and
two sets S, P ⊆ A, we define:

S → α iff ∃β ∈ S : β → α

α → S iff ∃β ∈ S : α → β

S → P iff ∃α ∈ S, β ∈ P : α → β

parents(S) = {α ∈ A | α → S}
parents∗(S) = {α ∈ A | α 6∈ S ∧ α → S}

Given an argumentation framework, the core
problem consists in computing the defeat sta-
tus of its arguments, namely in determining
which ones of them can be accepted in the
framework, on the basis of a given argumen-
tation semantics. Different argumentation se-
mantics have been proposed in the literature,
all of them relying on the notion of exten-
sion, which roughly consists in a set of ar-
guments which do not conflict among them
and which attack their attackers. Generally
an argument is considered justified in a given
semantics if it belongs to all extensions speci-
fied by the semantics itself. As pointed out
in [7], the argumentation semantics can be
distinguished in two classes: in the so-called

unique-status approach there is exactly one
extension for any argumentation framework,
while in the multiple-status approach several
extensions can generally be identified. The
unique-status approach is adopted e.g. in the
argumentation system introduced in [5], and
is represented by the grounded semantics in
Dung’s framework, while the multiple-status
approach is adopted e.g. in [6, 8, 2], and is
captured by the preferred semantics.

2.2 Strongly connected components

While strongly connected components can be
defined for generic directed (and undirected)
graphs, we introduce them with reference to
argumentation frameworks:

Definition 4 Given an argumentation
framework AF = 〈A,→〉, two nodes α, β ∈ A
are path-equivalent iff either α = β or there
is a path from α to β and a path from β to α.
The strongly connected components of AF
are the equivalence classes of vertices under
the relation of path-equivalence. The set of
the strongly connected components of AF is
denoted as SCC(AF).

Given a node α ∈ A, we will indicate the SCC
α belongs to as SCC(α). We extend to SCCs
the notion of defeaters:

Definition 5 Given an argumentation
framework AF = 〈A,→〉 and S ∈ SCC(AF),
sccparents(S) = {P ∈ SCC(AF) | P 6=
S ∧ P → S}.
If sccparents(S) = ∅, S is called initial.

It is well-known that the graph obtained by
considering SCCs as single nodes is acyclic.
This property makes particularly useful the
following definition.

Definition 6 Given an argumentation
framework AF = 〈A,→〉, a set E ⊆ A and
S ∈ SCC(AF), we define:

SD(E) = {α ∈ S | (E ∩ parents∗(S)) → α}
SP (E) = {α ∈ S | (E ∩ parents∗(S)) 6→ α ∧

∧∃β ∈ (parents∗(S) ∩ parents(α)) : E 6→ β}
SU (E) = S \ (SD(E) ∪ SP (E))



Notice that, according to this definition,
SU (E) = {α ∈ S | (E ∩ parents∗(S)) 6→
α ∧ ∀β ∈ (parents∗(S) ∩ parents(α)) E → β}.
Taking into account that the SCCs of any ar-
gumentation framework make up an acyclic
graph, it is easy to see that SD(E), SP (E)
and SU (E) are determined only by the ele-
ments of E that belong to those SCCs that
precede S in a topological sort. In particular,
SD(E) = SD(E ∩ parents∗(S)).

The sets defined above will play a key role in
the analysis of the relationships between sev-
eral traditional definitions of extensions and
the decomposition of the defeat graph into its
SCCs, carried out in the following sections.

3 Admissible sets

The following notions lie at the heart of argu-
mentation framework theory [4].

Definition 7 Given an argumentation
framework AF = 〈A,→〉, a set S ⊆ A is
conflict-free iff @α, β ∈ S such that α → β.

Definition 8 Given an argumentation
framework AF = 〈A,→〉:

• An argument α ∈ A is acceptable with
respect to a set S ⊆ A iff ∀β ∈ A, if
β → α then also S → β.

• A set S ⊆ A is admissible iff S is
conflict-free and each argument in S is
acceptable with respect to S, i.e. ∀β ∈ A
such that β → S we have that S → β.

In order to accomplish our analysis, it is nec-
essary to extend the above definitions, refer-
ring them to specific subsets of A.

Definition 9 Let us consider an argumenta-
tion framework AF = 〈A,→〉 and a set of ar-
guments A ⊆ A:

• Given a set S ⊆ A, an argument α ∈ A
is acceptable against A with respect to S
iff ∀β ∈ A, if β → α then also S → β.

• A set S ⊆ A is admissible against A iff
S is conflict-free and each argument in S

is acceptable against A with respect to S,
i.e. ∀β ∈ A : β → S we have that S → β.

Dung’s fundamental lemma [4] shows that the
admissibility property is preserved when in-
cluding acceptable arguments. It is easy to
prove that an analogous lemma holds with the
generalized definitions.

Lemma 1 Given an argumentation frame-
work AF = 〈A,→〉 and a set A ⊆ A, let S ⊆
A be a set of arguments admissible against A,
and α ∈ A an argument acceptable against A
with respect to S. If S ⊆ A, then S′ = S∪{α}
is admissible against A.

We now aim at showing that partitioning an
admissible set along SCCs, one obtains sub-
sets which are in turn admissible at the level
of the SCCs themselves. On the other hand,
composing sets which are admissible at the
level of SCCs, one obtains an admissible set
at the global level of the whole argumentation
framework. This is achieved by Proposition 1,
which requires two preliminary lemmas.

Lemma 2 Given an argumentation frame-
work AF = 〈A,→〉, let E ⊆ A be an admissi-
ble set in AF, and α ∈ A be an argument ac-
ceptable with respect to E. Denoting SCC(α)
as S, we have that α ∈ SU (E) and α is ac-
ceptable against (SP (E)∪SU (E)) with respect
to (E ∩ S).

Proof. First of all, on the basis of Lemma 1
the set (E∪{α}) is admissible, and in particu-
lar conflict-free: as a consequence α 6∈ SD(E),
otherwise by the definition of SD(E) it would
be the case that E → α. Moreover, α 6∈
SP (E), otherwise by the definition of SP (E)
we would have that ∃β ∈ E : β → α and
E 6→ β, thus contradicting the acceptability
of α with respect to E. As a consequence, the
only possibility for α is that α ∈ SU (E).
Turning to the second part of the proof, since
α is acceptable with respect to E we have that
∀β ∈ (SP (E)∪SU (E)) : β → α there is γ ∈ E
such that γ → β: we have to prove that γ ∈ S
and therefore γ ∈ (E ∩S). This is entailed by
the fact that β ∈ (SP (E)∪SU (E)), therefore,
by definition of SP (E) and SU (E), all of its
defeaters outside S does not belong to E. ¤



Lemma 3 Given an argumentation frame-
work AF = 〈A,→〉, let E ⊆ A be a set of ar-
guments such that, ∀S ∈ SCC(AF): (E∩S) ⊆
SU (E), and (E ∩ S) is admissible against
(SP (E) ∪ SU (E)).
If α ∈ SU (E) is an argument acceptable
against (SP (E)∪SU (E)) with respect to (E∩
S), then α is acceptable with respect to E.

Proof. We have to show that ∀β ∈ A : β →
α, E → β. We distinguish two cases for β.
First, let us suppose that SCC(β) =
SCC(α) , S. If β ∈ SD(E), then E → β
by definition of SD(E). If, on the other hand,
β ∈ (SP (E) ∪ SU (E)), then according to the
hypothesis of acceptability concerning α it
must be the case that (E ∩ S) → β.
Let us consider the other case, i.e. SCC(β) 6=
SCC(α) , S. In this case, β ∈ (parents∗(S)∩
parents(α)), while by the hypothesis α ∈
SU (E): on the basis of the definition of
SU (E), it must be the case that E → β. ¤

Proposition 1 Given an argumentation
framework AF = 〈A,→〉, let us consider
a set of arguments E ⊆ A. Then, E is
admissible if and only if ∀S ∈ SCC(AF)
(E ∩ S) ⊆ SU (E), and (E ∩ S) is admissible
against (SP (E) ∪ SU (E)).

Proof. First, let us prove that if E is admis-
sible then it satisfies the conditions relevant
to a generic S ∈ SCC(AF). According to the
definition of admissible set, ∀α ∈ E, α is ac-
ceptable with respect to E. As a consequence,
on the basis of Lemma 2 we have in particu-
lar that ∀α ∈ (E ∩ S), α ∈ SU (E) and α is
acceptable against (SP (E) ∪ SU (E)) with re-
spect to (E ∩ S). The first condition entails
that (E∩S) ⊆ SU (E). The second condition,
as well as the fact that E is admissible and
therefore conflict-free, entails that (E ∩ S) is
admissible against (SP (E) ∪ SU (E)).
As far as the other direction of the proof is
concerned, let us first show that E is conflict-
free by reasoning by contradiction, i.e. let
us suppose that ∃α, β ∈ E : β → α. Let
us denote SCC(α) as S. Clearly, it cannot
be the case that SCC(α) = SCC(β), since
in this case (E ∩ S) would not be conflict-
free thus contradicting the hypothesis con-

cerning its admissibility. As a consequence,
β ∈ (E ∩ parents∗(S)), therefore α ∈ SD(E)
by the definition of SD(E). However, this
contradicts the fact that α ∈ (E ∩ S), which,
by the hypothesis, is contained in SU (E).
In order to complete the proof, we have to
prove that a generic α ∈ E is acceptable with
respect to E. If we denote SCC(α) as S, we
have that α ∈ (E ∩ S) ⊆ SU (E), and since
(E∩S) is admissible against (SP (E)∪SU (E)),
α is acceptable against (SP (E)∪SU (E)) with
respect to (E ∩ S). As a consequence, on the
basis of Lemma 3 it must be the case that α
is acceptable with respect to E. ¤

4 Complete semantics

The notion of complete extension is intro-
duced in [4] as a unifying concept underlying
various existing semantics. Due to space lim-
itations, we directly introduce the definition
in the context of the generalized framework.

Definition 10 Given an argumentation
framework AF = 〈A,→〉, let us consider two
sets of arguments C, A ⊆ A. A set S ⊆ A
is a complete extension in C against A iff
S ⊆ C, S is admissible against A, and every
argument α ∈ C which is acceptable against
A with respect to S belongs to S. The set of
complete extensions in C against A will be
denoted as CEAF(C, A).

The original definition (Def. 23 of [4]) is re-
covered by letting C = A = A, the set of com-
plete extensions in this case will be denoted
as CEAF. The following proposition shows
that also complete extensions are in corre-
spondence with a decomposition along SCCs.

Proposition 2 Given an argumentation
framework AF = 〈A,→〉, let us consider a
set of arguments E ⊆ A. Then, E ∈ CEAF

if and only if ∀S ∈ SCC(AF), (E ∩ S) ∈
CEAF(SU (E), (SP (E) ∪ SU (E))).

Proof. As for the first direction of the proof,
if E is a complete extension then it is ad-
missible, therefore by Proposition 1 we have
that ∀S ∈ SCC(AF) (E ∩ S) ⊆ SU (E), and
(E∩S) is admissible against (SP (E)∪SU (E)).



As a consequence, we have only to show that
∀α ∈ SU (E) such that α is acceptable against
(SP (E) ∪ SU (E)) with respect to (E ∩ S),
α ∈ (E ∩ S). This follows from Lemma 3,
which entails that α is acceptable with respect
to E, and from the hypothesis that E is a com-
plete extension, which entails that α ∈ E and
therefore α ∈ (E ∩ S).
As for the other direction of the proof, by Def-
inition 10 we have that ∀S ∈ SCC(AF) (E ∩
S) ⊆ SU (E), and (E∩S) is admissible against
(SP (E)∪SU (E)). Thus, Proposition 1 entails
that E is admissible, therefore we have only to
prove that ∀α ∈ A such that α is acceptable
with respect to E, α ∈ E. Denoting SCC(α)
as S, by Lemma 2 we have α ∈ SU (E), and α
is acceptable against (SP (E) ∪ SU (E)) with
respect to (E ∩ S). Since by the hypothesis
(E ∩S) ∈ CEAF(SU (E), (SP (E)∪SU (E))), it
must be the case that α ∈ (E ∩ S), and then
that α ∈ E. ¤

5 Preferred semantics

Preferred semantics is introduced in [4] to
overcome some limitations of stable semantics
and is the most advanced proposal in the field
of multiple-status approaches. It is based on
the notion of preferred extension, defined as
follows in the generalized framework.

Definition 11 Given an argumentation
framework AF = 〈A,→〉, let us consider two
sets of arguments C, A ⊆ A. A preferred
extension in C against A is a maximal set
S (with respect to set inclusion) such that
S ⊆ C and S is admissible against A. The
set of preferred extensions in C against A
will be denoted as FPAF(C, A).

The original definition (Def. 7 of [4]) is re-
covered by letting C = A = A, the set of
preferred extensions in this case will be de-
noted as FPAF. A relevant question concerns
the existence of a preferred extension for any
argumentation framework AF and for all sets
C, A ⊆ A. Since the empty set is admissible
against any set, the positive answer is directly
entailed by the following theorem, which gen-
eralizes a result in [4] (proof is omitted due to
space limitations).

Theorem 1 Given an argumentation frame-
work AF = 〈A,→〉 and two sets C, A ⊆ A:

• The subsets of C that are admissible
against A form a complete partial order.

• For all S ⊆ C such that S is admissible
against A, there is E ∈ FPAF(C, A) such
that S ⊆ E.

Also preferred extensions fit the decomposi-
tion schema along SCCs, as shown by Propo-
sition 3, based on the following lemma.

Lemma 4 Given an argumentation frame-
work AF = 〈A,→〉, let E ⊆ A be an admis-
sible set in AF and let S ∈ SCC(AF). Let Ê
be a set of arguments such that (E ∩ S) ⊆
Ê ⊆ SU (E), and Ê is admissible against
(SU (E)∪SP (E)). Then, we have that (E∪Ê)
is admissible in AF.

Proof. First, we prove that (E ∪ Ê) is
conflict-free. Since both E and Ê are conflict-
free, we have to prove that Ê 6→ E and
E 6→ Ê. Since E is admissible, Ê → E en-
tails that E → Ê, therefore we have only to
prove that E 6→ Ê. Since Ê ⊆ S, Ê can
have attackers only in parents∗(S) ∪ S. Since
Ê ⊆ SU (E), (E∩parents∗(S)) 6→ Ê, therefore
E → Ê only if (E ∩ S) → Ê. However, this
situation is not possible since (E ∩ S) ⊆ Ê
and Ê is conflict-free.
Now, we have to prove that ∀β ∈ A such that
β → (E ∪ Ê), it is the case that (E ∪ Ê) → β.
In case β → E, the conclusion follows from
admissibility of E. On the other hand, if
β → Ê, we have that β ∈ (parents∗(S) ∪ S)
since Ê ⊆ S; we distinguish three cases for β:

1. if β ∈ parents∗(S), then, taking into ac-
count that β → Ê and Ê ⊆ SU (E), it
must be the case that E → β;

2. if β ∈ SD(E), then according to the def-
inition of SD(E) we have that E → β;

3. if β ∈ (SP (E) ∪ SU (E)), then since Ê is
admissible against (SU (E) ∪ SP (E)) we
have that Ê → β.

In any case (E ∪ Ê) → β, and we are done. ¤



Proposition 3 Given an argumentation
framework AF = 〈A,→〉, let us consider a
set of arguments E ⊆ A. Then, E ∈ FPAF

if and only if ∀S ∈ SCC(AF), (E ∩ S) ∈
FPAF(SU (E), (SP (E) ∪ SU (E))).

Proof. As far as the first direction of the
proof is concerned, let us assume that E ∈
FPAF. By definition, E is admissible, there-
fore, on the basis of Proposition 1, we have
that ∀S ∈ SCC(AF), (E ∩ S) ⊆ SU (E), and
(E∩S) is admissible against (SP (E)∪SU (E)).
Let us reason by contradiction, assuming that
∃Ŝ ∈ SCC(AF) such that (E ∩ Ŝ) is not
maximal among the sets admissible against
(ŜP (E)∪ ŜU (E)) that are included in ŜU (E).
According to Theorem 1, there must be a set
Ê such that (E ∩ Ŝ) ⊂ Ê ⊆ ŜU (E), and Ê
is admissible against (ŜP (E) ∪ ŜU (E)). By
Lemma 4, the set E′ , E ∪ Ê is admissible in
AF, however it is easy to see that E is strictly
contained in E′, contradicting the maximality
of E among the admissible sets of AF.
Let us turn now to the other direction of the
proof, assuming that ∀S ∈ SCC(AF) (E ∩
S) ∈ FPAF(SU (E), (SP (E) ∪ SU (E))). On
the basis of Proposition 1, E is admissible: in
order to prove that it is also a preferred exten-
sion, we reason again by contradiction, sup-
posing that ∃E′ ⊆ A, E ⊂ E′ : E′ ∈ FPAF

(notice that such a set exists by Theorem 1 re-
stricted to the case A = C = A). Since E ⊂
E′, there must be at least a S ∈ SCC(AF)
such that (E ∩ S) ⊂ (E′ ∩ S): taking into ac-
count the acyclicity of the SCCs, there is in
particular Ŝ ∈ SCC(AF) such that

∀S ∈ sccparents(Ŝ) (E′ ∩ S) = (E ∩ S) (1)

(E ∩ Ŝ) ⊂ (E′ ∩ Ŝ) (2)

Since E′ is admissible, Proposition 1 entails
that (E′ ∩ Ŝ) ⊆ ŜU (E′), and (E′ ∩ Ŝ) is
admissible against (ŜP (E′) ∪ ŜU (E′)). Tak-
ing into account (1), it is easy to see that
ŜU (E′) = ŜU (E) and ŜP (E′) = ŜP (E),
therefore (E′∩Ŝ) ⊆ ŜU (E), and (E′∩Ŝ) is ad-
missible against (ŜP (E) ∪ ŜU (E)). However,
on the basis of (2) we have that (E ∩ Ŝ) ⊂
(E′ ∩ Ŝ), contradicting the hypothesis that
(E ∩ Ŝ) ∈ FPAF(ŜU (E), (ŜP (E) ∪ ŜU (E))).
¤

6 Grounded semantics

The grounded semantics, originally intro-
duced by Pollock [5], is probably the most
representative proposal in the context of the
unique-status approach. To relate grounded
semantics with Dung’s framework, a defini-
tion in terms of fixpoint of a so-called charac-
teristic function is provided in [4]. We extend
it to our generalized framework by introduc-
ing the notion of characteristic function in a
set C against a set A:

Definition 12 With reference to an argu-
mentation framework AF = 〈A,→〉 and two
sets of arguments C, A ⊆ A, the characteris-
tic function of AF in C against A, denoted as
FAF,C,A, is defined as follows:

FAF,C,A : 2C → 2C

FAF,C,A(S) = {α | α ∈ C,

α acceptable against A with respect to S}

It is easy to see that FAF,C,A is monotonic
(with respect to set inclusion). The grounded
extension is then the least fixed point of this
function.

Definition 13 Given an argumentation
framework AF = 〈A,→〉 and two sets
C, A ⊆ A, the grounded extension of AF in
C against A, denoted as GEAF(C,A), is the
least fixed point (with respect to set inclusion)
of FAF,C,A.

Notice that, by definition, GEAF(C, A) ⊆ C.
The original definition (Def. 20 of [4]) is re-
covered by letting C = A = A, the grounded
extension in this case will be denoted as
GEAF.

Also the existence of the grounded extension
is guaranteed (proof is omitted).

Lemma 5 For any argumentation framework
AF = 〈A,→〉 and for all sets C, A ⊆ A,
GEAF(C, A) exists and is unique.

The following result, concerning the relation-
ship between grounded and complete exten-
sions, will be exploited to complete our anal-
ysis (proof is omitted).



Proposition 4 Let us consider an argumen-
tation framework AF = 〈A,→〉, and two sets
of arguments C,A ⊆ A. If C ⊆ A, then
GEAF(C,A) is the least (with respect to set
inclusion) complete extension in C against A.

We are now in a position to apply our decom-
position scheme also to grounded semantics.

Proposition 5 Given an argumentation
framework AF = 〈A,→〉, let us consider a
set of arguments E ⊆ A. Then, E = GEAF

if and only if ∀S ∈ SCC(AF) (E ∩ S) =
GEAF(SU (E), (SP (E) ∪ SU (E))).

Proof. As to the first part of the proof,
suppose that E = GEAF. By Proposition 4,
E is a complete extension, thus Proposition
2 entails that ∀S ∈ SCC(AF), (E ∩ S) ∈
CEAF(SU (E), (SP (E)∪SU (E))). Taking into
account Proposition 4, we have to prove that
∀S ∈ SCC(AF) (E ∩ S) is the least complete
extension in SU (E) against (SP (E)∪SU (E)).
We reason by contradiction, supposing that
there is at least one SCC where the thesis is
not verified. In particular, since the SCCs of
AF make up an acyclic graph, we can choose
Ŝ ∈ SCC(AF) such that:
i) ∀S ∈ SCC(AF) such that S is an-
tecedent to Ŝ in the graph of the SCCs,
(E ∩ S) = GEAF(SU (E), (SP (E) ∪ SU (E)));
ii) ∃Ê ⊂ (E∩Ŝ), Ê = GEAF(ŜU (E), (ŜP (E)∪
ŜU (E))).
Note that in case Ŝ is initial, the first
condition is trivially verified. Moreover,
the second condition follows from the fact
that, on the basis of Lemma 5, the grounded
extension in ŜU (E) against (ŜP (E)∪ ŜU (E))
must exist, and according to Proposition
4 it is included in all the elements of
CEAF(SU (E), (SP (E) ∪ SU (E))).
Now, taking again into account that the
SCCs of AF make up an acyclic graph, it is
easy to see that it is possible to construct a
set E′ such that:
i) ∀S ∈ SCC(AF) such that S is antecedent to
Ŝ in the graph of the SCCs, (E′∩S) = (E∩S);
ii) (E′ ∩ Ŝ) = Ê;
iii) ∀S ∈ SCC(AF) (E′ ∩ S) =
GEAF(SU (E′), (SP (E′) ∪ SU (E′))).
In fact, it is possible to construct a set E′∗

satisfying the first two conditions. Thus, for
any SCC S which either precedes Ŝ or is equal
to Ŝ, it turns out that SU (E′∗) = SU (E) and
SP (E′∗) = SP (E): as a consequence, taking
into account the properties of E and Ê stated
above, E′∗ satisfies the third condition relevant
to all such SCCs. Now, E′ can be obtained
constructively starting from E′∗ by proceeding
along the other SCCs of the defeat graph,
taking into account that ∀S ∈ SCC(AF)
GEAF(SU (E′), (SP (E′) ∪ SU (E′))) always
exists by Lemma 5.
Now, by Proposition 4, ∀S ∈ SCC(AF) (E′ ∩
S) ∈ CEAF(SU (E′), (SP (E′) ∪ SU (E′))). As
a consequence, on the basis of Proposition
2, E′ is a complete extension, while since
(E′ ∩ Ŝ) = Ê ⊂ (E ∩ Ŝ) it is not true that
E ⊆ E′. However, this contradicts the hy-
pothesis that E is the grounded extension of
AF, and as such the least complete extension
of AF (see Proposition 4).
As to the other direction of the proof,
suppose that ∀S ∈ SCC(AF) (E ∩ S) =
GEAF(SU (E), (SP (E) ∪ SU (E))).
By Proposition 4 and Proposition 2, E is a
complete extension of AF, therefore we have
only to prove that it is the least complete
extension (see Proposition 4). We reason by
contradiction, assuming that the grounded
extension E′, which is a complete extension
by Proposition 4, is strictly included in E.
Thus, there must be at least a SCC S such
that (E′ ∩S) ⊂ (E ∩S): since the SCCs form
an acyclic graph, there is a SCC Ŝ such that:

∀S ∈ sccparents(Ŝ) (E′ ∩ S) = (E ∩ S) (3)

(E′ ∩ Ŝ) ⊂ (E ∩ Ŝ) (4)

Moreover, on the basis of Proposition 2 ap-
plied to Ŝ it must be the case that (E′ ∩
Ŝ) ∈ CEAF(ŜU (E′), (ŜP (E′)∪ ŜU (E′))). Tak-
ing into account (3), it is easy to see that
ŜU (E′) = ŜU (E) and ŜP (E′) = ŜP (E),
therefore (E′ ∩ Ŝ) ∈ CEAF(ŜU (E), (ŜP (E) ∪
ŜU (E))). However, according to (4) we have
that (E′ ∩ Ŝ) is strictly included in (E ∩ Ŝ),
contradicting the hypothesis that (E ∩ Ŝ) =
GEAF(ŜU (E), (ŜP (E) ∪ ŜU (E))) and there-
fore, on the basis of Proposition 4, that (E ∩
Ŝ) is the least complete extension in ŜU (E)
against (ŜP (E) ∪ ŜU (E)). ¤



7 Conclusions

We have shown that the notion of exten-
sion introduced in various argumentation ap-
proaches, such as [4, 5, 6, 7], can be equiv-
alently defined in terms of the union of sets
corresponding to a specialized notion of the
same extension at the level of strongly con-
nected components. As to our knowledge, the
use of SCCs to define the extensions has only
been considered in [3], where, however, the
direction of graph edges is not taken into ac-
count, thus limiting the results to the case
of totally unrelated subgraphs. In [2] recur-
sion is applied at the level of the argument
structure rather than at the level of the de-
feat graph; clearly, these levels are completely
independent. Our result can be useful for the
development of efficient algorithms based on
a principle of local computation. In partic-
ular, known algorithms for the computation
of preferred extensions [3] are based on back-
tracking at the graph level, therefore it can
be reasonably expected that a significant re-
duction of the search space can be achieved.
Similarly, this result can be useful to the study
of incremental algorithms, in the usual case
where the defeat graph dynamically evolves.
More importantly, it is particularly significant
that the semantics introduced in [1] has been
directly defined in terms of SCCs. In particu-
lar, it simply relies on the notion of maximal
conflict free sets, at the level of SCCs, to con-
strain the prescribed extensions:

Definition 14 Given an argumentation
framework AF = 〈A,→〉, a set E ⊆ A is
an extension, denoted as E ∈ FM(AF), iff
∀S ∈ SCC(AF)

S ∩ E





∈ FI(AF↓(SP (E)∪SU (E)))
if |SCC(AF↓(SP (E)∪SU (E)))| = 1

∈ FM(AF↓(SP (E)∪SU (E)))
otherwise

where FI(AF) denotes the set of maximal
conflict-free sets of AF, and AF↓S denotes
the restriction of AF to its subset S. Due
to space limitations, the reader is referred to
[1] for a detailed discussion of this novel se-
mantics, which exhibits the desired behav-

ior in several problematic examples where
other semantics provide counterintuitive re-
sults. In particular, while maintaining the
same capability of discriminating floating ar-
guments as preferred semantics, it correctly
deals with odd-length cycles as grounded se-
mantics: it builds on intuitions coming from
both grounded and preferred semantics, com-
bining the advantages of both of them. As
a consequence, it is reasonable to conjecture
that further investigations on argumentation
semantics centered on the notion of strongly
connected components will give significant re-
sults and insights concerning foundations of
argumentation theory.
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