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Abstract. In the context of Dung’s abstract framework for argumen-
tation, two main semantics have been considered to assign a defeat sta-
tus to arguments: the grounded semantics and the preferred semantics.
While the two semantics agree in most situations, there are cases where
the preferred semantics appears to be more powerful. However, we no-
tice that the preferred semantics gives rise to counterintuitive results in
some other cases, related to the presence of odd-length cycles in the at-
tack relation between arguments. To solve these problems, we propose a
new semantics which preserves the desirable properties of the preferred
semantics, while correctly dealing with odd-length cycles. We check the
behavior of the proposed semantics in a number of examples and discuss
its relationships with both grounded and preferred semantics.

1 Introduction

Argumentation theory is a framework for practical and uncertain reasoning
which has received a great deal of attention in several application areas, such
as the realization of intelligent autonomous agents [1], automated negotiation
in multi-agent systems [2] and defeasible reasoning [3]. In a nutshell, common-
sense reasoning dealing with incomplete and uncertain information is modeled
as the process of constructing and comparing arguments for propositions. The
construction of arguments proceeds, from a given set of premises, by chaining
rules of inference which may represent just provisional reasons for their con-
clusions. Due to the uncertainty affecting both premises and rules of inference,
it may well be the case that different arguments support contradictory con-
clusions, therefore the core problem consists in computing the defeat status of
the arguments, namely in determining which ones of them emerge undefeated
from conflict: their conclusions are the most credible ones and are considered as
justified, while other arguments, being defeated in the conflict, are rejected.

In order to analyze and compare different kinds of semantics underlying the
defeat status computation, Dung [4] has proposed an abstract framework where
arguments are simply conceived as the elements of a set, whose origin is not
specified, and the interaction between them is represented by a binary relation
of attack: this way, the current set of arguments can be represented by means of



a directed graph, called defeat graph in [1]. Thus, an argumentation semantics
can be introduced in a declarative way by defining what arguments are justified
within a generic defeat graph. As pointed out in [5], this definition can follow two
alternative approaches, namely a unique-status approach or a multiple-status
approach. In the first approach, the defeat status of the arguments is defined
in such a way that there is always exactly one possible way to assign them a
status. This approach is adopted e.g. in the argumentation system introduced
in [1], and is represented by the grounded semantics in Dung’s framework. On
the other hand, in a multiple-status approach several extensions are identified.
Roughly, an extension is a set of arguments which do not conflict among them
and which attack their attackers. An argument is considered as justified if it
belongs to all extensions. This is the approach adopted e.g. in [6,7,3], and in
Dung’s framework is captured by the preferred semantics.

It has been proved in [4] that the preferred semantics “agrees” with the
grounded semantics in those arguments that the latter considers as definitely
justified or rejected. On the other hand, the preferred semantics appears to
be more powerful with respect to the grounded semantics, in that it is some-
times able to discriminate some of the arguments that are left undecided by the
grounded semantics [8].

After recalling concepts and definitions about argumentation semantics in
Sect. 2, we point out in Sect. 3 that the preferred semantics improperly deals
with odd-length cycles in the defeat graph and we identify some examples where
this limitation gives rise to counter-intuitive defeat status assignments. To solve
these problems, we propose in Sect. 4 a new semantics which preserves the
desirable properties of the preferred semantics, while correctly dealing with odd-
length cycles. In Sect. 5, the relationships with grounded and preferred semantics
are investigated. Finally, Sect. 6 concludes the paper.

2 The Grounded and Preferred Semantics

In the abstract framework proposed by Dung [4], the primitive notion is that of
argumentation framework:

Definition 1. An argumentation framework is a pair AF =< A, —>, where A
is a set of arguments and — is a binary relation of ‘attack’ between them.

It should be noticed that this definition is generic with respect to the interpre-
tation of A, which is not specified. In any case, we assume A to be finite, as it
is necessarily the case when considering a real reasoner.

In the following, nodes that attack a given a € A are called defeaters of a,
and form a set denoted as parents(a). If parents(a) = ), then « is called an
initial node. Following Pollock [1] we define the grounded semantics inductively
(an alternative fixed-point definition is given and shown to be equivalent in [4]):



Definition 2. Given an argumentation framework AF =< A, —>, we define
for all i > 0 the sets A; C A as follows:

a4 =14 ifi=0
Y {a€eA|ABEeAir B a) ifi>0

Definition 3. Given an argumentation framework AF =< A, —>, the set of
undefeated, defeated and provisionally defeated arguments are respectively de-
fined as follows:

— Ug(AF)={aeA|TIm:Vi>m a e A}
— Dg(AF)={a€eA|Im:Vi>m a g A;}
-~ PgAF)={acA|YmIi>m:ac inTj>m:ad Aj}

The idea is that an undefeated argument should be believed given the cur-
rent set of arguments A, a defeated argument should not be believed, while a
provisionally defeated argument is controversial, thus it should not be believed
but it should retain the potential to prevent other arguments to be justified.
This is shown in the following examples.

Ezample 1. With reference to the argumentation framework AF; shown in Fig.
1, it is easy to see that « belongs to A; for all ¢ > 0, since it has no defeaters,
therefore « is undefeated. As a consequence, Vi > 1 8 ¢ A;, therefore g is
defeated. This entails in turn that Vi > 2, v € A;, therefore 7 is undefeated.

Example 2. With reference to the argumentation framework AF, of Fig. 1, it is
easy to see that, for all & > 0, both a and S belong to Az, but don’t belong
to Aag41, therefore they are provisionally defeated. This alternation of levels is
inherited by 7, which turns out to be provisionally defeated as well.
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Fig. 1. Two different chains

In the context of the preferred semantics, the notion of ‘defence’ is introduced
by the following definitions:

Definition 4. Given an arqgumentation framework AF =< A, —»>, a set S C A
is conflict-free if and only if Aa,B € S such that a — (.

Definition 5. Given an arqgumentation framework AF =< A, —»>, a set S C A
is admissible if and only if S is conflict-free and Vo € S, if 3B € A such that
B — a then 3y € S such that v — (.



Accordingly, a preferred extension is defined as a maximal set which is able
to defend all its elements:

Definition 6. Given an argumentation framework AF =< A, —>, a preferred
extension of AF is a mazimal (with respect to set inclusion) admissible set S C
A. The set of preferred extensions will be denoted as FP(AF).

As shown in [4], FP(AF) is never empty, though there are cases where
FP(AF) = {0}, e.g. FP(AF5) in Example 4 below. Also in this semantics three
sets of arguments are identified: undefeated arguments belong to all extensions,
defeated arguments to none, while provisionally defeated only to some of them.

Definition 7. Given an argqumentation framework AF =< A,—>, we define
the following three sets, forming a partition of A:

— Up(AF) ={a € A|VP € FP(AF) a € P}
— Dp(AF) = {a € A| VP € FP(AF) a & P}
— P'])(AF):{QE.A|E|P1,P2EfP(AF):OéEPl/\agpg}

Turning to Example 1 and Example 2, it is easy to see that the preferred
semantics gives the same outcome as the grounded semantics, since we have
that FP(AF:) = {{a,v}}, while FP(AF,) = {{a,7},{F}}. The relation be-
tween grounded and preferred semantics has been analyzed in [4]: in a nutshell,
the grounded semantics is more cautious than preferred semantics, since for
all argumentation frameworks it turns out that all the arguments undefeated
and defeated according to the grounded semantics have the same status in the
preferred semantics. On the other hand, there may be arguments provisionally
defeated in the grounded semantics which are defeated or undefeated in the
preferred semantics, as in the case of floating arguments [5] exemplified below.

Example 8. With reference to the argumentation framework AF3 shown in Fig.
2, it is easy to see that, according to the grounded semantics, all arguments
are provisionally defeated. On the other hand, it turns out that FP(AF3) =
{{«a,d},{5,0}}, therefore we have that Pp(AF3) = {a, 8}, Dp(AF3) = {7} and
Up(AF,) = {5}.

In the example above, every preferred extension includes an argument, which
attacks «y, while no argument attacking v belongs to all extensions: this is a case
of ‘floating defeat’, as it has been called in [8], which determines in turn the
‘floating acceptance’ of §. The inability to discriminate floating arguments is not
a specific disadvantage of grounded semantics, since Schlechta has proved in [9]
that it affects any possible single-status approach.

3 0Odd-length Cycles: a Problem in Preferred Semantics

According to the definitions presented in the previous section, if the nodes of a
defeat graph are arranged in a cycle of attack relationships, then they are not
justified (i.e. they are provisionally defeated) according to both the grounded
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Fig. 2. Argumentation framework with a floating argument

and preferred semantics. This seems to be the intuitively right result, since all
arguments in a cycle should be treated equally for obvious symmetry reasons and
considering them all justified would yield a contradiction. However this result
is obtained in rather different ways in the two semantics. In the context of the
grounded semantics, all arguments forming a cycle simply turn out to belong to
Aj; if i is even and not to belong to A; if ¢ is odd (see Definitions 2 and 3).

On the other hand, the preferred semantics features a sort of asymmetry,
since it treats odd-length cycles differently from the even-length ones.

Example 4. Considering the argumentation framework AF, of Fig. 3, we have
that FP(AF4) = {{a},{5}}, therefore both arguments belong to Pp(AFy).
With reference to the argumentation framework AF5, Definition 6 identifies the
empty set as the unique preferred extension, therefore all the arguments belong
to Dp(AF5). More generally, with odd-length cycles there is a unique empty
extension, while with even-length cycles non-empty extensions exist but their
intersection is empty.

AF, AF,

Fig. 3. Even-length and odd-length cycles

The peculiar way to assign a defeat status to odd-length cycles has recently
been indicated as “puzzling” by Pollock [10]. As to our knowledge, however, this
difference has been considered a mere question of symmetry and elegance in
previous literature. We show in the following example that the different treat-
ment of odd-length cycles is a real problem since it gives rise to counter-intuitive
results.

Example 5. Considering the argumentation framework AFg shown in Fig. 4, it
turns out that FP(AFg) = {{a,d}}, therefore a and ¢ are justified according



to the preferred semantics. By replacing the cycle («, 8,v) with a two-length
cycle, we obtain the argumentation framework AF; whose arguments all belong
to Pp(AF7) (and a similar result is obtained with any other even-length cycle).

In the example above @ and é emerge (unreasonably) undefeated, while all
nodes would be provisionally defeated with a similar graph encompassing an
even-length cycle. It does not seem acceptable that different results in concep-
tually similar situations depend on the cycle length: symmetry reasons suggest
that all cycles should be treated equally. The difference arises because an odd-
length cycle has no extensions besides the empty one: as a consequence, there is
no extension where ¢ is out and « is in (such an extension would instead exist
with an even-length cycle). Since § defeats 7, in this context also a survives.
Notice that a similar situation arises by replacing the three-length cycles with
any odd-length cycle: in a sense, odd-length cycles are in this case ‘weaker’ than
even-length cycles, since they are not able to prevent d from being justified. The
opposite happens in the following example:

Example 6. With reference to the argumentation framework AFg shown in Fig.
4, it turns out that FP(AFs) = {{d2}}, therefore d, is undefeated while all the
other arguments are not justified. On the other hand, by replacing the three-
length cycle with an even-length cycle, we obtain an argumentation framework
whose arguments are all provisionally defeated.

Fig. 4. Two problematic argumentation frameworks for preferred semantics

In the example above, the absence of non-empty extensions for the three-
length cycle prevents the existence of extensions including 41, leaving d2 as the
only accepted argument, while this would not happen with an even-length cycle.
Notice that in this case odd-length cycles are ‘stronger’ than even-length cycles,
since the status of d; is the same as if it would be attacked by an initial node. In
summary, we notice that besides being treated differently with respect to even-
length cycles, odd-length cycles exhibit anomalous behaviors: they change their
capability of defeating other arguments depending on the topology of the defeat
graph.



4 Exploiting the Notion of Maximal Conflict-free Set

The analysis carried out in previous sections shows that neither the grounded
nor the preferred semantics are completely satisfactory and suggests the follow-
ing requirements for the study of an improved semantics, able to preserve the
advantages of both of them:

— it should discriminate floating arguments as the preferred semantics;

— it should handle odd-length cycles in the same way as even-length cycles, as
the grounded semantics;

— it should correctly handle the problematic examples shown above;

— it should not be more skeptical than the grounded semantics, in particular, it
should agree with it upon the status of undefeated and defeated arguments.

On the basis of the results provided by Schlechta [9], mentioned in Sect. 2,
the first requirement can only be satisfied by a multiple-status approach. Thus,
to satisfy the second requirement we look for a new notion of extension, able
to remove the anomalous treatment of odd-length cycles. After identifying our
candidate definition, we will check its properties concerning third and fourth
requirement. To figure out a proper notion of extension, let us consider again
Example 4, in which we have recognized as anomalous the fact that AF5 admits
the empty set as its unique extension. In order to reconcile the treatments of AF,
and AF5, we can look for the set £ of non-empty extensions that can be admitted
for AF5. First of all, we cannot tolerate contradictions in any extension, therefore
each extension has to include one node exactly. Moreover, all nodes should be
treated equally, therefore the only possibility for £ is the set {{a}, {8}, {7}} We
notice that £ is made up of all conflict-free sets of AF5 that are maximal, and
this suggests to exploit this notion as a basis for a new definition of extension.

Definition 8. Given an argumentation framework AF =< A, —>, we denote as
FI(AF) the set made up of the mazimal (with respect to set inclusion) conflict-
free subsets of A.

The above intuition is confirmed by the fact that, by defining the set of
justified arguments as the intersection of all maximal conflict-free sets, the prob-
lematic examples of the above section are handled correctly. In particular, with
reference to the argumentation framework AFg of Example 5, we have that
FI(AFs) = {{a,0},{7},{B,d}}, therefore all the arguments are provisionally
defeated, as prescribed by the grounded semantics.

Notice that Definition 8 is strictly weaker than Definition 6, since the absence
of conflicts is one of the conditions for admissibility. Actually, while this brings
about a correct handling of Example 4 and Example 5, it does not represent a
satisfactory solution, since due to the increased number of extensions, it would
tend to assign the status of provisionally defeated to a large number of argu-
ments (often all of them): this happens, for instance, even for the argumentation
framework AF; of Example 1, where we have that FZ(AF,) = {{a,~},{8}}.
Notice that, in this case, the requirement of admissibility would have excluded,



among the elements of FZ(AF,), the set {4}, yielding the intuitively correct
result. Thus, we are lead to add some further condition to the Definition 8, in
order to capture only a subset of the maximal conflict-free sets. In order to do
this, we draw inspiration from the way the defeat status can be computed ac-
cording to the grounded semantics. Considering again Example 1 as a simple
reference, basically, computation proceeds from the frontier of the defeat graph
towards the inside: the initial node « is assigned the status of undefeated, caus-
ing 3, which is attacked by «, to be assigned the status of defeated, and this
in turn causes v, whose unique defeater g is defeated, to be assigned the status
of undefeated. Thus, the set {f} is rejected in this computation schema, which
is therefore a promising candidate as a way to identify the extensions among
maximal conflict-free sets.

In order to refine this intuition, let us consider again Example 3: according
to the first requirement stated above, our approach should capture exactly the
preferred extensions Py = {a,d} and P, = {8, d}. Starting from the frontier of
the graph, the construction of these extensions might proceed according to the
following steps:

1. Consider the subgraph involving {«, £}, and identify the relevant maximal
conflict-free sets Py = {a} and P, = {B};

2. Consider then node « for possible additions to the sets identified in the
previous step: notice that P; includes the defeater a of v, therefore v cannot
be added to P;. For the same reason, v cannot be added to P, as well;

3. Cousider node §: it can be added to P; obtaining the extension P, since its
unique defeater + has not be added to P;. In the same way, we obtain P as
P, U {d}.

Notice that, in steps 1-3, we have considered the strongly connected components
of the defeat graph, i.e. {a, 8}, {7} and {d}, respectively. In a sense, we have
generalized the defeat status computation prescribed by the grounded semantics,
by considering strongly connected components instead of single nodes. In partic-
ular, the extensions have been constructed by completing maximal conflict-free
sets in an incremental way, starting from the frontier of the graph and proceed-
ing towards the interior. In order to proceed with this analysis in more formal
terms, let us introduce the following definitions.

Definition 9. Given an argumentation framework AF =< A, —>, two nodes
a, 8 € A are path-equivalent iff either a = 8 or there is a path from « to 8 and
a path from 8 to a. The strongly connected components of AF are the equivalence
classes of vertices under the relation of path-equivalence. The set of the strongly
connected components of AF is denoted as SCC(AF).

Definition 10. Given an argumentation framework AF =< A, —»> and a strongly
connected component S € SCC(AF), parents(S) = {P € SCC(AF) | P # S A
Ja€ P, €S :a— B}, and parents*(S) ={a € A|ag SAIFE€S:a— f}.

Definition 11. Let AF =< A, —»> be an argumentation framework, and let S

be a set S C A. The restriction of AF to S is the argumentation framework
AFls =< S5,—-N(S x S) >.



Let SG be the graph obtained by considering strongly connected compo-
nents as single nodes, i.e. SG =< SCC(AF),R* > where (S;,S;) € R* iff
S; € parents(S;). It is easy to see that SG is acyclic: this justifies the idea
of computing a particular extension E from the frontier towards the inside of
the defeat graph. Basically, we start from the strongly connected components
S; that are initial in SG, including in E a maximal conflict-free set of AF g,
for each S;. Then, we proceed by considering an S € SCC(AF) such that every
P € parents(S) is initial. Of course, E should not include those nodes of S that
are attacked by nodes previously included in E. The question is how to proceed
with the set SU made up of the other nodes of S. If there is just a single node
in SY, the indications provided by Example 1 suggest to include it in E. If, on
the other hand, |SY| > 1, a tentative solution would be to include in E a maxi-
mal independent set of SU. However, a simple example reveals that this option
does not constrain enough the set of the extensions that can be identified from
maximal conflict-free sets.

Example 7. Considering the argumentation framework AFy shown Fig. 5, we
have that SCC(AFy) = {S1, 52}, where S1 = {a} and Sy = {81, 82, 83, 84}. S1 is
initial, and its unique maximal conflict-free set is {a} itself. This in turn excludes
By from all the extensions, leading to select a maximal conflict-free set of the
subgraph AFglg,\(3,}- It turns out that FZ(AFglg,\(5,1) = {{B2, B4}, {B3}},
therefore we get the two extensions Ey = {a, 2, 84} and E» = {a, f3}, yielding «
undefeated, 3, defeated and (2, 33, 84 provisionally defeated. However, in order
to get the same outcome as the grounded (and preferred) semantics, only E
should be identified as an extension, while E5 should be excluded.

Fig. 5. An example supporting a recursive definition of extensions

In order to overcome this difficulty, in the example above S \ {#1} should
be treated in the same way as an ordinary graph, i.e. proceeding again from the
frontier towards the inside. This suggests the alternative option that we choose,
i.e. to define extensions recursively.

Definition 12. Given an argumentation framework AF =< A, —>, a set E C
A and a strongly connected component S € SCC(AF), we define:

— SP(E) ={a € S |33 € parents*(S): B € EAB — a}
- SY(E) =S\ SP(E)



In our proposal, the set of extensions, denoted as FM(AF), is defined as
follows:

Definition 13. Given an argumentation framework AF =< A, —> and a set
E C A, we have that E € FM(AF) iff VS € SCC(AF)

1. SP(E)NnE =0; and
U € fI(AF,LsU(E)) if |SCC(AFJ,5U(E))| =1
2 SUE)NE { € FM(AF|sv(g)) otherwise

Following the usual multiple-status approach, the defeat status of arguments
is identified by the sets Up((AF), Do (AF), PA(AF), defined as in Definition 7
with reference to F M(AF) instead of FP(AF). In order to better understand
Definition 13, let us show that, differently from the preferred semantics, it gives
the right outcome to Example 6.

Ezample 8. We have that SCC(AFg) = {S1, S2}, where S1 = {a, 5,7} and S; =
{61, 62}. Taking into account Definition 12 and the fact that parents(S;) = @, for
any E SP(E) = ( and SY(E) = S;. Thus, from Definition 13 a generic extension
E must satisfy (S1NE) € FL(AFslsv(p)), ie. (S1NE) € {{a},{B},{7}}.In case
(S NE) = {a}, taking into account that parents*(Sy) = {7} we get SP(E) =0
and (S2 N E) € {{d1},{02}}: thus, we identify the extensions E; = {a,d1}
and E> = {a,d2}. Reasoning in a similar way in the case (S; N E) = {§},
we identify the extensions E3 = {3,601} and Ey = {f,02}. Finally, if (S1 N
E) = {7} then SP(E) = {6}, entailing by the first point of Definition 13 that
81 ¢ E. Moreover, SY(E) = {6}, yielding d2 € E and thus identifying the
extension E5 = {7, 02}. In sum, FM(AFs) = {E;, Eo, E3, E4, E5}, therefore all
the arguments are provisionally defeated.

It can be seen that all other examples considered above are handled correctly
by the proposed semantics. In particular, in the argumentation frameworks AF,
AF,, AF; and AFg where preferred and grounded semantics agree, our semantics
gives the same results (FM() = FP() in all cases). Also in the argumentation
framework AF; FM(AF3) = FP(AF3), therefore our semantics correctly agrees
with preferred semantics. Finally, FM(AFg) = {{«,0},{8,6},{7}}, therefore
our semantics agrees with grounded semantics as desired.

5 Relationships with Grounded and Preferred Semantics

After having validated our proposal by means of examples, in this section we
show that it maintains some relationships with both the grounded and preferred
semantics. First, we consider the fourth requirement stated in previous section,
i.e. the agreement with the grounded semantics upon the status of undefeated
and defeated arguments (proofs are not given due to space limitations). This
result relies on two properties of the grounded semantics, which relate the de-
feat status assignment prescribed by the grounded semantics to the strongly
connected components of the defeat graph. In particular, the first considers a



non-trivial strongly connected component whose external attackers (if any) are
all defeated or provisionally defeated, establishing that, in this case, all of its
nodes are provisionally defeated.

Proposition 1. Given AF =< A, —>, let S € SCC(AF) be such that |S| > 1
and Y~y € parents*(S) v € (Dg(AF) UPg(AF)). Then, S C Pg(AF).

The subsequent property introduces two subsets related to SP(F) and SY(E)
in Definition 12, and establishes some relationships between the status assigned
by the grounded semantics to their nodes and the constraints on E stated in
Definition 12.

Proposition 2. Let us consider AF =< A, —> and S € SCC(AF). Let SP C S
be a subset of S such that

1. SP D> {a € S| 3B € parents*(S), 3 — o, 3 € Ug(AF)}; and
2. 8P C {a € S| 3B € parents*(S), B — «a, 8 € (Ug(AF) U Pg(AF))}

and let SY = S\ SP. Then, we have that Va € SP a € (Dg(AF) U Pg(AF)),
and Vy € SY:

— if v € Ug(AF), then v € Ug(AF|suv);
— if v € Dg(AF), then v € Dg(AF|sv);

The following theorem, exploiting the above properties, proves the agreement
with grounded semantics upon the status of defeated and undefeated arguments.

Theorem 1. Given AF =< A, —>, we have that VE € FM(AF) Ug(AF) C
EADg(AF) C (A\ E).

Proof (Sketch). Referring to Definition 13, we consider a generic E € F M (AF),
and we assume recursively that, VS; € SCC(AF),

Then, reasoning by induction on the strongly connected components of AF, we
prove that Ug(AF) C E and that Dg(AF) C (A4\ E). In particular, Proposition
1 is exploited to show that, if [SCC(AF]gv(g))| = 1, then all the nodes of
SY(E) are provisionally defeated, so that there is nothing to prove for them
(this happens for instance for initial strongly connected components). On the
other hand, the main roles of Proposition 2 concern the first point of Definition
13 and the case [SCC(AF|gv(g))| > 1, where it is exploited to prove that if
SY(E)NE € FM(AF | gv(p)), then the claim is satisfied for nodes of SY(E).

As far as preferred semantics is concerned, given a generic AF =< A, »>
it is possible to prove that any preferred extension is included in one of our
extensions, i.e. VP € FP(AF) 3E € FM(AF) : P C E. This, in turn, entails
that preferred semantics agrees upon the status of arguments that are defeated
according to ours.



6 Conclusions

In this paper, we have proposed a novel argumentation semantics that, while
maintaining the same capability of discriminating floating arguments as preferred
semantics, correctly deals with the semantic problems arising from odd-length
cycles and satisfies a set of requirements intuitively appealing. The symmetry
assumptions that underly our work are related to an interpretation of argumen-
tation as a framework for defeasible reasoning, following e.g. [1], while in other
approaches that consider argumentation as a branch of dialogue [11] it may be
the case that a different treatment of odd and even-length cycles is appropriate.

Our proposal builds on intuitions coming from both grounded and preferred
semantics and, in a sense, combines the advantages of both of them, agreeing in
several problematic examples with that among the two semantics which is closer
to intuition. As for future work, we will investigate the relationship between our
semantics and the notions of attack and defence lying at the heart of preferred
semantics.
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