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Abstract

Over the last decennia, many systems for formal argumentation have been defined. The
problem, however, is that these systems do not always satisfy reasonable properties. In this
paper, we focus on the particular property that a conflict between two arguments cannot keep
other unrelated arguments from becoming justified. Although this property appears obvious,
it is in fact violated by several existing argumentation formalisms. In this paper we examine
what exactly goes wrong and how things can be improved.

1 Introduction
Argumentation has become an Artificial Intelligence keyword for the last fifteen years, es-
pecially in sub-fields such as nonmonotonic reasoning, inconsistency-tolerant reasoning,
multiple-source information systems, natural language processing and human-machine in-
terface also in connection with multi-agents systems [1, 10, 11, 5].

One of the most abstract argumentation systems is Dung’s one. It has been shown that
several formalisms for nonmonotonic reasoning can be expressed in terms of this argumen-
tation system [3]. Since its original formulation, Dung’s system has become very popular
and different instantiations of it have been defined. This may have caused some to believe
that defining an argumentation formalism is simply a matter of defining how arguments and
their defeat relation can be constructed from a knowledge base. Unfortunately, things are
not that simple. Several systems that apply Dung’s standard semantics, such as [10, 6] (and
even systems that do not, like [4]) can lead to very unintuitive results, as described in [2].

In order to avoid such anomalies, the aim of this paper is twofold: on the one hand,
like in the field of belief revision where the well-known AGM-postulates serve as general
properties a system for belief revision should fulfill, we are interested in defining some prin-
ciples (also called quality postulates or axioms) that any argumentation system should fulfill.
These postulates will govern the well-definition of an argumentation system and will ensure
the correctness of its results. In a previous paper [2] the postulates consistency and closeness
have been treated, and it was shown that these are violated by several existing argumentation
formalisms [10, 6, 4]. In the current paper, we focus on the postulate of non-contamination.
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Non-contamination basically means that two arguments that rebut each-other cannot be com-
bined into an argument that keeps any arbitrary argument from becoming justified. This pos-
tulate is especially problematic when defeasible reasoning is combined with some kind of
classical logic. The fact that the postulate of non-contamination is currently not sufficiently
understood can be illustrated using Pollock’s New System [9]. This particular formalism
violates non-contamination, and the effects of this can be far-reaching, as is explained in
section 3.

This paper is structured as follows. First, in section 2, a reference argumentation for-
malism is described, in which some of the main problems of formal argumentation will be
illustrated. Then, in section 3, the problem of non-contamination is specified, and it is shown
how Pollock’s formalism violates this postulate and what the effects of this violation are. In
section 4, we provide a solution and prove that this solution complies with the quality aspects
stated earlier. The discussion is then rounded off with some concluding remarks in section 5.

2 The reference formalism
In this section we lay out a reference formalism in which arguments are composed by re-
peatedly applying strict and defeasible rules.

Definition 1 (argumentation theory). Let
�

be a logical language that is closed under
classical negation and �����	�	�	�
���
������� �

. An argumentation theory is a pair ��������� where
� is a set of strict rules of the form � � �	�	�	����� ��� � and � is a set of defeasible rules of
the form � � �	�	�	����� ��� � . A strict rule with an empty antecedent is called a premisse. A
defeasible rule with an empty antecedent is called an assumption.

Definition 2 (arguments). Let ��������� be an argumentation theory. The following are argu-
ments under this theory:

strict construction
if � � �	�	�	�
� � � ( !�"$# ) are arguments and there exists a strict rule%'&)(�* �+� � ���	�	�	��� %'&)(,* �+� � � � � then � � �	�	�	��� �-� � ( � ) is an argument with:

. %/&0(,* �+�1�324�
.6587'9;: * 7'<>=;?'@
A �+�1�32 587'9;: * 7'<>=;?'@
A �+� � �CBD�	�	�0B 587/9E: * 7'<'=E?'@
A �+� � �FBDGH� � �	�	�	�
��� ��� �JI
.$K
@>L><'=E?'@
A �+�M�32 KN@'L8<'=;?>@EA �+� � �FBO�	�	�HB K
@>L><'=E?'@
A �+� � �
.650='P
Q'9/R;A �+�1�32 50='P
Q>9SR;A �+�T�U�VBO�	�	�HB 50='P
Q'9/R;A �+���S�CBDG
�WI

defeasible construction
if �W�	�	�	�	�
� ��� ( !�"$# ) are arguments and there exists a defeasible rule%'&)(�* �+� � ���	�	�	��� %'&)(,* �+� � � � � then � � �	�	�	��� �-� � ( � ) is an argument with:

. %/&0(,* �+�1�324�
.6587'9;: * 7'<>=;?'@
A �+�1�32 587'9;: * 7'<>=;?'@
A �+� � �CBD�	�	�0B 587/9E: * 7'<'=E?'@
A �+� � �
.$K
@>L><'=E?'@
A �+�M�32 KN@'L8<'=;?>@EA �+� � �FBO�	�	�HB K
@>L><'=E?'@
A �+� � �CBDGH� � �	�	�	����� ��� �JI
.650='P
Q'9/R;A �+�1�32 50='P
Q>9SR;A �+� � �VBO�	�	�HB 50='P
Q'9/R;A �+� � �CBDG
�WI

We say that an argument � is strict iff KN@'L8<'=;?>@EA �+�1�X2ZY . An argument � is consistent
iff G %'&)(,* �+��[\��]^�_[`� 5H=/PNQ'9SR �+�M�aI does not contain a formula and its negation. Notice
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that we assume � to be coherent, that is, it is not possible to construct two strict arguments
with opposite conclusions. Furthermore, if b is a set of arguments, we define

%/&0(,* A ��b�� as
G %'&)(,* �+�1�J]0�c�dbXI .

In the definition of defeat, ef�	�	�hg stands for the objectivation operator, as introduced by
Pollock [8, 9], which translates a meta-level expression to an object-level expression (in our
case: an element of

�
). We also assume the presence of a syntactic function ikj � � �

such that i��l24� (if �dmonp� ) and i��l2on3� (otherwise).

Definition 3 (defeat). Let � and q be arguments.
. � rebuts q iff � has a conclusion � and q contains a defeasible rule with consequent ir� .
. � undercuts q iff � has a conclusion nTes� � �	�	�	����� ��� �^g and q contains a defeasible

rule �C�	�	�	�	�����
� � � .

� defeats q iff � rebuts or undercuts q .

In the following definition, the notion of defense is the same as the notion of acceptability in [3].

Definition 4 (defense / conflict-free). Let tvuwb .
. t defends an argument � iff each argument that defeats � is defeated by some argu-

ment in t .
. t is conflict-free iff there exist no �x� qy�Dt such that � defeats q .

Definition 5 (admissibility semantics). Let t be a conflict-free set of arguments and letz j'{H| � {H| be a function such that
z �}t3�32�G
�~]0� is defended by t�I .

. t is admissible iff tvu z �}t3� .
. t is a complete extension iff t�2 z �}t3� .
. t is a grounded extension iff t is the minimal (w.r.t. set-inclusion) complete extension.
. t is a preferred extension iff t is a maximal (w.r.t. set-inclusion) complete extension.
. t is a stable extension iff t is a preferred extension that defeats every argument in

b��)t .

In [2], two postulates were given that authors think should be satisfied in each formalism
for defeasible argumentation: consistency and closeness.

Postulate 1 (consistency). Let � be a set of formulas and b be a set of arguments.
. We say that � satisfies consistency iff there are no �������l� such that �v2~ir� .
. We say that b satisfies direct consistency iff

%'&)(�* A ��b�� satisfies consistency.

Postulate 2 (closeness). Let ���_����� be a defeasible theory, b a set of arguments under this
defeasible theory and � a set of formulas.

. We say that � satisfies closeness iff for each strict rule � � �	�	�	����� ��� � it holds that if
� � �	�	�	����� � �l� then also �6��� .

. We say that b satisfies closeness iff
%/&0(,* A ��b�� satisfies closeness.
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The desirability of direct consistency is obvious, and it is satisfied by every formalism
that we know of. The postulate of closeness is somewhat more subtle. The idea is, roughly,
that the conclusions of the argumentation formalism should be complete. If the argumenta-
tion formalism were to be implemented in the form of an automatic inference engine, then
the engine should be able to make all the inferences by its own and not leave part of the
reasoning to the user. In [2], it was observed that several argumentation formalisms (such
as [6, 10, 4]) violate closeness. Worse yet, when the user starts making the inferences that
appear to be missing, he may even entail inconsistencies simply by applying modus ponens
on strict (nondefeasible) rules. We refer to [2] for more information.

There exists, however, a relatively simple way in which both quality postulates can be
satisfied. The idea is roughly not to have strict rules directly provided by the knowledge-base
but instead be generated by classical entailment.

Definition 6. Let � be a set of propositional formulas. We define tJ���x� as
G � �o]H���d�-IJB�GH� � �	�	�	����� ��� ��])� � �	�	�	�
��� ��� �JI .

When strict rules are generated by classical entailment, like in Definition 6, both consis-
tency and closeness are satisfied, under the original definition of defeat (Definition 3).

Theorem 1. Let � be a set of propositional formulas and � be a set of defeasible rules.
Every complete extension of the argumentation theory �}tr���x������� satisfies consistency (Pos-
tulate 1) and closeness (Postulate 2).

Proof. This follows from Theorem 2 and Theorem 3 of [2].

3 The problem of contamination
Basing strict rules on classical entailment may satisfy consistency and closeness; it does,
however, also introduce a new kind of problem. Consider the following example.

Example 1 (John and Mary).
� 2 GHtp�'�S�/�f�N�a�H��� “John says sugar has been added.”

tp�'�S�/�s����n��H��� “Mary says sugar has not been added.”
tp�'�S�/�0���`���>�aI “The weather forecaster predicts rain today.”

� 2 GHtp�'�S�/�������
� � �;I “People usually tell the truth.”
Notice that the defeasible rule in � contains two free variables; it is ment to be read as all
possible instantiations. Now consider the following arguments:
J1: tp�'�N�'�f�N�a�0� � �
M1: t��>�N�'�s����n��0� � n��
JM: �3�0�a��� � n��
W1: t��>�N�'�0���`���>� � �
Now, it holds that �3� defeats ��� and �V� , ��� defeats ��� and �V� , and �V� defeats� � . This situation is graphically depicted in Figure 1. Now, if one for instance takes
grounded semantics, argument

� � is not justified (
� � is not in the grounded extension)

and conclusion � will hence not be considered justified. In this way, the conflict between
John and Mary over a cup of coffee keeps an intuitively totally unrelated argument from
becoming justified, which is clearly undesirable.
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J1

M1

JM W1

Figure 1: Arguments ��� and � � “contaminate” argument ¡¢� .

Before continuing with attempts to “solve” Example 1 it is useful first to examine what
it is that it violates. In essence, the example boils down to the fact that two arguments that
rebut each other can keep an arbitrary argument from becoming justified. It is like the two
conflicting arguments can “contaminate” an otherwise perfectly healthy argument.

Postulate 3 (non-contamination). It may not be the case that two arguments that rebut each
other can be combined into an argument that can keep any arbitrary other argument from
becoming justified.

It may be interesting to see how other formalisms for defeasible argumentation deal
with the issue of non-contamination. Pollock’s formalism, for instance, originally tried to
deal with the problem basically by ruling out self-defeating arguments, although Pollock
admitted that this approach has its difficulties [7, 8].

Another approach would be to change the semantics. An example of this is Reiter’s
default logic [12], which can also be given an argument-theoretic interpretation [3]. Default
logic approaches the problem of non-contamination by applying stable semantics. In Figure
1 this results in two extensions: G)�3�0� � �HI and G����0� � �HI . As both of these include

� � ,� � is justified under credulous as well as under sceptical stable semantics.
One important and well-known problem of stable semantics, however, is that the occur-

rence of odd defeat cycles may cause that no extensions exist. A simple example, which
includes a self-defeating argument (a defeat cycle of 1) is the following.

Example 2 (unreliable John).
Let �c2cGHtp�>�N�/�f�S��£;!F�8¤�¥��f�������¦£E!F�8¤
¥§������¨©nTestp�'�N�'���D���N� � �'g0I
and �ª2�GHtp�'�S�/�������
� � �EI .
Now consider the following arguments:
J1: tp�'�N�'�f�N��£E!F�8¤
¥§�f����� � £E!F�8¤�¥��f���
J2: ���0�
��£;!F�8¤�¥��f���r¨�nTest��>�N�'�f�N��£;!F�)¤
¥��f�V��� � £E!F�8¤
¥§�f���fg�� � nTestp�'�S�/�f�N��£E!F�8¤�¥��f����� � £;!F�)¤
¥��f�V�fg
Here, argument �C{ defeats itself and �3� . This situation is depicted in Figure 2. Under stable
semantics, no extension exists.

J1 J2

Figure 2: A self-defeating argument can cause no stable extensions to exist.
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Stable semantics has often been criticized for the possible non-existence of extensions.
A better alternative is sometimes seen in preferred semantics. It is not difficult to see why.
In Figure 1, for instance, preferred semantics yields the same two extensions as stable se-
mantics: G)�3�0� � �HI and G����0� � �HI . In Figure 2, preferred semantics yields exactly one
extension: the empty one.

At first, preferred semantics may appear to solve the problem of non-contamination. This
at least seems to be the approach of John Pollock, who made preferred semantics one of the
key ingredients of his revised formalism [9]. Unfortunately, preferred semantics in itself is
still not enough to satisfy non-contamination as a general property. This can be illustrated by
means of the following example, in which our two characters John and Mary are still arguing
over a cup of tea, but they now also both claim they are unreliable.

Example 3 (unreliable John and unreliable Mary).
Let �c2�GHt��>�N�'�f�N�a�0����tp�'�N�'�s����n��0���^tp�>�N�/�f�S��£;!F�8¤�¥��f��������tp�'�S�/�s����£E!F�8¤�¥��s�«�����3£E!F�8¤�¥�������¨
nTestp�'�S�/�������
� � �/g)��tp�'�N�'�0���-���8�aI and �~2�GHt��>�N�'���D���N� � �EI .
Now consider the following arguments:
J1: tp�'�N�'�f�N��£E!F�8¤
¥§�f����� � £E!F�8¤�¥��f���
J2: ���0�
��£;!F�8¤�¥��f���r¨�nTest��>�N�'�f�N��£;!F�)¤
¥��f�V��� � £E!F�8¤
¥§�f���fg�� � nTestp�'�S�/�f�N��£E!F�8¤�¥��f����� � £;!F�)¤
¥��f�V�fg
J3: �3�0�
��£E!F�8¤
¥§�f���J¨�nTestp�'�S�/�f�N�a�H� � ��g�� � nTestp�'�S�/�f�N�a�H� � ��g
J4: tp�'�N�'�f�N�a�0�
J5: �F¬ � �
M1: t��>�N�'�s����£E!F�8¤
¥§�s�«��� � £;!F�8¤�¥��s�c�
M2: ���0�
��£;!F�8¤�¥��s�c�J¨�nTestp�'�N�'�s����£E!F�8¤�¥��s�«��� � £;!F�)¤
¥��s�c�fg�� � nTestp�'�S�/�s�o��£;!F�8¤�¥��s�c��� � £E!F�8¤�¥��s�«�fg
M3: ���0�
��£E!F�8¤
¥§�s�«��¨�nWestp�>�N�/�s�o��n��0� � n3��g�� � nWestp�>�N�/�s�o��n��0� � n��
g
M4: t��>�N�'�s����n��0�
M5: ��¬ � n��
W1: t��>�N�'�0���`���>� � �
JM: �V­/�a�c­ � n��
The defeat relation is now as follows:
J2 defeats J1, J2, J3 M2 defeats M1, M2, M3 JM defeats W1
J3 defeats J5 M3 defeats M5
J5 defeats M5, JM M5 defeats J5, JM
This situation is depicted in Figure 3. In this case, the only preferred extension is the empty
set. The weather forecast is not justified because John and Mary are having a quarrel.

J1 J2 J3 J5

M1 M2 M3 M5

JM W1

Figure 3: Preferred semantics needs not to solve non-contamination.

When the above example is translated to the particular syntax of Pollock’s new system, as
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described in [9], it turns out the Pollock’s system has exactly the same problem. This situa-
tion is actually quite serious. Imagine a robot that is equipped with a Pollock-style reasoning
engine. One or more malicious person could then supply this robot with carefully selected
information (like in the case of Example 3) after which all defeasibly inferred information
becomes invalid: a total crash of the robot’s inference capabilities.

4 Ruling out inconsistent arguments
In this section, we provide a general solution to the issue of non-contamination in argu-
mentation systems that combine defeasible rules with classical entailment. In the following
definition, �}®°¯s±0²8�
³>´sµF��¶¸·S¶º¹V»s¼ ½�» stands for the Dung-style argumentation framework associ-
ated with � and � , and �}®°¯+±)²
¾¿�
³>´sµ�¾a�a¶¸·S¶À¹V»+¼ ½�» stands for the same argumentation framework,
but without any inconsistent arguments.

Definition 7. Let � be a consistent set of propositions and � be a set of defeasible rules. We
define �}®°¯s±0²8�
³'´+µ,� ¶Á·N¶º¹V»s¼ ½�» as the pair �fG
�~])� is an argument under �}tr���x�������aI8�¿G'�+�x� q��1]
�W� q are arguments under �}tr���x������� such that � defeats q under �}tr���x�������aIH� . We say that
an argument � is consistent iff G %/&0(,* �+�1[Â�r])�_[ is a subargument of �TI is consistent. We de-
fine �}®°¯s±0² ¾ �
³'´+µ ¾ �a¶¸·S¶À¹V»+¼ ½�» as �fG
�ª]0� is a consistent argument under �}tr���x�������aI8�¿G'�+�W� q��1]
�W� q are consistent arguments under �}tr���x������� such that � defeats q under �}tr���x�������aIH� .

The basic idea of Definition 7 is to rule out inconsistent arguments before applying one
of Dung’s standard semantics. The approach of ruling out a specific class of arguments,
however, does not necessarily satisfy the earlier mentioned quality postulates. For instance,
if one would simply rule out self-defeating arguments, the quality postulate of closeness
does not hold anymore. As an illustration, if in Figure 2, one would rule out J2 because it is
self-defeating, then J1 becomes justified, so £E!F�8¤�¥��f��� becomes a justified conclusion, even
though the strict consequence of this (namely nTestp�'�S�/�f�N��£E!F�8¤�¥��f����� � £;!F�)¤
¥��f�V�fg ) is not
justified, therefore violating closeness.

In general, the question of whether the earlier mentioned quality postulates are still war-
ranted once a class of arguments has been ruled out, is a non-trivial one. Fortunately, in case
of ruling out inconsistent arguments, it is possible to prove that this approach still satisfies
closeness and consistency.

Conjecture 1. Let � be an inconsistent set of formulas. If, for some ���c� , �x�>GH�CI is
consistent, then �x�>GH�CI � n¦� .

Lemma 1. Let b be an admissible set of arguments and � be an argument. If the defeaters
of � are a subset of the defeaters of b (that is, every defeater of � is also a defeater of some
element of b ) then � is defended by b .

Proof. By definition of “admissible” and “defends”.

Definition 8. Let bÃ2ªG
� � �	�	�	��� � � I be a set of arguments. A subargument base Ä of b is
a set of arguments G
q � �	�	�	��� q�ÅWI such that:

1. Æ,qÃ��Ä$j/ÇS�c�db�j>q is a subargument of �
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2. Æ,q�� q [ �ÈÄ�j8q is not a proper subargument of q [
We say that Ä is a proper subargument base of b iff Ä is a subargument base of b and
Ä�É26b .

Notice that the notion of a subargument-base defines a partial ordering among sets that
have no elements that are proper subarguments of other elements.

Lemma 2. Let � be a consistent set of propositions and � be a set of defeasible rules. Every
complete extension of �}®°¯+±)²�¾¿�
³>´+µ,¾a�a¶Á·N¶º¹V»+¼ ½p» is closed.

Proof. Suppose some complete extension b of �}®°¯s±0²)¾¿�
³'´+µ,¾�� ¶¸·S¶À¹V»+¼ ½�» is not closed. Then,
by definition, there exists a strict rule � � �	�	�	�
��� ��� � such that b contains arguments
� � �	�	�	��� � � with

%'&)(�* �+� � ��2o� � �J�	�	��� %/&0(,* �+� � ��2o� � but no argument �°Ê with
%/&)(�* �+��ÊF��2

� . This can only be the case if the argument �Ë2Ì� � �	�	�	�
� � ��� � is inconsistent.

Proof. Suppose � is consistent. The defeaters of � are a subset of the defeaters of b (as
� � �	�	�	��� � � �Èb ) so that by lemma 1, � is defended by b . As b is a complete extension, it
must hold that �c�db . Contradiction.

Now, let G
q`���	�	�	�
� q Å I be a minimal subargument-base of G
�`���	�	�	�
� �_�;I such that
the argument q 2 q � �	�	�	��� q°Å � Í is still inconsistent (that is: G
q � �	�	�	��� q�ÅWI is a
subargument-base of G
�`���	�	�	�
� ���
I such that the argument q`���	�	�	�
� q Å � Í is inconsis-
tent, and there does not exist a proper subarbument-base GHÎ � �	�	�	�
��Î�Ï>I of G
q � �	�	�	�
� q°ÅTI
such that the argument Î � �	�	�	�
��Î�Ï � Í is inconsistent). This means that the top-rule of
each non-atomic q1Ð ( �TÑwÒ¦Ñ$Ó ) is a defeasible rule.

Proof. Suppose the top-rule of some qTÐ is a strict rule with a nonempty antecedent. Say
q Ð 2 q Ð�Ô �	�	�	��� q Ð¸Õ � %/&0(,* �+q Ð � . Then there would be a proper subargument-base
G
Ö � �	�	�	�
� Ö�×+I�uÃG
q � �	�	�	��� q°Ð�Ø � � q°Ð�Ô¿�	�	�	��� q°Ð Õ � q°ÐÂÙ � �	�	�	��� q°ÅTI of G
q � �	�	�	�
� q°ÅWI such that
Ö � �	�	�	��� Ö�× �ÚÍ is inconsistent. Contradiction.

The fact that � is consistent means that at least some qWÐ��ÛG
q � �	�	�	�
� q°ÅWI contains a de-
feasible rule. Without loss of generality, we assume that qxÐD2Üq°Ð Ô �	�	�	��� q°Ð Õ � %'&)(�* �+q � � .
As G
q � �	�	�	��� q°ÅWI is a minimal subargument-base such that q � �	�	�	��� q°Å �ÝÍ is inconsis-
tent, it holds that the argument q�[Þ2 q � �	�	�	��� q°ÐßØ � � q°Ð�Ô	�	�	�	�
� q°Ð Õ �	�	�	��� q�ÐÂÙ � � q°Å � Í
is consistent. As the only consequent that is in q but not in q�[ is

%'&)(,* �+q Ð � , conjec-
ture 1 tells that the set of all consequents and premisses of q [ entails i %'&)(�* �+q°Ðà� . Let
q`[ [~2 t�£�áU���Hâ/�'�+q`[Â� � i %/&0(,* �+q°Ðà� . The defeaters of q-[ [ are a subset of the defeaters
of b , so lemma 1 tells that q [ [ is defended by b . The fact that b is a complete extension
means that q`[ [,�db . But then b would not be conflict-free. Contradiction.

Lemma 3. Let � be a consistent set of propositions and � be a set of defeasible rules. Every
complete extension of �}®°¯+±)²�¾¿�
³>´+µ,¾a�a¶Á·N¶º¹V»+¼ ½p» satisfies direct consistency (postulate 1).

Proof. Suppose some complete extension b of �}®°¯+±)² ¾ �
³>´+µ ¾ � ¶Á·N¶º¹V»+¼ ½p» does not satisfy di-
rect consistency. Then, by definition, b contains an argument (say � ) with conclusion �
and an argument (say q ) with conclusion n�� . As � is assumed to be consistent, it must
hold that � or q contains at least one defeasible rule (say ã ). Now, consider the strict rule
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�_��n�� � i %/&0( A �+ãS� , which is in tr���x� . As the conclusions of b satisfy closeness (lemma
2), i %/&0( A �+ãS� must be a conclusion of b . But that would mean that there is some argument
(say Î ) in b with conclusion i %/&0( A �+ãS� . But then b would not be conflict-free. Contradic-
tion.

Theorem 2. Let � be a consistent set of propositions and � be a set of defeasible rules.
Every complete extension of �}®°¯s±0² ¾ �
³>´+µ ¾ �a¶Á·S¶À¹V»+¼ ½p» satisfies consistency (Postulate 1) and
closeness (Postulate 2).

Proof. This follows directly from lemma 2 and lemma 3.

The approach of ruling out incoherent arguments also means that, by definition, the qual-
ity postulate of non-contamination is satisfied.

5 Discussion
In this paper, we hope to have convinced the reader that a purely semantical approach to the
problem of non-contamination (as taken by [12, 9]) is not sufficient. Our proposed solution
of ruling out inconsistent arguments, on the other hand, does not have a semantical bias;
it works fine not only for complete semantics (Theorem 2) but also for grounded and pre-
ferred semantics (this is because every preferred or grounded extension is also a complete
extension).

A more general problem is that much of today’s research regarding argumentation and
defeasible logic appears to be example driven. Pollock, for instance, proudly claims that
his new formalism has successfully solved example 1 [9], but forgets to examine whether
any underlying fundamental properties have been satisfied. By stating general properties,
like postulate 1, 2 and 3 we aim to provide a more solid basis for the evaluation of formal
argumentation systems.
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