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Abstract. In the context of Dung’s theory of argumentation frame-
works, comparisons between argumentation semantics are often focused
on the different behavior they show in some (more or less peculiar) cases.
It is also interesting however to characterize situations where (under
some reasonably general assumptions) different semantics behave ex-
actly in the same way. Focusing on the general family of SCC-recursive
argumentation semantics, the paper provides some novel results in this
line. In particular, we study the characterization of defeat graphs where
any SCC-recursive semantics admits exactly one extension coinciding
with the grounded extension. Then, we consider the problem of agree-
ment with stable semantics and identify the family of SCC-symmetric
argumentation frameworks, where agreement is ensured for a class of
multiple-status argumentation semantics including stable, preferred and
CF2 semantics.

Key words: Argumentation semantics, Argumentation frameworks, Se-
mantics comparison

1 Introduction

Interest in comparing argumentation semantics arises from the increasing vari-
ety of approaches proposed in the context of Dung’s theory of argumentation
frameworks [1]. Different behaviors exhibited by alternative semantics in specific
cases (or families of cases) have often been the subject of detailed analyses and
discussions about the “most intuitive” or “desired” outcome. While this is, by
far, the most common kind of comparison found in the literature, a more sys-
tematic approach considering general principles that may or may not be satisfied
by a semantics has also been addressed [2, 3].

A complementary kind of analysis concerns identifying situations where ar-
gumentation semantics agree, i.e. exhibit the same behavior in spite of their
differences. This can be useful from several viewpoints. On one hand, situations
where “most” (or even all) existing semantics agree can be regarded as pro-
viding a sort of reference behavior against which further proposals should be
confronted. On the other hand, it may be the case that in a specific application
domain there are some restrictions on the structure of the argumentation frame-
works that need to be considered. It is then surely interesting to know whether
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these restrictions lead to semantics agreement, since in this case it is clear that
evaluations about arguments in that domain may not be affected by different
choices of argumentation semantics and are, in a sense, universally supported.

In fact, the question of semantics agreement for particular classes of argu-
mentation frameworks is explicitly considered in Dung’s original paper [1] where
sufficient conditions for agreement between grounded, preferred and stable se-
mantics and between preferred and stable semantics are provided (these results
will be recalled along the paper). More recently, the special class of symmetric
argumentation frameworks [4] (where every attack is mutual) has been shown to
ensure agreement between preferred, stable and naive semantics. The present pa-
per provides some new results in this area by considering the recently introduced
class of SCC-recursive semantics [5], namely a parametric family of semantics
which has been shown to represent a quite general well-founded scheme where
specific proposals, including all traditional semantics mentioned above, can be
placed. In this context we obtain a characterization of some cases of agreement,
by exploiting the decomposition of the defeat graph into strongly connected
components.

The paper is organized as follows. After reviewing the necessary basic con-
cepts in Section 2, the notions of strongly connected component (SCC) and
SCC-recursiveness are introduced in Section 3. In section 4 the definition of
CF2 semantics is recalled and a property of its extensions, as significant for
the sequel of the paper, is proved. The issues of agreement with grounded and
stable semantics are dealt with in Sections 5 and 6 respectively. Finally Section
7 concludes the paper.

2 Basic concepts

The present work lies in the frame of the general theory of abstract argumenta-
tion frameworks proposed by Dung [1].

Definition 1. An argumentation framework is a pair AF = 〈A,→〉, where A is
a set, and →⊆ (A×A) is a binary relation on A, called attack relation.

In the following we will always assume that A is finite. An argumentation frame-
work AF = 〈A,→〉 can be represented as a directed graph, called defeat graph,
where nodes are the arguments and edges correspond to the elements of the
attack relation. In the following, the nodes that attack a given argument α are
called defeaters or parents of α and form a set which is denoted as parAF(α).

Definition 2. Given an argumentation framework AF = 〈A,→〉 and a node
α ∈ A, we define parAF(α) = {β ∈ A | β → α}. If parAF(α) = ∅, then α is
called an initial node.

Since we will frequently consider properties of sets of arguments, it is useful to
extend to them the notations defined for the nodes.
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Definition 3. Given an argumentation framework AF = 〈A,→〉, a node α ∈ A
and two sets S, P ⊆ A, we define:

S → α ≡ ∃β ∈ S : β → α

α → S ≡ ∃β ∈ S : α → β

S → P ≡ ∃α ∈ S, β ∈ P : α → β

Two particular kinds of elementary argumentation frameworks need to be
introduced as they will play some role in the following. The empty argumentation
framework, denoted as AF∅, is simply defined as AF∅ = 〈∅, ∅〉. Furthermore, an
argumentation framework AF = 〈A,→〉 is monadic if |A| = 1 and →= ∅.

The notion of self-defeating argument will be used too.

Definition 4. Given an argumentation framework AF = 〈A,→〉 an argument
α ∈ A is self-defeating if α → α. An argumentation framework AF is free of
self-defeating arguments if ∄α ∈ A such that α → α.

We will also consider the restriction of an argumentation framework to a
given subset of its nodes:

Definition 5. Let AF = 〈A,→〉 be an argumentation framework, and let S ⊆ A
be a set of arguments. The restriction of AF to S is the argumentation framework
AF↓S = 〈S,→ ∩(S × S)〉.

In Dung’s theory, an argumentation semantics is defined by specifying the
criteria for deriving, given a generic argumentation framework, the set of all
possible extensions, each one representing a set of arguments considered to be
acceptable together. Accordingly, a basic requirement for any extension E is
that it is conflict-free, namely ∄α, β ∈ E : α → β. All argumentation semantics
proposed in the literature satisfy this fundamental conflict-free property.

Given a generic argumentation semantics S, the set of extensions prescribed
by S for a given argumentation framework AF = 〈A,→〉 is denoted as ES(AF). If
it holds that ∀AF |ES(AF)| = 1, then the semantics S is said to follow the unique-
status approach, otherwise it is said to follow the multiple-status approach [6].
We will say that two semantics S1 and S2 are in agreement on an argumentation
framework AF if ES1

(AF) = ES2
(AF).

3 Strongly connected components and SCC-recursiveness

SCC-recursiveness is a property of (the extensions prescribed by) a semantics
based on the graph theoretical notion of strongly connected components (SCCs).

Definition 6. Given an argumentation framework AF = 〈A,→〉, the binary
relation of path-equivalence between nodes, denoted as PEAF ⊆ (A × A), is
defined as follows:

– ∀α ∈ A, (α, α) ∈ PEAF
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– given two distinct nodes α, β ∈ A, (α, β) ∈ PEAF if and only if there is a
path from α to β and a path from β to α.

The strongly connected components of AF are the equivalence classes of nodes
under the relation of path-equivalence. The set of the SCCs of AF is denoted
as SCCSAF. In the case of the empty argumentation framework, we assume
SCCSAF∅

= {∅}. Moreover, a strongly connected component S ∈ SCCSAF will
be said to be monadic if AF↓S is monadic.

We extend to SCCs the notion of parents, namely the set of the other SCCs
that attack a SCC S, which is denoted as sccparAF(S), and we introduce the
definition of proper ancestors, denoted as sccancAF(S):

Definition 7. Given an argumentation framework AF = 〈A,→〉 and a SCC
S ∈ SCCSAF, we define

sccparAF(S) = {P ∈ SCCSAF | P 6= S and P → S}

and
sccancAF(S) = sccparAF(S) ∪

⋃

P∈sccparAF(S)

sccancAF(P )

A SCC S such that sccparAF(S) = ∅ is called initial. The set of initial SCCs
of AF, as it is easy to see, is non-empty and is denoted as IS(AF). The set of
nodes of initial strongly connected components of AF is denoted as IN(AF) =
⋃

S∈IS(AF) S.

It is well-known [7] that the graph obtained by considering SCCs as single
nodes is acyclic, in other words SCCs can be partially ordered according to the re-
lation of attack. This fact lies at the heart of the definition of SCC-recursiveness,
which is based on the intuition that extensions can be built incrementally start-
ing from initial SCCs and following the above mentioned partial order. In other
words, the choices concerning extension construction carried out in an initial
SCC do not depend on the choices concerning any other SCC, while they di-
rectly affect the choices about the subsequent SCCs and so on. While the basic
underlying intuition is rather simple, the formalization of SCC-recursiveness is
admittedly rather complex and involves some additional notions. Due to space
limitations, we can only give here a quick account, while referring the reader
to [5] for more details and examples. First of all, the choices (represented in
the following definition by the set E, corresponding to a specific extension) in
the antecedent SCCs determine a partition of the nodes of a set S (typically
representing one or more subsequent SCCs) into three subsets:

Definition 8. Given an argumentation framework AF = 〈A,→〉, a set E ⊆ A
and a set S ⊆ A, we define:

– DAF(S,E) = {α ∈ S | (E \ S) → α}
– PAF(S,E) = {α ∈ S | (E \ S) 6→ α ∧ ∃β /∈ S : β → α ∧ E 6→ β}
– UAF(S,E) = S \ (DAF(S,E) ∪ PAF(S,E)) =

= {α ∈ S | (E \ S) 6→ α ∧ ∀β /∈ S : β → α E → β}
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Definition 8 is a slightly generalized version of the corresponding Definition
18 of [5]. In words, the set DAF(S,E) consists of the nodes of S attacked by E
from outside S, the set UAF(S,E) includes any node α of S that is not attacked
by E from outside S and is defended by E (i.e. the defeaters of α from outside
S are all attacked by E), and PAF(S,E) includes any node α of S that is not
attacked by E from outside S and is not defended by E (i.e. at least one of the
defeaters of α from outside S is not attacked by E). It is easy to verify that,
when S is a SCC, as in the original Definition 18 of [5], DAF(S,E), PAF(S,E)
and UAF(S,E) are determined only by the elements of E that belong to the
SCCs in sccancAF(S).

Regarding E as a part of an extension which is being constructed, the
idea is then that arguments in DAF(S,E), being attacked by nodes in E, can-
not be chosen in the construction of the extension E (i.e. do not belong to
E ∩ S). Selection of arguments to be included in E is therefore restricted to
(S \DAF(S,E)) = (UAF(S,E) ∪ PAF(S,E)), which, for ease of notation, will be
denoted in the following as UPAF(S,E). On this basis and taking also into
account the reinstatement principle [6, 2], we require the selection of nodes
within a SCC S to be carried out on the restricted argumentation framework
AF↓UPAF(S,E) without taking into account the attacks coming from DAF(S,E).

Combining these ideas and skipping some details not strictly necessary in
the context of the present paper, we can finally recall the definition of SCC-
recursiveness:

Definition 9. A given argumentation semantics S is SCC-recursive if and only
if for any argumentation framework AF = 〈A,→〉, ES(AF) = GF(AF,A), where
for any AF = 〈A,→〉 and for any set C ⊆ A, the function GF(AF, C) ⊆ 2A is
defined as follows:
for any E ⊆ A, E ∈ GF(AF, C) if and only if

– in case |SCCSAF| = 1, E ∈ BFS(AF, C)
– otherwise, ∀S ∈ SCCSAF

(E ∩ S) ∈ GF(AF↓UPAF(S,E), UAF(S,E) ∩ C)

where BFS(AF, C) is a function, called base function, that, given an argu-
mentation framework AF = 〈A,→〉 such that |SCCSAF| = 1 and a set C ⊆ A,
gives a subset of 2A.

The base function BFS of a SCC-recursive semantics S is said to be conflict-
free if ∀AF = 〈A,→〉 and ∀C ⊆ A each element of BFS(AF, C) is conflict
free. It is known from Theorem 48 of [5] that if BFS is conflict-free, then any
E ∈ ES(AF) is conflict free for any AF.

Since Definition 9 is somewhat arduous to examine in its full detail, we just
give some “quick and dirty” indications which are useful for the sequel of the
paper (in particular, we do not consider the meaning of the parameter C in the
description, as not necessary for the comprehension of this paper). The set of
extensions ES(AF) of an argumentation framework AF is given by GF(AF,A),
namely by the invocation of the function GF which receives as parameters an
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argumentation framework (in this case the whole AF) and a set of arguments (in
this case the whole A). The function GF(AF, C) is defined recursively. The base
of the recursion is reached when AF consists of a unique SCC: in this case the
set of extensions is directly given by the invocation of a semantics-specific base
function BFS(AF, C). In the other case, for each SCC S of AF the function GF
is invoked recursively on the restriction AF↓UPAF(S,E). Note that the restriction
concerns UPAF(S,E), namely the part of S which “survives” the attacks of the
preceding SCCs in the partial order.

The definition has also a constructive interpretation, which suggests an effec-
tive (recursive) procedure for computing all the extensions of an argumentation
framework AF = 〈A,→〉 once a specific base function characterizing the seman-
tics is assigned. A particular role in this context is played by the initial SCCs.
In fact, for any initial SCC I, since by definition there are no outer attacks,
the set of defended nodes coincides with I, i.e. UPAF(I, E) = UAF(I, E) = I
for any E. This gives rise to the invocation GF(AF↓I , I) for any initial SCC I.
Since AF↓I obviously consists of a unique SCC, according to Definition 9 the
base function BFS(AF↓I , I) is invoked, which returns the extensions of AF↓I

according to the semantics S. Therefore, the base function can be first computed
on the initial SCCs, where it directly returns the extensions prescribed by the
semantics. Then, the results of this computation are used to identify, within
the subsequent SCCs, the restricted argumentation frameworks on which the
procedure is recursively invoked.

All SCC-recursive semantics “share” this general scheme and only differ by
the specific base function adopted. It has been shown [5] that all traditional se-
mantics encompassed by Dung’s framework (namely grounded, stable, complete,
and preferred semantics) are SCC-recursive and the relevant base functions have
been identified. In the following we will assume a basic knowledge of grounded
semantics, denoted as GR, stable semantics, denoted as ST , and preferred se-
mantics, denoted as PR. We need to recall here only the formulation of the base
function of grounded semantics (Proposition 44 of [5]):

Proposition 1. For any argumentation framework AF = 〈A,→〉 such that
|SCCSAF| = 1, and for any C ⊆ A, we have that

BFGR(AF, C) =

{

{{α}}, if C = A = {α} and →= ∅;
{∅}, otherwise.

It is well-known that grounded semantics belongs to the unique-status ap-
proach. In the following we will denote the grounded extension of an argumen-
tation framework AF as GE(AF).

4 A property of CF2 semantics

Besides encompassing many significant previous proposals, the SCC-recursive
scheme allows the definition of novel semantics in a relatively easy way. Examples
of non-traditional SCC-recursive semantics and their properties are discussed in
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[5], the most significant among them being CF2 semantics. In fact, CF2 seman-
tics exhibits rather interesting properties (in particular a “symmetric” treatment
of odd- and even-length cycles [8]) while its base function is particularly simple:
BFCF2(AF, C) = MCFAF, where MCFAF denotes the set made up of all the
maximal conflict-free sets of AF (note that the parameter C of Definition 9 plays
no role at all in this case).

As a first contribution of this paper, here we provide the proof of an im-
portant property of CF2 semantics which, in particular, will be useful for the
characterization of the cases of agreement between CF2 and grounded seman-
tics. In words, we will show that any extension prescribed by CF2 semantics for
an argumentation framework AF is a maximal conflict free set of AF.

A preliminary Lemma is needed.

Lemma 1. Given an argumentation framework AF = 〈A,→〉 and a conflict free
set E ⊆ A, E ∈ MCFAF ⇔ ∀α ∈ A such that α 6→ α, the following disjunction
of mutually exclusive conditions holds: α ∈ E ∨ E → α ∨ α → E.

Proof. ⇒. Assume that ∃α ∈ A, α 6→ α, such that none of the three condition
stated above holds. Then α /∈ E∧E 6→ α∧α 6→ E, which implies that E∪{α} is
conflict-free and a strict superset of E. But this contradicts the hypothesis that
E ∈ MCFAF.
⇐. Conversely assume that E /∈ MCFAF, then ∃α ∈ A such that α /∈ E and
E ∪ {α} is conflict-free, namely α 6→ α, α /∈ E ∧ E 6→ α ∧ α 6→ E, contradicting
the hypothesis that one of the three conditions above holds.

Proposition 2. For any argumentation framework AF = 〈A,→〉, ECF2(AF) ⊆
MCFAF.

Proof. Since the base function of CF2 semantics is conflict-free, we know that
any E ∈ ECF2(AF) is conflict free. We have now to prove that it is maximal.
First, recall that instantiating Definition 9 in the case of CF2 semantics we
obtain: E ∈ ECF2(AF) if and only if

– in case |SCCSAF| = 1, E ∈ MCFAF

– otherwise, ∀S ∈ SCCSAF(E ∩ S) ∈ ECF2(AF↓UPAF(S,E))

If |SCCSAF| = 1, ECF2(AF) = MCFAF by definition and the thesis trivially
follows.

Consider now the case |SCCSAF| > 1 and assume recursively that ∀S ∈
SCCSAF ∀E ∈ ECF2(AF) (E ∩ S) ∈ MCFAF↓UPAF(S,E)

: we need to prove that

E ∈ MCFAF. Suppose by contradiction that E /∈ MCFAF. By Lemma 1 the
following condition (i) holds: ∃α ∈ A : α 6→ α, α /∈ E ∧ E 6→ α ∧ α 6→ E. Now
consider the strongly connected component S ∈ SCCSAF such that α ∈ S. Since
E 6→ α it is the case that α ∈ UPAF(S,E). By the inductive hypothesis (E∩S) ∈
MCFAF↓UPAF(S,E)

, which, by Lemma 1 applied to AF↓UPAF(S,E), entails that the

following disjunction holds: α ∈ (E ∩ S) ∨ (E ∩ S) → α ∨ α → (E ∩ S). This
clearly implies the following condition in AF: α ∈ E∨E → α∨α → E. However,
this is absurd since it contradicts condition (i) above.
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5 Agreement with grounded semantics

Grounded semantics [9, 1] plays an important role in argumentation theory as
it features desirable properties, such as conceptual clarity and computational
tractability. Moreover, it is often regarded as a paradigmatic unique-status scep-
tical approach that can be used as a reference to evaluate other semantics. For
these reasons the issue of agreement with grounded semantics is particularly
significant and has been first considered in [1], where it is shown that a suffi-
cient condition for agreement between grounded, preferred and stable semantics
is that the argumentation framework is well-founded.

Definition 10. (Definition 29 of [1]) An argumentation framework is well-
founded iff there exists no infinite sequence α0, α1, . . . , αn, . . . of (not necessarily
distinct) arguments such that for each i, αi+1 attacks αi.

In the case of a finite argumentation framework, well-foundedness coincides
with acyclicity of the defeat graph. We now consider the problem of agreement
with grounded semantics in the generalized context of SCC-recursive semantics.

5.1 Determined argumentation frameworks

We will show that a complete agreement among SCC-recursive semantics holds
if and only if the considered argumentation framework is determined.

Definition 11. An argumentation framework AF = 〈A,→〉 is determined if
and only if ∄α ∈ A : α /∈ GE(AF) ∧ GE(AF) 6→ α.

In words, an argumentation framework AF is determined if and only if there
are no “provisionally defeated” arguments in AF according to grounded seman-
tics, i.e. the grounded extension is also a stable extension. Note that the empty
argumentation framework is determined.

The set of determined argumentation frameworks, denoted as DET , is of
special interest because for any SCC-recursive semantics S respecting an obvious
condition on the treatment of monadic argumentation frameworks it holds that
ES(AF) = {GE(AF)} for any argumentation framework AF ∈ DET . In other
words, a very comprehensive family of “reasonable” semantics show a uniform
single-status behavior on these argumentation frameworks.

Proposition 3. Let S be a SCC-recursive semantics identified by a conflict-free
base function BFS such that

BFS(〈{α}, ∅〉, {α}) = {{α}}

(such a SCC-recursive semantics will be called grounded-compatible).
For any argumentation framework AF = 〈A,→〉 ∈ DET it holds that ES(AF) =

{GE(AF)}.
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Proof. The proof immediately follows from the fact that for any such SCC-
recursive semantics it holds that ∀E ∈ ES(AF), GE(AF) ⊆ E (Proposition 51
of [5]) and E is conflict-free. Since AF ∈ DET ∀α /∈ GE(AF) it necessarily
holds that GE(AF) → α, and therefore α /∈ E. As a consequence, only the case
E = GE(AF) is possible.

It is also immediate to note that no argumentation framework outside DET
features this property, namely, for any AF /∈ DET there is a grounded-compatible
SCC-recursive semantics S such that ES(AF) 6= {GE(AF)}, namely stable se-
mantics.

Well-founded argumentation frameworks [1] are a special case of determined
argumentation frameworks. In fact, if no cycles are present, all SCCs in AF
consist of a single node and it is then easy to see that AF ∈ DET . On the other
hand, the absence of cycles is a sufficient but not necessary topological condition
for AF ∈ DET . Actually the absence of cycles is necessary only in the initial
SCCs (which need to be monadic), and then recursively in the initial SCCs of
the restricted argumentation framework obtained by taking into account that the
nodes corresponding to the initial SCCs are necessarily included in any extension.
This observation gives rise to a characterization of determined argumentation
frameworks.

Definition 12. An argumentation framework AF = 〈A,→〉 is initial-acyclic if
AF = AF∅ or the following condition holds: ∀S ∈ IS(AF) S is monadic and
AF↓UPAF((A\IN(AF)),IN(AF)) is initial-acyclic.

The base of this recursive definition is represented by the empty argumenta-
tion framework. The recursion is well-founded as the set IN(AF) is non-empty
for a non-empty argumentation framework, which means that at each recursive
step an argumentation framework with a strictly lesser number of nodes is con-
sidered. The set of initial-acyclic argumentation frameworks is denoted by IAA.
The following proposition shows that IAA = DET .

Proposition 4. For any argumentation framework AF = 〈A,→〉, AF ∈ IAA
if and only if AF ∈ DET .

Proof. Let us first show that if AF ∈ IAA then the grounded extension is
also stable. It is known [1] that, for any finite AF, GE(AF) =

⋃

i≥1 Fi
AF(∅),

where, given a set S ⊆ A, FAF(S) = {α ∈ A : ∀β ∈ parAF(α), S → β},
F1

AF(S) = FAF(S), and Fi
AF(S) = FAF(Fi−1

AF (S)). Now, since AF ∈ IAA, it
holds that F1

AF(∅) = IN(AF). After suppressing the arguments attacked by
arguments in IN(AF) we obtain AF′ = AF↓UPAF((A\IN(AF)),IN(AF)). Now, if
AF′ is empty the statement is proved, since any argument of AF is either included
in or attacked by GE(AF). Otherwise we have, by hypothesis, that all initial
strongly connected components of AF′ are monadic. This entails that all their
nodes belong to F2

AF(∅) and therefore to GE(AF). Iterating the same reasoning
as above we obtain a restricted argumentation framework AF′′, and so on until
we reach the case of an empty restricted argumentation framework. Since any
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node considered at any step is either included in or attacked by GE(AF), it turns
out that AF ∈ DET .

Turning to the other part of the proof, let us show that if AF /∈ IAA then
AF /∈ DET . Let us first consider the case where some initial strongly connected
component of AF is not monadic, then its elements are not included in nor at-
tacked by GE(AF) and therefore AF /∈ DET . Otherwise with a similar reasoning
as in the first part of the proof, we are lead to consider a sequence of restricted
argumentation frameworks. Since at least one of them does not belong to IAA,
it turns out as before that some of its nodes are not included in nor attacked by
GE(AF) and the conclusion follows.

5.2 Almost determined argumentation frameworks

While only determined argumentation frameworks ensure complete agreement
among all grounded-compatible SCC-recursive semantics, it can be observed that
there is a larger class of argumentation frameworks where an almost complete
agreement is reached. Consider for instance the case of an argumentation frame-
work consisting just of a self-defeating argument, namely AF = 〈{α}, {(α, α)}〉.
In this case we have that EGR(AF) = {∅} and, in virtue of the conflict-free prop-
erty, for any semantics S which admits extensions on AF it must also hold that
ES(AF) = {∅}. However, since stable semantics is unable to prescribe estensions
in this case, EST (AF) = ∅ 6= {∅}. In this case, disagreement arises from the
non-existence of stable extensions rather than from the existence of extensions
different from GE(AF). Therefore, excluding AF from the set of argumentation
frameworks where semantics agree might be considered a little bit questionable
and/or misleading, since, actually, all semantics able to prescribe extensions for
AF are in agreement.

On the basis of this observation, it is useful to consider the question of agree-
ment focusing on those semantics that are universally defined.

Definition 13. An argumentation semantics S is universally defined if for any
argumentation framework AF ES(AF) 6= ∅.

As to our knowledge, stable semantics is the only example in the literature
of a semantics which is not universally defined.

As shown by the simple example above, the set of argumentation frameworks
where universally defined semantics agree is larger than DET : we will now char-
acterize this class of argumentation frameworks, called almost determined.

Definition 14. An argumentation framework AF = 〈A,→〉 is almost deter-
mined if and only if for any α ∈ A, (α /∈ GE(AF)∧GE(AF) 6→ α) ⇒ (α, α) ∈→.

In words, an argumentation framework is almost determined if all the nodes
which are not attacked nor included in the grounded extension are self-defeating.
The set of almost determined argumentation frameworks will be denoted as AD.
Clearly DET ( AD.
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Proposition 5. Let S be a universally defined and grounded compatible SCC-
recursive semantics identified by a conflict-free base function BFS . For any ar-
gumentation framework AF = 〈A,→〉 ∈ AD it holds that ES(AF) = {GE(AF)}.

Proof. We know that, since BFS is conflict-free, for any argumentation frame-
work AF, ∀E ∈ ES(AF) E is conflict free. Then, the statement follows from
the fact that ∀E ∈ ES(AF), GE(AF) ⊆ E, which entails that the arguments
attacked by the grounded extension are also attacked by any other extension.
Therefore only arguments not included in and not attacked by GE(AF) can be-
long to E \ GE(AF). However, by hypothesis such arguments are self-defeating
and, since any extension E is conflict-free, can not belong to E.

The proposition above shows that agreement is ensured on almost determined
argumentation frameworks for any SCC-recursive semantics which satisfies the
three very reasonable properties of being universally defined, grounded compat-
ible and conflict-free. We now also show that such an agreement can not be
achieved outside the class of almost determined argumentation frameworks.

Proposition 6. For any argumentation framework AF = 〈A,→〉 /∈ AD there is
a universally defined and grounded compatible SCC-recursive semantics S iden-
tified by a conflict-free base function BFS such that ES(AF) 6= {GE(AF)}.

Proof. We prove that if AF /∈ AD then ECF2(AF) 6= {GE(AF)}. It is immediate
to see that CF2 semantics is universally defined and grounded compatible and
that its base function is conflict-free. By Proposition 2, ECF2(AF) ⊆ MCFAF,
namely the extensions prescribed by CF2 semantics for an argumentation frame-
work AF are maximal conflict free sets of AF. Now if AF /∈ AD, ∃α ∈ A such
that α is not self-defeating, α /∈ GE(AF) and GE(AF) 6→ α. This also implies
α 6→ GE(AF) due to the well-known property of admissibility of GE(AF) [1],
namely α → GE(AF) ⇒ GE(AF) → α. Then, by Lemma 1, GE(AF) /∈ MCFAF

and necessarily ECF2(AF) 6= {GE(AF)}.

6 Agreement with stable semantics

Stable semantics represents a traditional and intuitively simple proposal among
multiple-status approaches: a stable extension is simply a conflict-free set which
attacks all arguments not included in it. For this reason, agreement with stable
semantics represents a sort of uncontroversial situation where no argument is left
in a sort of “undecided” status. In [1] an argumentation framework AF such that
preferred and stable semantics are in agreement is said to be coherent. Here we
will characterize a family of argumentation frameworks, called SCC-symmetric,
where agreement is ensured for a class of multiple-status semantics including
stable, preferred and CF2 semantics.

First we need to introduce the notion of symmetric argumentation framework
(slightly different from the one proposed in [4]), noting also that symmetry is
preserved by the restriction operator.
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Definition 15. An argumentation framework AF = 〈A,→〉 is symmetric if for
any α, β ∈ A, α → β ⇔ β → α.

Lemma 2. Given a symmetric argumentation framework AF = 〈A,→〉 and a
set S ⊆ A, AF↓S is symmetric.

Proof. Let us consider two arguments α, β in AF↓S such that α → β. It is
immediate to see that this relation also holds in AF and, since the latter is
symmetric, β → α in AF. Since α, β ∈ S, β → α also holds in AF↓S .

As it will be more evident from Proposition 7, it is quite natural that exten-
sions of a symmetric argumentation framework free of self-defeating arguments
coincide with its maximal conflict free sets, if the multiple-status approach is
adopted. Argumentation semantics satisfying this requirement will be called *-
symmetric.

Definition 16. An argumentation semantics S is *-symmetric if for any argu-
mentation framework AF which is symmetric and free of self-defeating arguments
ES(AF) = MCFAF.

As one may imagine, a SCC-recursive semantics is *-symmetric if and only
if its base function has a *-symmetric behavior on single-SCC argumentation
frameworks.

Lemma 3. A SCC-recursive semantics S is *-symmetric if and only if, for any
argumentation framework AF = 〈A,→〉 which is symmetric, free of self-defeating
arguments and such that |SCCSAF| = 1, BFS(AF,A) = MCFAF.

Proof. ⇒. Assume that the base function satisfies the hypothesis and consider
a generic argumentation framework AF which is symmetric and free of self-
defeating arguments. Notice first that ∀S ∈ SCCSAF sccparAF(S) = ∅, i.e. all of
the strongly connected components are initial. In fact, given S1, S2 ∈ SCCSAF

such that S1 → S2, since AF is symmetric also S2 → S1 holds, entailing that
all of the nodes of S1 ∪ S2 are mutually reachable, i.e. S1 = S2. Then, ∀S ∈
SCCSAF UAF(S,E) = UPAF(S,E) = S, and it is easy to see that, according to
Definition 9, E ∈ ES(AF) if and only if ∀S ∈ SCCSAF (E∩S) = BFS(AF↓S , S).
Now, ∀S ∈ SCCSAF AF↓S is free of self-defeating arguments and by Lemma 2
is also symmetric, thus by the hypothesis BFS(AF↓S , S) = MCFAF↓S

. In sum,
we have that E ∈ ES(AF) if and only if ∀S ∈ SCCSAF (E∩S) ∈ MCFAF↓S

, and
since all of the strongly connected components are initial the latter condition is
equivalent to E ∈ MCFAF.
⇐. Assuming by contradiction that the conclusion is not verified we are led to
consider an argumentation framework AF, which is symmetric and free of self-
defeating arguments, where ES(AF) = BFS(AF,A) 6= MCFAF, entailing that
S is not *-symmetric.

Several significant multiple-status semantics, though their definition is based
on quite different principles, share the property of being *-symmetric (a similar
result is proved in [4]).
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Proposition 7. Stable semantics, preferred semantics and CF2 semantics are
*-symmetric.

Proof. According to Lemma 3, for any such semantics S we have to prove that,
given an argumentation framework AF = 〈A,→〉 which is symmetric, free of self-
defeating arguments and such that |SCCSAF| = 1, BFS(AF,A) = MCFAF. For
CF2 semantics this holds by definition. As for stable and preferred semantics,
notice that, as |SCCSAF| = 1, BFS(AF,A) = ES(AF). Taking into account from
[1] that EST (AF) ⊆ EPR(AF), it is sufficient to prove that MCFAF ⊆ EST (AF)
and that EPR(AF) ⊆ MCFAF. First, let us consider a set E ∈ MCFAF and let
us prove that it is a stable extension, i.e. that ∀α /∈ E E → α. Assuming by
contradiction that E 6→ α, since AF is symmetric also α 6→ E holds. Since α
cannot be self-defeating by the hypothesis on AF, the set E∪{α} is conflict-free,
contradicting the fact that E ∈ MCFAF. Let us turn now to the other inclusion
condition, considering a set E ∈ EPR(AF) and assuming by contradiction that
E /∈ MCFAF: since E is conflict-free, this entails that ∃E′ ⊆ MCFAF such that
E ( E′. However, by the first inclusion condition E′ ∈ EPR(AF), contradicting
the fact that E is a preferred extension.

In symmetric argumentation frameworks non-mutual attacks cannot exist:
this seriously limits their applicability for modeling practical situations. Their
properties however provide the basis for analyzing a more interesting family of
argumentation frameworks called SCC-symmetric.

Definition 17. An argumentation framework AF is SCC-symmetric if ∀S ∈
SCCSAF AF↓S is symmetric.

Definition 17 is equivalent to forbidding non-mutual attacks only within cy-
cles.

Proposition 8. An argumentation framework AF = 〈A,→〉 is SCC-symmetric
if and only if for every cycle α0 → α1 → . . . → αn → α0 it holds that ∀i ∈
{1 . . . n} αi → αi−1.

Proof. As for the if part of the proof, notice that any two nodes α, β ∈ S, such
that α 6= β and S ∈ SCCSAF, are mutually reachable, therefore in particular
they belong to a cycle. As a consequence, if α → β then by the hypothesis also
β → α holds. As for the other part of the proof, if αi and αi−1 belong to a cycle
then they are in the same strongly connected component, thus if αi−1 → αi then
by the SCC-symmetry of AF also αi → αi−1 holds.

To prove, in Theorem 1, the main result about agreement in SCC-symmetric
argumentation frameworks, we need a preliminary lemma concerning the SCC-
recursive schema.

Lemma 4. Given an SCC-recursive semantics S, E ∈ ES(AF) if and only if
∀S ∈ SCCSAF (E ∩S) ∈ GFS(AF↓UPAF(S,E), UAF(S,E)), where GFS(AF, C) is
a function specific for the semantics S. Moreover, ∀AF = 〈A,→〉 it holds that
GFS(AF,A) = ES(AF).
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Proof. By Definition 9, if |SCCSAF| = 1 then BFS(AF,A) = GF(AF,A), which
is also equal to GF(AF↓UPAF(S,E), UAF(S,E)) since in this case UPAF(S,E) =
UAF(S,E) = A. From Definition 9 we have that E ∈ ES(AF) if and only if
E ∈ GF(AF,A) and in case |SCCSAF| = 1 we can substitute BFS(AF,A)
with the expression above. This yields E ∈ GF(AF,A) if and only if ∀S ∈
SCCSAF(E ∩ S) ∈ GF(AF↓UPAF(S,E), UAF(S,E)). Then the conclusion easily
follows by taking into account that GF actually depends (through BFS) on the
specific semantics S.

Theorem 1. In any argumentation framework which is SCC-symmetric and
free of self-defeating arguments all of the *-symmetric semantics are in agree-
ment, i.e. they prescribe the same set of extensions.

Proof. It is sufficient to show that, given an argumentation framework AF satis-
fying the hypothesis and two *-simmetric semantics S1 and S2, ∀E ∈ ES1

(AF) E ∈
ES2

(AF) (the reverse condition can then be obtained by the same reasoning).
According to Lemma 4, given E ∈ ES1

(AF), we have to prove that ∀S ∈
SCCSAF(E ∩ S) ∈ GFS2

(AF↓UPAF(S,E), UAF(S,E)). We reason by induction
along the strongly connected components of the argumentation framework. In
particular, at any step we consider a specific S ∈ SCCSAF and we prove the
following conditions:

1. UPAF(S,E) = UAF(S,E) (i.e., PAF(S,E) = ∅)
2. (E ∩ S) ∈ GFS2

(AF↓UAF(S,E), UAF(S,E)) = ES2
(AF↓UAF(S,E))

3. ES2
(AF↓UAF(S,E)) = EST (AF↓UAF(S,E))

assuming that these conditions hold for any S′ ∈ sccancAF(S) (notice that the
case sccancAF(S) = ∅, i.e. S is an initial strongly connected component, is cov-
ered in the following proof). Then the conclusion is immediate from the first and
second conditions.
As for the first condition (which is obvious when S is initial), we have to
prove that ∀α ∈ UPAF(S,E) if β → α and β /∈ S then E → β. Notice that
β ∈ S′ with S′ ∈ sccancAF(S), and β /∈ E since α /∈ DAF(S,E). Since by
the first condition applied to S′ PAF(S′, E) = ∅, either β ∈ DAF(S′, E) or
β ∈ UAF(S′, E). In the first case, E → β by definition. In the second case,
since (E ∩ S′) ∈ EST (AF↓UAF(S′,E)) by the second and third conditions and
β /∈ (E ∩ S′), it holds that (E ∩ S′) → β, thus again E → β.
Let us turn to the second condition. Since E ∈ ES1

(AF), according to Lemma
4 (E ∩ S) ∈ GFS1

(AF↓UPAF(S,E), UAF(S,E)), which by the above proof is equal
to GFS1

(AF↓UAF(S,E), UAF(S,E)), the latter being equal to ES1
(AF↓UAF(S,E))

by Lemma 4. Now, since AF is SCC-symmetric AF↓S is symmetric by defini-
tion, entailing by Lemma 2 that AF↓UAF(S,E) is symmetric in turn. Notice that
this argumentation framework, as AF, is free of self-defeating arguments. Then,
since both S1 and S2 are *-symmetric ES1

(AF↓UAF(S,E)) = ES2
(AF↓UAF(S,E)) =

MCFAF↓UAF(S,E)
. In sum, (E ∩ S) ∈ ES2

(AF↓UAF(S,E)), which by Lemma 4 is

equal to GFS2
(AF↓UAF(S,E), UAF(S,E)).
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Finally, the third condition follows from Proposition 7, which states in partic-
ular that stable semantics is *-symmetric, entailing that EST (AF↓UAF(S,E)) =
MCFAF↓UAF(S,E)

= ES2
(AF↓UAF(S,E)).

The following result immediately follows from the previous theorem and
Proposition 7.

Corollary 1. For any argumentation framework AF which is SCC-symmetric
and free of self-defeating arguments, EPR(AF) = ECF2(AF) = EST (AF), thus in
particular AF is coherent.

Theorem 1 and Corollary 1 generalize the results about agreement provided in
[4], where only symmetric argumentation frameworks are considered (which, as
already remarked, feature a limited expressivity since they prevent, for instance,
that an initial argument attacks any other argument). Moreover, agreement is
proved for a family of multiple-status SCC-recursive semantics, including the
most significant literature proposals we are aware of.

In [1] it was shown that a sufficient condition for agreement between preferred
and stable semantics is that the considered argumentation framework is limited
controversial. A finite argumentation framework is limited controversial if it does
not include any odd-length cycle. The classes of SCC-symmetric and limited
controversial argumentation frameworks are non-disjoint but distinct. In fact,
a SCC-symmetric argumentation framework may contain cycles of any length,
while a limited controversial argumentation framework may consist, for instance,
of an even-length cycle which is not symmetric.

It is interesting to note that the property of SCC-symmetry may be recovered
from assumptions on the attack relation which have been previously considered
in the literature and are not directly related to decomposition into SCCs. For in-
stance in [10] the case is considered where conflicts among arguments arise only
from contradicting conclusions, namely only the rebutting kind of defeat is al-
lowed while undercutting defeat is not (we follow here the terminology of [9], note
that the notion of rebutting defeat we adopt includes attack against subargu-
ments, that some authors call instead undercut). It is shown in Proposition 26 of
[10] that if only rebutting defeat is allowed, the defeat graph is SCC-symmetric
(such a graph is called r-type in [10]). From another perspective, in [11] it is
shown that when the attack relation results from a symmetric conflict relation
and a transitive preference relation between arguments the defeat graph satisfies
a property called strict acyclicity, which is actually equivalent to SCC-symmetry
through the characterization given in Proposition 8.

7 Conclusions

In this paper we have analyzed the issue of characterizing argumentation frame-
works where semantics agree, exploiting to this purpose the recently introduced
notion of SCC-recursiveness and the relevant existing results. Focusing on the
two traditional questions of agreement with grounded and stable semantics, some
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novel results have been obtained. As to the first question, the family of deter-
mined argumentation frameworks where any “reasonable” SCC-recursive seman-
tics agrees with grounded semantics has been identified. Adding the requirement
that the semantics is universally defined, a larger family of argumentation frame-
works where such an agreement is ensured has been characterized. As to the
second question, it has been shown that agreement is ensured, for a class of se-
mantics including stable, preferred and CF2 semantics, on the significant family
of SCC-symmetric argumentation frameworks. Among future work directions,
we mention in particular the definition and study of forms of agreement at the
level of justification states of arguments rather than of extensions.
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