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Abstract
Many complex networks have similar features which can be described by suit-

able models. Some of these features are developed during network time evolu-
tion. Here I study models which evolve by preferential attachment leading to the
scale-free and after certain modifications also to the hierarchical network struc-
ture. Methods of complex networks analysis have been applied to the functional
brain networks. I have studied these ad-hoc networks to discover differences in
the structure of brain networks under different conditions.



Abstrakt
(in Slovak language)

Mnohé komplexné siete majú podobné vlastnosti. Tieto siete môžeme oṕısať
vhodnými modelmi. Niektoré z vlastnost́ı týchto siet́ı sa menia počas vývoja siete
v čase. V tejto práci skúmam modely, ktoré rozv́ıjajú siete pomocou preferenčného
pripájania a vedú tak k sieťam s bezškálovou štruktúrou. Modifikáciou týchto
modelov, vieme vytvorǐt modely generujúce siete s hierarchickou štruktúrou Metódy
analýzy komplexných siet́ı som aplikoval pri skúmańı funkčných siet́ı mozgu.
Jedná sa o ad-hoc siete a v mojej práci som sa pokúšal nájsť rozdiely v štruktúre
funknčných siet́ı mozgu vytvorených za rôznych podmienok.

Kľúčové slová: funknčné siete mozgu, komplexné siete, modely dynamických
systémov
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Predhovor

Modely komplexných siet́ı sa úspešne použ́ıvajú na modelovanie mnohých
systémov ako napŕıklad www, Internet, Facebook či infraštruktúra elektrických
rozvodných siet́ı. Prvé pokusy modelovať takéto systémy spravili matematici
Paul Erdös a Alfréd Rényi, ktoŕı sú autormi klasickej teórie grafov [26]. Ukázalo
sa však, že topológia a vývin takýchto systémov sa riadi danými prinćıpmi a
štruktúra vzniknutých siet́ı je odlǐsná od náhodných grafov. Siete malého sveta
(small world), spopularizované experimentom psychológa Stanleyho Milgrama,
ktorý tvrdil, že ľubovǒlný dvaja ľudia sa navzájom poznajú cez najviac 6 svojich
známych a bezškálové siete oṕısané Barabásim a Albertovou [9] sa stali vělmi
populárnymi. Tieto siete sú charakterizované ńızkou seperáciou vrcholov, sebe-
podobnosťou či odolnosťou voči náhodným útokom. Problémom je, že reálne
systémy sú obrovské, rádovo stotiśıcky uzlov a milióny hrán, čo mimoriadne
sťažuje štúdium týchto siet́ı. Na zisťovanie vlastnost́ı takýchto systémov preto
použ́ıvame modely, ktoré nám pomáhajú predikovať a analyzovať budúci stav a
parametre siet́ı.

V mojej práci sa venujem štúdiu modelov komplexných siet́ı a možnost́ı ap-
likácii jednotlivých modelov a metód. Zameral som sa na modely inšpirované
mechanizmami odpozorovanými na reálnych systémoch. Takéto modely nám po-
máhajú lepšie rozumieť procesom vzniku vývoja komplexných. Vďaka nim môžeme
taktiež generovať budúcnosť systémov na základne aktuálne nameraných parame-
trov.
V teoretickej časti mojej práci som spolu s mojimi spolupracovńıkmi modifikoval
súčasný model navrhnutý Dorogovtsevom a Mendésom [20], generujúci bezškálové
siete s dvoma škálovaćımi režimami. Navrhnutou modifikáciou sme dosiahli mož-
nosť manipulovať škálovaćım exponentom vygenerovanej siete, pomocou vstup-
ných parametrov modelu. V reálnych systémoch sa často krát stretávame s hie-
rarchickou štruktúrou siet́ı [52, 51]. Existujú aj modely siet́ı generujúce hierar-
chické siete [51], ale tieto sú založené na inkrementálnom pridávańı determin-
istického vzoru a tak obmedzujú stochastickosť vygenerovanej siete. Preto sme
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vyvinuli stochastický model generujúci generujúci hierarchickú sieť, ktorý nie je
ohraničený uvedenými obmedzeniami. Ako vhodný mechanizmus sa opäť ukázalo
preferenčné pripájanie, za ktorého základ zoberieme klasterizačný koeficient.

Teória komplexných siet́ı a metódy ich skúmania sa ukázali byť v mnohých
pŕıpadoch vhodným mechanizmom pri riešeńı reálnych problémov. Aplikovanie
na reálne problémy nám navyše častkorát prinesie nový uhol poȟladu a pomáha
zlepšǐt teoretické modely či algoritmy. V mojej práci som metódy skúmania kom-
plexných siet́ı aplikoval na výskum v pomerne novej oblasti a tou sú funkčné siete
v mozgu založené na meraniach funkčnej magnetickej rezonancie [16]. Uzlami v
týchto sieťach sú voxely, malé oblasti mozgu ktoré sú merané počas funkčnej mag-
netickej rezonancie. Hrana medzi dvoma voxelmi vzniká ak zmena jedného voxelu
v čase je v korelácii so zmenou intenzity iného voxelu. V mojej práci analyzujem
štruktúru funkčných siet́ı mozgu z poȟladu siet́ı malého sveta, bezškálových a hie-
rarchických siet́ı. Zameral som sa na rozdiely medzi funkčnými sieťami rôznych
osôb počas vykonávania jednoduchých kognit́ıvnych úloh. Študoval som taktiež
funkčné siete ľud́ı s anatomickými zmenami mozgovej štruktúry, ktoré vyvoláva
demencia. Časť môjho výskumu som realizoval na Department of Computer Sci-
ence, Univerzity of Otago, Dunedin, New Zealand, vďaka doc. RNDr. Ľubicy
Beňuškovej, PhD. a Dr. Liz Franz, PhD.
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Chapter 1

Introduction

A lot of systems, such as www, the Internet, Facebook, social interactions, chem-
ical reactions, protein interactions or power grid infrastructure are successfully
modelled by network models. First attempts to model some of these systems have
been done by Hungarian mathematicians Paul Erdös, Alfréd Rényi and Béla Bol-
lobás. In their times random graphs were studied extensively and thus naturally,
random graph models were used to describe such systems. Erdös and Rényi are
authors of classical random graph theory [26]. However it was soon recognized,
that the topology and evolution of these systems are governed by some orga-
nizing principles resulting in a structure different from the structure of random
graphs. Small-worlds popularized by the ”six degree separation” experiment by
the psychologist Stanley Milgram (1967), stating that there was a path of ac-
quaintances with typical length about six between most pairs of people in the
United States [37] and scale-free networks described by Barabási and Albert [9]
becomes very popular. These networks are characterized by a short node separa-
tion, self-similarity or robustness to random attacks and failures [5]. However we
struggle with the fact that these systems are extremely large with hundreds of
thousands of nodes and millions of edges. To study such networks, uncover their
behavior and properties is not always feasible. If possible, network models are
created and used to predict and analyze future structure and parameters of real
networks. Good models with a help of statistical properties of smaller networks
allow us to predict the topology and behavior of large networks and simulate
algorithms.
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CHAPTER 1. INTRODUCTION 2

1.1 Motivation

My interest in studying complex networks is to understand how their structure is
influenced by the dynamical processes. The aim is to find models that evolve to
the networks with specific statistical properties discovered in real systems. These
properties are good to know if we, for example want to build a network with
a good communication capability that is resistant to the damage. Here I study
models inspired by the mechanism observed in real systems. Such models help us
to understand process of network evolution and predict future of the networks
based on characteristics for present and past states. Knowledge of these processes,
structures and statistical properties can be used to design algorithms that can
take advantage of using such information. From the point of view of informatics,
a real networks have a lot of good properties. Together with a high resistance for
random attacks which is important for communication and computer networks,
information about the structure can be effectively used to improve navigation and
search algorithms [68, 36]. For example ability to transfer a signal is influenced
by the network structure [54] and also by the cooperation of transmitters and
receivers [28]. Small world model was used also for improvement of the perfor-
mance of a peer-to-peer network [67]. Here I put several examples of networks
which I have studied in this thesis.

Positional word web: Cancho and Solé [15] have studied the positional word
web [42]. They have shown that the positional word web has small world and scale-
free properties. A generative model for this network was developed by Dorogovt-
sev and Mendés [20]. However there is some discrepancy between the measured
properties and values predicted by models. In Chapter 3 I introduce the model
combining the preferential attachment with a node rewiring for better fit of the
experimental data. To check the relevance of the model and explain its limits, I
have studied numerically positional word web based on the Bible [38].

Clustering driven model: Networks with a certain hierarchy among nodes are
quite common in real world [52, 51]. However proposed models describing hierar-
chy creation are not complex enough to capture the process [51]. In chapter 4 I
will introduce a random model evolving to the hierarchical network. This model
is as a combination of clustering driven preferential attachment and a local rule
of adding edges to the neighbourhood [48].

Functional brain networks: Analyzing large real networks can answer many
questions regarding their structure and evolution. Properties of small world net-
works are responsible for searchability and navigability of networks [59, 68], scale-
free properties points to the self similarity and robustness to the random attacks
or failures. Hierarchicity reveals the high level of organization. In chapter 5 I
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show an application of network theory. I have studied functional brain networks
based on the fMRI data. In my study I analyze small world structure of func-
tional brain networks. I have focused on the differences among the functional
brain networks of individual people while performing a different tasks or having
some structural anatomical changes of the underlying anatomical structure as it
is known by people with dementia.



Chapter 2

Overview

Chapter 2 is devoted to the introduction of necessary terminology and essential
well known network models. In the next part I introduce som basic graph theory
concepts [18]. Section 2.2 describes most important statistical properties used in
studying complex networks. Section 2.3 is left to the models of complex networks
[9, 24, 52, 62, 26].

2.1 Basics of the graph theory

A network is represented by a graph. Basically, we can say that a graph is a set of
nodes connected by a set of edges. However, more formal definition will be useful
[18]:

Definition 1. A graph is a pair G = (V,E) of sets, satisfying E ⊆ [V ]2; thus the
elements of E are 2-element subsets of V . The elements of V are the vertices or
nodes of the graph G and the elements of E are its edges. N denotes the number
of nodes, N = |V | and M denotes the number of edges M = |E|, where || means
the cardinality of the set in question.

Let me introduce terminology I will use in this thesis [18].
Subgraph: A subgraph Gs(Vs, Es) of a graph G = (V,E) is a graph, where

Es ⊆ E and Vs = {u, v : (u, v) ∈ Es}.
Path: A path is a non-empty graph P = (V,E) of the form

V = u0, u1, ..., uk E = u0u1, u1u2, ..., uk−1uk,

where the ui are all distinct. The vertices u0 and uk are linked by P and are
called its ends. The number of edges of a path is its length.
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CHAPTER 2. OVERVIEW 5

Node separation: Node separation is the average of the length of the short-
est path among all pair of nodes:

` =

∑
v,u∈V min(MP |P = (VP = {u, ...., v} , EP ))(

N
2

) . (2.1)

As the networks we have to deal with are usually of high order, we use also
approximative algorithm with a random sampling technique to determine the
node separation [63].

Complete graph: The graph is called complete if every pair of nodes is
connected by an edge. The number of edges in a complete graph is

Mcomplete =
(
N

2

)
, (2.2)

where N is the number of nodes.
Connected component: A connected component is the maximal subgraph

where for every pair of nodes in the component there is a path connecting them.
Directed and undirected graphs: A graph is directed if the edge set con-

tains ordered pairs of nodes. In other words a pair (u, v) means that there is an
edge from the node u to the node v but no edge from v to u. When all edges in
the graph are undirected, then also the graph is undirected.

Node degree: The node degree kv of the node v is a number of edges incident
with the node v. For directed graphs out-degree kout (in-degree kin) denoting the
number of edges pointing from (towards) the node is defined. Average node degree
of a graph is determined as

k =
∑

v∈V kv

N
=

2M
N

. (2.3)

Neighbourhood: Denoted as Γ(v), the neighbourhood of vertex v is the
subgraph that consists of vertices adjacent to v, not including v itself.

Clustering coefficient: Clustering coefficient is defined as the ratio of edges
existing in the neighbourhood of node v and number of edges which exists in Γ(v)
if Γ(v) is a complete graph. The clustering coefficient cv of a node v is defined as

cv =
|E(Γ(v))|(

kv
2

) . (2.4)

Average clustering coefficient c of a graph is simply an average of node clustering
coefficients

c =
∑

v∈V cv

N
. (2.5)

2.2 Statistical properties of complex networks

Real networks have been intensively studied in last ten years [6, 10, 15, 46, 16].
They are usually characterized by several statistical properties such as:
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Degree distribution: Degree distribution is a stationary function p(k) rep-
resenting the probability that a node in a graph has the degree k [3].

p(k) =
∑

v∈V δ(k − kv)
N

. (2.6)

Clustering distribution Distribution of the average clustering coefficients
of nodes with the degree k:

c(k) =
∑

v∈V δ(k − kv)cv
k

. (2.7)

Small world: Surprisingly real networks possess many common properties.
All such networks as the Internet [4], social networks[10], language networks [15],
functional brain networks[16] or phone call networks [1] have a structure com-
bining high clustering coefficient (2.5) with a low separation of nodes. These
networks are called small world networks. This term was for the first time used
by the Hungarian writer Frigyes Karinthy in 1929 [35]. He speculated that any-
one in the world could be connected to anyone else through a chain consisting
of no more than six intermediaries. This hypothesis was verified by Stanley Mil-
gram [44] in his famous Milgram experiment. To express the small world-ness of
a network in one parameter, Humphries et al. [34] introduced a small-world index
measure as:

si = (c/crandom)/(`/`random), (2.8)

where c is the average clustering coefficient of the candidate network and crandom
is the average clustering coefficient of a random graph with the same size. Char-
acteristics ` and `random then denote the node separation of these networks. This
small-world index should be > 1 for any small world network [34]

Scale-free: It was discovered that many real networks have a decaying power
law degree distribution [27]. For this networks, p(k) (2.6) can be expressed as

p(k) ∝ k−γ (2.9)

where γ is a power law exponent.
If the power law degree distribution is a property of real networks, question

arises about the natural creation of such networks. To explain how dynamics
influences network structure, Barabási proposed a model which leads to networks
with a power law degree distribution. He reveals: ”The power law distribution
thus forces us to abandon the idea of a scale, or a characteristic node. In a
continuous hierarchy there is no single node which we could pick out and claim
to be characteristic of all the nodes. There is no intrinsic scale in these networks.
This is the reason my research group started to describe networks with power
law degree distribution as scale-free” [4].

As a result of power law degree distributions, scale free networks have many
nodes with a much higher degree than average. These well-connected nodes are
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called hubs and play an important role in the network connectedness (Fig. 2.1)
Albert and Barabási [5] have shown that scale-free networks are highly resis-
tant to random node attacks. It means that one can remove many randomly
selected nodes and will not harm the connectivity of the network. This makes
them more attractive from the point of view of informatics and signal spreading
in networks. However, under a targeted attack by removing just a few important
well-connected hubs, the network becomes soon disconnected.

Figure 2.1: Structure of scale-free network. Well-connected nodes - hubs are high-
lighted. Scale-free network are highly resistant to random node attack. There are
only few hubs that are critical for the connectedness of the network. However,
it is enough to remove these nodes for a targeted attack to destroy the network
structure.

The scaling exponent of the power law tail can be estimated from the his-
togram. If we make a logarithm of both sides of the power law distribution equa-
tion (2.9), we get ln(p(k)) ≈ −γln(k), which implies that the histogram of degrees
follows a line in the log-log scale.

Hierarchical topology: Many networks are fundamentally modular: one can
easily identify groups of nodes that are highly interconnected with each other,
but have only a few or no links to nodes outside of the group to which they
belong to [51]. These groups can represent friends, co-workers or communities.
This modular organization is responsible for the high clustering coefficient that
can be found in many real networks. These networks have clearly hierarchical
structure. Ravász argues that this hierarchicity can be captured in a quantitative
manner using a scaling law for the clustering distribution [51]. In hierarchical
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networks clustering distribution c(k) (2.7) has the power law character

c(k) ≈ k−δ, (2.10)

which was also verified on several real-world networks[52, 50].

2.3 Network models

In this subsection I describe several well known models. This subsection has aim
to show the state of the art in the theory and model construction of complex
networks. Network features are very useful and there could be a desire to create
networks with such properties. It would be nice to have a power grid networks
resistant to random failures of transmitting nodes or computer networks with
short path between routers. Hence there has been a lot of work on network gen-
erating models in parallel to the empirical studies of large real-world structures.
Thanks to these models we can understand how dynamics influences the network
structure and we can predict the statistical properties of the generated networks
without long generation and computing. These models incorporate local (related
to the node and its neighbourhood) or global (related to the whole network)
rules or mechanism in a way that leads to the creation of a network with desired
characteristics.

2.3.1 Random network

First attempts to model the structure of real networks were done using random
graph models of Erdös and Rényi [26]. Erdös and Rényi introduced two equivalent
random graph models (ER-model). One of them consists of N nodes and m edges
chosen randomly from N(N−1)

2 possible edges - GN,m model. The other model
is the binomial GN,π model. Here we start with N nodes. Every pair will be
connected with probability π, getting the total number of edges MGN,π = π

(
N
2

)
.

The greatest discovery of Erdös and Rényi was that many important prop-
erties of random graphs appear quite suddenly. That is, at a certain probability,
either almost every graph has the property Q, or on the contrary, almost no graph
has it. The transition from a property being very unlikely to being very likely
occurs at critical probability πc(N). If πN) grows slower than πcN as N −→∞,
then almost every graph with connection probability π fails to have Q. If πN
grows somewhat faster than πcN , then almost every graph has the property Q

[26].
Degree distribution of random graphs was studied by Béla Bollobás [13]. In

a random graph with a connection probability p, the degree distribution is a
binomial distribution

p(k) =
(
N − 1
k

)
πk(1− π)N−1−k. (2.11)
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Actually, for large N, the binomial distribution follows the Poisson distribution

p(k) ' (Nπ)ke−Nπ

k!
. (2.12)

Random graphs tends to be spreading. With large probability the number of
nodes at distance l from a given node is not much smaller than kl. Thus the node
separation of random graph is [17, 3]

`random =
log(N)
log(k

). (2.13)

In random graphs, the probability that two neighbours of any node are con-
nected is equal to the probability that two randomly selected nodes are connected.
Then we get that the clustering coefficient (2.5) of a random graph is [3]:

crandom = p =
k

N
, (2.14)

where k is an average node degree and N the number of nodes. One can easily
see that the clustering coefficient of a random network depends on its size, which
is not true for real networks [3].

Random graphs are well known and there is a rich mathematical theory for
the ER models. However, these models are generally insufficient to describe the
structure of real networks.

2.3.2 Small world - Watts-Strogatz model

In their popular paper [64], Watts and Strogatz proposed a simple model (WS
model) of a small world network. In this model a perfect ring structure turns
into a random graph, by manipulating a single parameter [63]. The algorithm
of small world network creation starts with a perfect 1d-lattice, in which each
vertex has precisely k neighbours. It randomly rewires every edge of the lattice,
with the probability p. The schematic picture is in (Fig. 2.2), and the process is
algorithmised as follows:

1. Each vertex i is chosen in turn, along the edge that connects it to its nearest
neighbour in a clockwise sense (i, i+ 1).

2. A uniform random number r is generated. If r ≥ p, then the edge (i, i+ 1)
is unaltered. If r ≤ p, then (i, i+j) is rewired and vertex i is connected to
another randomly chosen vertex j′.

3. When all vertices have been considered once, the procedure is repeated for
edges that connect each vertex to its next nearest neighbour (that is i+ 2),
and so on. In total k/2 such rounds are completed, until all edges in the
graph have been considered for rewiring.
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Figure 2.2: Evolution of network with the WS model construction algorithm for
k = 4. For p = 0, the original 1-lattice structure remains, for p = 1, all edges are
rewired randomly [64].

The greater is the rewiring probability, the more shortcuts between distant
nodes are created. This leads to a fast drop of the node separation `(p) already for
small values of the parameter p. On the other hand, clustering coefficient remains
high and drops down for p → 1 (Fig. 2.3). Thus if we want to generate small
world networks which are known to have small ` and large clustering coefficient,
we have to use parameter p between 0 and 1 [63].

2.3.3 Preferential attachment - Barabási-Albert model

Because random graph models were unsufficient to explain the structure of real
networks, there were attempts to find better models. The most successful one is
a model suggested by Baraśi and Albert. They introduced the idea of preferential
attachment as a natural process of network development [9]. Barabási-Albert
model (BA model) grows in time. Nodes are arriving one at the time. When a
new node arrives it links itself by m edges to some old nodes (m is a constant
parameter). The old nodes are not chosen at random but with some preference. In
the BA model the preference is proportional to an old node degree. The algorithm
as proposed by Barabási and Albert is:

1. Start with a small number (N0) of randomly connected nodes.

2. Every time step add a new node and connect it by m edges to nodes already
present in the graph. These m nodes are chosen preferentially that means
that the probability Π that a new vertex will be connected to vertex i

depends on the degree ki of that vertex

Π(ki) =
kv∑N−1
i=1 ki

. (2.15)
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Figure 2.3: Node separation `(p) and clustering coefficient c(p) for the WS model.
Empirical studies of the networks generated via the WS model has shown that
the node separation `(p) drops from the L1−lattice = n(n+k−2)

2k(n−1) down to size of
`random (2.13) very soon and remains there until p = 1. The clustering coefficient
starts at the size of c1−lattice = 3

4
(k−2)
(k−1) , remains relatively high and drops down

to the small size comparable to that of clustering coefficient of random graphs
crandom (2.14) when p→ 1. [64]

This process leads to the network with a power law degree distribution with
the coefficient γ = 3 (Fig. 2.4). This can be also proven through the analytical
solution proposed by Barabási and Albert [22]. Their solution uses an idea of
continuous approach, which assumes that for large networks the ki is a continuous
variable and thus the BA process can be described by the differential equation

∂ki
∂t

= mΠ(ki) = m
ki∑N−1
j=1 kj

. (2.16)

It is easy to see, that the sum in denominator is
∑n−1

j=1 kj = 2mt−m. Using the
initial condition that every node at its introduction time si has ki(si) = m edges,
we get the solution

ki(t) = m

(
t

si

)β
, with β =

1
2
. (2.17)

With a help of the equation (2.17), the probability that a node degree ki(t) is
lower than k, can be written as [3]
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Figure 2.4: The power law degree distribution at t = 150000 obtained from the
BA model, using m0 = m = 5. The slope of the dashed line is γ = 3. The plot is
made in the log-log scale. [9]

P (ki(t) < k) = P (si >
m1/βt

k1/β
). (2.18)

If we assume that we add all nodes at equal intervals, the probability density of
si is constant (p(si) = 1

N0+t). Substituting this to (2.18), the equation for the
stationary degree distribution reads

p(k) =
∂P (ki(t) < k)

∂k
=

2m1/βt

N0 + t

1
k1/β+1

. (2.19)

For t→∞ solution of (2.19 is [3]:

p(k) ∼ 2m1/βk−γBA , withβ =
1
2

γBA =
1
β

+ 1 = 3. (2.20)

There is another possible analytical treatment of the BA model introduced
by Dorogovtsev and Mendés [24]. It is the master equation approach: Whenever
in the BA process a new node is added, the degree of an old node i increases with
the probability mΠ(k) = k/2t, with the probability 1 − k/2t it stays the same.
The process is described by the master equation

P (k, s, t+ 1) =
k − 1 +m

2t
P (k − 1, s, t) +

(
1− k +m

2t

)
P (k, s, t), (2.21)
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where P (k, s, t) means the probability that at time t the node introduced at time
s has a degree k. Having the probability P (k, s, t), the degree distribution can be
expressed as

p(k) = lim
t→∞

(∑
s

P (k, s, t)

)
/t. (2.22)

Applying
∑t

s=0 and (2.22) to (2.21) and passing to the t→∞ limit, one gets

p(k) +
1
2

[(k +m)p(k)− (k − 1 +m)p(k − 1)] = δk,1. (2.23)

In the continuous k limit, this equation has a form

p(k) +
1
2
∂ [(k +m)p(k)]
∂(k +m)

= 0, (2.24)

which leads to the solution [22]

p(k) =
2m(m+ 1)

(k +m)(k +m+ 1)(k +m+ 2)
, (2.25)

what for large k gives (2.20).

2.3.4 Accelerated growth - Dorogovtsev-Mendés model

Interesting modification of the model of Barabási and Albert was introduced by
Dorogovtsev and Mendés (DM model)[21]. Authors have combined the idea of
preferential linking [9] with the idea of accelerated growth [21]. Supported by
empirical observations, in many networks, number of edges grows much faster
than the number of nodes. This means that there are edges created also between
the nodes already present in the network. This is called acceleration. The idea of
accelerated growth in general is as follows. In each step, in addition to the nodes
attachment as in the BA model (Section 2.3.3) new edges are added between old
nodes. This is included in the DM growing network:

1. Start with a small number (N0) of randomly connected nodes.

2. Every time step add a new node with m edges that connect this node
preferentially to the old nodes (2.15).

3. In the same time create other ct edges and link them to the old nodes
preferentially. c is a small constant (c� 1).

Using a continuous approach [22], the change of the node degree in this model
can be described by following equation:

∂k(s, t)
∂t

= (m+ 2ct)
k(s, t)

t∫
0

du k(u, t)
, with k(t, t) = m, (2.26)
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where k(s, t) is an average degree of a node born at the time s and observer at
the time t. In this particular model it is easy to see, that

t∫
0

du k(u, t) = 2mt+ ct2. (2.27)

Therefore the average degree is:

k = 2m+ ct. (2.28)

The solution of (2.26) using (2.27) is

k(s, t) = m

(
ct

cs

)1/2( 2 + ct

2 + cs

)3/2

. (2.29)

To obtain the degree distribution p(k) we need to solve the equation p(k, t) =
−[t∂k(s, t)/∂s]−1 [20]. The solution is

p(k, t) =
1
ct

cs(2 + cs)
1 + 2cs

1
k
. (2.30)

One can see in (2.29) that k(s, t) scales like ∝ s−
1
2 s−

3
2 . If k scales like s−β,

degree distribution p(k) gives us the power law distribution k−γ , where γ =
1+1/β. This gives us two distinct regimes for DM model (Fig. 2.5). The crossover
point is kcross ≈

√
ct(2 + ct)3/2 [20]. Below this crosspoint γDM = 3/2. Over the

crosspoint γBA = 3.
This model was used by Dorogovtsev and Mendéz to explain two power law

regimes in the degree distribution of the word web [20].

2.3.5 Exponential tail

It is known, that several networks show deviations from the power law degree
distribution. In some networks such as actor networks [10] or those of functional
brain networks [2] degree distribution has an exponential tail for large k. The
question is: what is the reason for such a decay? Common feature of these net-
works are constrains limiting the addition of new edges. For example the actor
networks represent a type of network with the aging of nodes. In this network
nodes are actors. An edge is present if two actors are performing together in a
movie or play. One day, every actor will stop acting. From this time, the node rep-
resenting this actor will stop receiving new links, even if it is a highly connected
node. The aging of nodes thus affects the degree distribution of the network.
Network of neurons in our brain is an example of a network with a limited ca-
pacity of nodes. There are physical boundaries for the number of connections one
neuron can have. When a neuron reaches this number of connections, it will stop
receiving new connections.
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Figure 2.5: Log-log plot of the degree distribution for the DM model with acceler-
ated growth, with the parameters t ≈ 470, 000 and k ≈ 72. Two different scaling
regimes with exponents 3/2 and 3 are seen, together with the kcross point [20]

Aging of nodes in network models was introduced by Amaral et. all [7]. The
idea is following. If a node reaches a certain age or the cost of the node capacity
which is a defined threshold, new edges cannot connect to it. Sometimes a cost
function of adding a new edge to a node, proportional to its capacity is used
to restrict the node degree growth. Numerical results (Fig.2.6) show that both
types of constraint lead to cutoffs of the power law decay of the tail of degree
distribution.

The presence of exponential tail was reported in many scale-free networks, but
not as a result of aging but simply as a finite size effect. This effect is captured
by the following equation:

P (k, t) ∝ k−γe
− k
kcutoff , (2.31)

where kcutoff is the point where the distribution changes from the power law
which scales over the finite region before the cutoff point to the exponential tail
[7].

2.3.6 Hierarchical network model

I have already mentioned that some structural properties are similar in several
real networks. Many real networks combine scale-free structure with a hierarchical
organization of nodes. BA model shows how the scale-free structure emerges, but
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(a) (b)

Figure 2.6: Truncation of scale-free connectivity by adding constraints to the BA
model. (a) Effect of aging of vertices on the connectivity distribution. We see that
aging leads to a cutoff of the power law regime in the connectivity distribution. (b)
Effect of cost (capacity) of adding links on the connectivity distribution. These
results indicate that the cost of adding links also leads to a cutoff of the power
law regime in the connectivity distribution. Both plots are in log-log scale [7].

does not explain the hierarchy. Hierarchy in networks was studied by Ravász and
Barabási [51]. They introduced a network growing process (RB model) leading
to a hierarchical scale-free network

1. Start from a complete graph of 5 nodes (Fig. 2.7− a).

2. In each step generate four replicas of the existing graph and connect the
external nodes of the replicas to the central node of the initial module
(Fig. 2.7− b− c).

Numerical simulations indicate that RB model leads to a network with a
power law degree distribution with the exponent γ = 1 + ln(5)/ln(4) = 2.161
and that the clustering coefficient c ' 0.743 is independent of the size of the
network (Fig. 2.8 − a − c). Hierarchical structure is revealed in the power law
clustering distribution (2.7). The nodes at the center of the numerous five-node
modules have the clustering coefficient c5 = 1. Those at the center of a 25-node
module have k = 20 and c25 = 3/19, while those at the center of the 125-node
modules have k = 84 and c125 = 3/83. Thus nodes with a higher node have
smaller clustering coefficient asymptotically following c(k) ≈ k−1 (Fig. 2.8− b) .

RB model has one significant disadvantage. It is too deterministic to be a
model of real network. Another question is: is the power law clustering distribu-
tion (2.10) valid for all networks with hierarchy, or the δ exponent can change?
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Figure 2.7: The iterative construction leading to a hierarchical network. Starting
from a fully connected graph of five nodes shown in (a), four identical replicas
are created. Peripheral nodes of each new module are connected to the central
node of the initial module, obtaining a network of N = 25 nodes (b). In the next
step, we create four replicas of the 25 node module, and connect the peripheral
nodes again, as shown in (c), to the central node of the initial module, obtaining
a N = 125-node network. This process continues further [51].

To made their model more realistic, Ravász and Barabási proposed a stochastic
model[51]. They modified the RB process. In each step, only a pi fraction of new
nodes is connected to the central node. Remaining new nodes are connected to
the old nodes preferentially. i denotes the i-th iteration of the algorithm. In this
process, increasing p decreases the exponents γ and δ. The presence of such a hi-
erarchical architecture reinterprets the role of hubs in complex networks. With a
decreasing clustering coefficient, hubs have a small chance of linking to each other.
Therefore, hubs play an important role of bridging many small communities of
clusters into a single, integrated network [51].
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Figure 2.8: Scaling properties of the hierarchical model shown. (a) degree distri-
bution. (b) c(k) curve for the model, demonstrating that it follows k−1. The open
circles show c(k) for a BA model of the same size, illustrating that it does not
have a hierarchical architecture. [51]. All plots are in log-log scale.

2.3.7 Random walk model

Another interesting model of a complex network was introduced by Vázquez and
inspired by modeling the WWW surfers as random walkers on a graph [62]. He
claims that local rules are decisive to construct a hierarchy in growing networks.
This model incorporates a different point of view: Is it possible to learn about
the network structure by surfing? If the surfers explore WWW, they do that
by two different processes: jumping randomly to a certain node or exploring the
network by moving along edges (WWW-links). Surfers combine both of these
possibilities. Moreover they also modify the network by adding a new link here
and there. Assume that we have a network but we do not know its structure.
A surfer starts with a randomly chosen node. Then with the probability qe he
decides to follow one edge adjacent to that node or jump to another random node
with the probability 1− qe. Thus surfer reveals the network structure. Each time
he visits a new node this node is ”added” to the network. When visiting a node
surfer can create a new edge to it with a probability qv.

Let us denote vi the probability that a vertex i will be visited and qv the
probability that a visited vertex increases its degree by 1 (an edge is connected
to it). The probability vi can be expressed as

vi =
1− qe
N

+ qeΘki, (2.32)
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where
Θ =

v

k
(2.33)

is the average probability that a vertex pointing to vertex i is visited and ki is the
vertex degree. The first term of (2.32) describes a probability of random jump
to a network node, the other one is the probability that the surfer comes to the
node i from certain neighbour. During a walk vN vertices are visited, adding
qvvN edges on average. Using this we have

∂N

∂t
= va, (2.34)

∂M

∂t
= vsqvvN, (2.35)

where M is the number of edges, and vs and va are the number of surfers and the
number of newly added nodes per unit time, respectively [62]. From equations
(2.33), (2.34), (2.35) we have

Θ =
va

qvvsN
. (2.36)

Using equations (2.32) and (2.36) we can express the probability that the degree
of a vertex of degree k increases by 1 when a surfer walks on the graph as

Ak =
1
N

[
qv(1− qe) + qe

va
vs
k

]
. (2.37)

To find the degree distribution of the network, we have to find the number of
vertices nk with the degree k that satisfies the rate equation [23, 62]

∂nk
∂t

= vsAk−1nk−1 − vsAknk + vaδk,0. (2.38)

For the networks with a constant growth rate, which satisfies the condition that
vs/va is constant, the degree distribution reaches a stationary state and we can
write

nk(t) = Np(k), (2.39)

where p(k) is the stationary probability that a vertex has the degree k [62].
Substituting this expression in (2.38), we obtain that the asymptotic behavior
for large k is

p(k) =
1

1 + a

Γ[a(γ − 1) + k]
Γ[a(γ − 1)]

Γ[(1 + a)(γ − 1) + 1]
Γ[(1 + a)(γ − 1) + k + 1]

, (2.40)

where
γ = 1 +

1
qe
, a =

vs
va
qv(1− qe) (2.41)

and Γ denotes the Gamma-function.



CHAPTER 2. OVERVIEW 20

To get (2.40) I and my co workers found another approach [48]. Using the
fact that p(k) is stationary distribution and including (2.39) in (2.38) we have

∂Np(k)
∂t

= −vs [AkNp(k)−Ak−1Np(k − 1)] + vaδk,0. (2.42)

For large k it is possible to take k as a continuous variable [22] and take the
change from k− 1 to k as small. With a help of (2.34) and (2.37) one can rewrite
the equation (2.42):

∂Np(k)
∂t

= −∂AkNvsp(k)
∂k

, (2.43)

vap(k) = −vs
∂
[
qv(1− qe)p(k) + qe

va
vs
kp(k)

]
∂k

(2.44)

∂p(k)
p(k)

=
va(1 + qe)∂k

(qe − 1)vs − qevak
. (2.45)

This leads to the solution

p(k) ∝ k−γ , γ = 1 +
1
qe

(2.46)

The solution is in a perfect agreement with Vázquez [62]

Hence we can see that the random walk model leads to the power law degree
distribution showing the scale-free structure of the explored part of the network.
Vázquez[62] provides also analytical evidence that clustering distribution of the
explored network scales as

c(k) ≈ 2(1 + qe)
k

≈ k−1. (2.47)

This indicates that this model creates hierarchical network.
To explore all of the models describing complex networks is beyond the scope

of this work. I chose to present a deeper intrigue only to those models, which are
decisive for my own studies. In the next chapters I am presenting my own results
on positional word web, network hierarchy and functional brain networks. This
work has been done in cooperation with my co-workers Mária Markošová, Ľubica
Benušková and Boris Rudolf.



Chapter 3

Positional word web

3.1 Introduction

Word webs have been studied by Cancho and Solé [15], Dorogovtsvev and Mendés
[20] and Markošová [40]. In the positional word web nodes are words and edge
is added if two words are neighbours in a sentence. Cancho and Solé studied
positional word web created from texts in the English national corpus (CS word
web) [15]. The authors have shown, that the degree distribution indicates prefer-
ential addition of nodes. But there are two different scaling regimes, one for well
connected kernel lexicon words and the other for less connected ones. By kernel
lexicon we understand the basic set of words common for all people using the
same language. They guess, that the kernel vocabulary has different dynamics,
than the non kernel one.

The results of Cancho and Solé were revised by Dorogovtsev and Mendés and
by us [20, 40]. Markošová [40] proposes a model which gives possible explana-
tion of the difference between measured data and the explanation of two scaling
regimes given by Dorogovtsev and Mendés. [20]. This model extends the DM
model (2.3.4) with a rewiring of existing edges. I made detailed studies of the
proposed model, and a numerical and analytical one as well. I have created a
word web of the ancient text, The Bible, which did not change its vocabulary for
several hundreds of years. I have used The Bible positional word web (BWW) to
test the proposed model. In this chapter I present results of these studies [47].

3.2 Word web

Lexicon of the human language is composed of hundred thousands of words.
Let us have, for example the English language. English national corpus consists
of about 500000 words [15]. Not all of them are used by all members of the

21
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English population. There are words, which are frequent and understandable for
everybody, independently of their age, education, etc. This set is called kernel
lexicon and includes about ten thousand words.

What is the structure of the lexicon and how is it implemented in our brain?
By structure I do not mean the correspondence with the anatomical brain net-
works, but simply how the word is used. How one word leads to the retrieval of
accustomed lexical structures. For example, how is it used in sentences? This is
a good question, if we have in mind, how great the word database is and how
quickly our brain retrieves in it. Several studies have been made to find the an-
swer [15, 46, 63]. All of them shows, that the structure of positional word web is
scale free and small world like.

As I have already mentioned in Sections 2.2 and 3.1, degree distribution of
the positional word web indicates scale free structure (2.9), but with two differ-
ent scaling regimes [20]. For well-connected words with great degree, the scaling
exponent γ2

DM is close to γBA = 3. Less connected words scale with γ1
DM = 1.5.

Empirical results of Cancho and Solé [15] were explained by the model of Doro-
govtsev and Mendés [20] (2.29).

Dorogovtsev and Mendés do not agree, that the different scaling means dif-
ferent dynamics in kernel and non kernel vocabulary. They rather reason, that
the two scaling regimes occur due to some additional processes running together
with the preferential node addition (see 2.3.4).

In addition to the well known Albert-Barábasi mode [9], the DM process
includes the following process:

1. Start with a small number (N0) of randomly connected nodes.

2. Every time step add a new node with m edges that connect this node
preferentially to the old nodes (2.15).

3. Simultaneously with addition of a new node with m edges, add ct

new edges (that means 2ct edge ends, c << 1) unit and connect
the old nodes with a preference.

What all this means in the word web terminology? The new nodes are in fact
new words which time to time appear in the vocabulary. They are included in
the context of the old ones. But simultaneously, several old words (nodes) enrich
their own meaning. They are used with some words, with which they have not
been used before. Let us mention one example. To tell the sentence ”Portable
computer has a new design” in sixties had no sense. Word ”computer” was not
used together with ”portable”, because computers were big devices. Now it is
quite OK.



CHAPTER 3. POSITIONAL WORD WEB 23

As we already know (2.29), in the DM model k(s, t) scales with s as k(s, t) ∝
s−β. It has been shown, that scaling exponent γ of the degree distribution (p(k) =
k−γ) is related to β as [21]

γ = 1 +
1
β
. (3.1)

In the case of the DM model k(s, t) ∝ s−
1
2 s−

3
2 . For s << t (well connected

words) βDM = 1
2 and γ2

DM = 3, and for s ∼ t (less connected words) βDM = 1
2 + 3

2

and γ1
DM = 1.5 [20].

DM model therefore explains the two scaling regimes in the degree distribution
of the CS word web. But, as it has been measured by Cancho and Solé [15], the
scaling exponent of the steeper part of the real word web is not γBA = 3, but
somewhat lower (γ = 2.7). The difference between measured and theoretical
values indicates, that there might be other processes, not included in the DM
model, which influence the distribution [40].

3.3 Word web model

What are the other processes, which should be considered? Let us reason a little.
New words are created and added to the vocabulary all the time, of course. But
not only this. The meanings of old words also develop in time. Some of them
appear in a new context. Sometimes they loose some of their previous meanings,
and get another.

In the network terminology the addition of a new context means the appear-
ance of new edges between old words. This has been encountered in the DM
model, leading to the two different scaling regimes. Losing a meaning and getting
a new one means, that some ends of old edges are rewired. Edge rewiring can be
preferential, random, or a combination of both.

To fit the measured data in the CS word web [15, 38] a minimal model in-
spired by the DM model and by [23] was suggested [40]. In this new model, these
processes are included:

1. Start with a small number (N0) of randomly connected nodes.

2. Every time step add a new node with m edges that connect this node
preferentially to the old nodes (2.15).

3. Simultaneously with addition of a new node with m edges, add ct new edges
(that means 2ct edge ends, c << 1) unit and connect the old nodes with a
preference.

4. In the same time select randomly mr old nodes and rewire one
edge end of each of them preferentially.
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If these processes run a long time, continuum approach [23] is describing the
average degree k(s, t) of node s in time t. In this approximation k(s, t) is a con-
tinuous variable. The dynamical equation describing above mentioned processes
is as follows:

∂k(s, t)
∂t

= (m+ 2ct+mr)
k(s, t)∫ t

0 k(s, t)ds
− mr

t
(3.2)

The first addend in (3.2) defines preferential linking. The second one repre-
sents random selection of edge ends to be rewired. In the first addend the term
m k(s,t)R t

0 k(s,t)ds
represents preferential linking of m new edges, 2ct k(s,t)R t

0 k(s,t)ds
describes

preferential linking od 2ct new edge ends among old nodes and mr
k(s,t)R t

0 k(s,t)ds
tells

that mr edge ends are rewired preferentially.
To solve this equation, the integral

∫ t
0 k(s, t)ds, giving the sum of all degrees

in the net, needs to be specified. This sum is influenced only by the new link
creation; rewiring left it unaffected. Because the only edge creation processes are
the same as in the DM model, the integral is given by (2.27).
Substituting (2.27) into (3.2) the equation (3.2) is reformulated:

∂k(s, t)
∂t

= (m+ 2ct+mr)
k(s, t)

2mt+ ct2
− mr

t
(3.3)

This is a simple linear first order differential equation of the type

∂y

∂x
= −f1(x)y − f2(x) (3.4)

with the solution

y = e−
R
f1(x)dx

[
φ−

∫
f2e

R
f1(x)dx

]
. (3.5)

Using (3.5) we get

k(s, t) =
(
t

s

)A( 2m+ ct

2m+ cs

)2−A
g(s, t) (3.6)

where A = m+mr
2m and

g(s, t) =
1

m2 −m2
r

(
m+

mr

m2 −m2
r

[
M1 +M2

(
s

t

)A(2m+ cs

2m+ ct

)2−A])
(3.7)

where M1 = (2m+ cs)(m−mr + cs) and M2 = (2m+ ct)(m−mr + ct).

Then the leading term of (3.6) is
(
t
s

)m+mr
2m

(
2m+ct
2m+cs

)2−m+mr
2m

. If m 6= mr, g(s, t)

(3.7) doesn’t influence the solution too much. From (3.6) it is clear, that
-if s << t, β = m+mr

2m and γ = 2 + m−mr
m+mr

,
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-but if s ∼ t, β = 2− m+mr
2m + m+mr

2m = 2 and thus γ = 1.5.
In the model (3.2) scaling exponent γ is lower then the value γBA = 3 in the
region of great k, but maintains the value 1.5 in the region of small k-s. This is
exactly what has been measured by Cancho and Solé [15]. DM model describes
their data but the scaling of the degree distribution (2.6) is γ2

DM = γBA = 3
in the steeper part. Additional effect of link rewiring included into the model
removed this discrepancy.

3.4 Numerical studies of the word web

My goal was to test if the model (3.2) also fits the distribution of the real word
web of a special kind. Namely, I wanted to know, whether the word web based
on an ancient text, which has not changed for a long time, has the same two-
modal scaling, as the web based on the modern English vocabulary. In restricted
vocabulary of The Bible no new words are added in time and no words change
their meaning or context.

To do this, I have created a positional word web on the basis of several
versions of English translations of The Bible (BWW net) [12]. First the small
world properties of each BWW net were measured. All parameters are collected
in the Table 3.1. As shown, all word webs combine high clustering with small
node separation, which is typical for the small world networks [63].

version N c ` k

kjv 11592 0.771 2.18 47
drv 11379 0.772 2.18 47
asv 10077 0.778 2.18 47
nrsv 14717 0.718 2.24 50
bev 4942 0.774 2.12 70
prg 21104 0.700 2.27 49

Table 3.1: Properties of positional BWW. Here N is the number of distinct words
in the text, c is the BWW clustering coefficient, ` denotes the node separation, k
the average node degree. We have used several versions of The Bible [12]. Some of
them, such as King James version (kjv), Douay Rheims version (drv) are old (kjv
has been issued in the year 1711, drv is even older, 1582), the others (American
Standard version, asv, 1901; Basic English version, bev, 1941; New Revisited
Standard version, nrsv, 1989) are relatively modern. bev is special, because its
text has been artificially simplified. It is reflected in slightly different parameters
in the table. prg is the word web created from the selected books found in the
Project Gutenberg web page [31]. This has been added for comparison of the
parameters of the ancient and the modern text.
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I have also generated artificial networks, programming the processes proposed
in the previous Section (3.2). The parameters of the model were taken from the
kjv and the prg word webs. In the experiment of Cancho and Solé [15], there are
no multiple edges considered. The analytical equations (2.26, 3.2), however, do
not exclude them.

To test the role of multiple edges, artificial networks (having N = 20000
nodes) were developed, once with allowed and also disallowed multiple edges.
Degree distributions of all networks (BWW, artificially created) are depicted on
(Fig. 3.1), together with corresponding average scaling exponents. All of the
networks have the power law degree distribution indicating scale free structure,
but there are no two scaling regimes present.

The most probable reason of this discrepancy between the theory (3.2) and
the data is, that our data sets are too small. In the DM model, there is a crossover
point [20]

kcross = m(ct)
1
2 (2 + ct)

3
2 (3.8)

between the two scaling regimes. Calculating kcross for generated networks with
N = t = 20000 nodes and kjv and prg parameters (m = 4, c = 0.003 for kjv and
0.002 for prg ,mr = 2) we get kcross values out of the k - range of the degree
distribution (Fig. 3.1). To test this hypothesis, I have decreased parameter c in
(3.8) to get lower kcross. Now, as seen on (Fig. 3.3), the crossover point is clearly
visible. It is therefore true, that huge amount of nodes or very small parameter
c is necessary to get the visible crossover point. On (Fig. 3.3) we can see that
the kcross point is not at the value of 200 predicted of the DM model. One can
argue that this is due to the fact, that kcross is calculated for the DM model and
not for our model. Unfortunately, I was not able to find analytical prescription
for the kcross for our word web model (3.2).

For all networks, I have also measured the clustering distribution (2.7). I
have found that in all cases power law tail is present in the distribution. For the
generated networks the scaling exponent is, however, quite low (≈ 0.5), indicating
only a weak hierarchy for the well connected nodes (Fig. 3.2).

3.5 Conclusions

In conclusion, I have presented a model of growing network, that explains the
difference between the exponent of the steeper part of the degree distribution
predicted by the DM model [20] and the value measured by Cancho and Solé
[15] in their positional word web. The model includes additional event, such as
preferential edge rewiring (3.2). In the word web terminology this process means,
that certain word loses one of its meanings, or contexts, and gains a different one.
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Although this model of growing network was inspired by the language data, it
has a general relevance to all networks growing by the included processes.

To verify the validity of the model for another real word webs, I developed
positional word web for several English translations of The Bible. Using the net-
work creating processes expressed by the model (3.2), I have generated several
networks in which I first disallowed and then allowed multiple edges between
nodes. For all networks degree distribution has been measured, showing no two
scaling regimes (Fig. 3.1). I have shown numerically that there are two possible
reasons for this. Either it is due to the small network size, or the parameter c
is too big. The second regime appears in a network, if there are nodes with a
higher degree than kcross parameter (3.8) (Fig. 3.3). Because kcross in (Fig. 3.1)
is out of the k - range, we have to compare scaling exponents to γ1

DM = 1.5. For
the BWW network the scaling exponent is close to 1.7, which is different from
the predicted value. I do not know the reason of this discrepancy. It is possible,
that BWW - s are too small to get a good and long enough linear part in the
degree distribution, and thus more accurate γ measurement. From (Fig. 3.1) it
is possible to see, that the γ exponents of artificial networks without multiple
edges are closer to the theoretically predicted value 1.5. This is surprising, be-
cause theoretical models do not exclude multiple edges (2.26, 3.2 ). On the other
hand, multiple edges were excluded during the creation of the BWW and prg
networks. Measuring of clustering distribution (2.7) has shown that there is a
weak hierarchical structure in all networks.
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Figure 3.1: Log-log plot of degree distributions of the word webs, with their γ ex-
ponents. (a) kjv bible version network, (b) generated network (kjvGen), without
multiple edges allowed (parameters were following: t = 11592, m = 4, c = 0.003,
mr = 2) (c) network generated with the same parameters, but multiple edges
allowed (kjvGenME). (d) prg network. (e) generated network (prgGen), without
multiple edges allowed (parameters were following: t = 21104, m = 4, c = 0.002,
mr = 2) (f) generated with the same parameters, but multiple edges allowed
(prgGenME). Parameters of the generated networks were chosen to generate net-
works with the characteristics similar to the kjv and prg networks
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Figure 3.2: c(k) - clustering distribution of the word webs. (a) kjv bible version
network, (b) generated network (kjvGen), without multiple edges allowed (pa-
rameters were following: t = 11592, m = 4, c = 0.003, mr = 2) (c) network
generated with the same parameters, but multiple edges allowed (kjvGenME).
(d) prg network. (e) generated network (prgGen), without multiple edges allowed
(parameters were following: t = 21104, m = 4, c = 0.0025, mr = 2) (f) generated
with the same parameters, but multiple edges allowed (prgGenME). Parameters
of the generated networks were chosen to generate networks with the characteris-
tics similar to the kjv and prg networks. All distributions have power law regime
with for large k. Plots are in log-log scale.



CHAPTER 3. POSITIONAL WORD WEB 30

kcross

10 20 50 100 200 500 1000
k10-6

10-5

10-4

0.001

0.01

0.1

pHkL

Figure 3.3: Log-log plot of the degree distributions of the generated network
(gen20000) with no multiple edges. Parameters were: t = 20000, m = 4, c =
0.0003, mr = 2. With a low parameter c, the crossover point kcross is present in
the distribution.



Chapter 4

Clustering driven model

4.1 Introduction

Real networks often combine hierarchical structure with scale-free structure. BA
model reveals how the latter emerges during the network evolution, but BA net-
works does not show any signs of hierarchy. Therefore natural question arises: Is
there a special dynamical process creating hierarchy in the network? This ques-
tion has been studied by Ravász and Barabási [51]. They speculated, that the
hierarchy is established by iterative addition of a certain pattern, and proposed
deterministic and randomized version of such addition. I described their model
in chapter 2. They also found, that a power law analogical to (2.20) governs a
scaling of clustering distribution.

c(k) ∝ k−δ, (4.1)

where δ is a scaling exponent and c(k) an average clustering coefficient of nodes
having the degree k. This is a significant difference from the Barabási - Albert
model (2.3.3), in which average clustering coefficient c(k) does not depend on k,
but is rather constant for all k-s.

In our studies [48] we examine, whether there exists another simple natural
growth process resulting in the hierarchical scale free network structure. Similar
models with local rules, but randomly driven, were studied by Vázquez [62]. In
Section 4.2 I describe a simple clustering driven model. In collaboration with
my co-workers I show analytically, that the pure clustering driven addition of
nodes does not lead to the hierarchical scale free network structure. I agree with
Vázquez [62], that local rules, regardless of the attachment kernel, are decisive.
Nevertheless, our model is not the same as that of Vázquez. Detailed analytical
and numerical studies of our clustering driven model as well as that with random

31
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attachment kernel, are presented in section 4.3. Section 4.4 includes discussion
and some concluding remarks.

4.2 The model

As described before (2.3.6), RB model reveals how hierarchy in the network is
established. Nevertheless the process itself is somewhat artificial. It is difficult to
find an equivalent of such strict pattern addition in the nature.

Models with local rules leading to the scale-free and hierarchical properties
of networks were introduced by Vázquez [62]. This model has been described in
Chapter 2. He describes mathematically how several surfers are exploring net-
work structure by walking randomly on it. Description of Vázquez model, with
a solution of this model using a continuous approach is in Section 2.3.7. My goal
was to find a model inspired by more natural growth process (such as preferential
attachment, for example), leading to the hierarchical network and to reveal the
impact of local and global rules on the network structure. Here I describe our
clustering driven model (CD model) [48]. The process is defined as follows:

1. We start from a small network, for example three completely interconnected
nodes.

2. Then we add a new node at each time unit; it brings m > 1 new edges into
the system. Nodes are labeled by the time s in which they join the system.

3. One of the edges links itself to an old node s with the probability propor-
tional to the clustering coefficient of the node s. Thus the linking probability
of the new node s′ to and old node s is

Π(s) =
c(s)
W (t)

, (4.2)

with W (t) =
∑t

i=1 c(i). The other m − 1 edges are randomly distributed
among the neighbours of the node s. To make the growing process indepen-
dent of the initial module, we also use the attachment probability Πnew(s)

Πnew(s) =
1 + c(s)
t+W (t)

. (4.3)

Now, if the clustering coefficient of the node s is zero, there is still a proba-
bility 1

t to choose it. Because each time unit one node comes to the system,
at time t number of nodes in the network N(t) ≈ t. For great t both Π
(4.2) and Πnew (4.3) have the same behaviour, because W (t) = ct, where
c is an average clustering coefficient of the network 2.5. I support this by
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numerical simulations and I have shown that the behavior of CD model is
the same for π and πnew.

This process might be an analogy of how the real groups of interest grow.
Let us have, for example, a group of ramblers. A new rambler, wishing to join
some group, often finds a central person leading a group and planning the trips,
and, perhaps, contacts this person. This central person usually knows all key
members and these key members form a dense cluster. Majority of them know
each other, so the clustering coefficient of the central person is rather high, even
close to one. When joining the group, a new member makes friends among other
persons belonging to it. Of course, some of his (or hers) new friends are members
of the other rambler societies, or other groups of interests (photographers, tennis
players etc.) and this way one gains contacts in the other clusters as well.

4.3 Results

Let me start the analysis of the CD model from its most simple variant. Initial
network forms a small circle consisting of three nodes and three edges, all nodes
thus having clustering coefficient one. Each time step one node and m = 2 edges
are added. One of the two edges links itself with the clustering preference to the
older node s, the other chooses randomly between the neighbours of s (Fig. 4.1).
In this simplified CD model (SCD model) the node s can thus gain a link by the
two possibilities:

- By the clustering driven preference.

- In a case, that a node is a neighbour of another one, which has been chosen
by the clustering driven preference.

Numerical studies show (Fig. 4.2), that such network has scale free hierarchical
structure (2.7).

In this SCD model, node clustering coefficient is a simple function of the node
degree

c(s) =
2(k(s)− 1)
k(s)k(s− 1)

=
2
k(s)

, (4.4)

due to the fact, that each time a new triangle of nodes is created in the network.
The number of edges among nearest neighbours of the node s at time t is k(s, t)−1.

First let me show, that the clustering driven node addition itself is not re-
sponsible for the scale-free structure of the network. Here I present an analytical
solution of the growing clustering driven network in which each time unit only
one node and one edge is added. Node linking probability is proportional to k−1.
Average degree k(s, t) of the node s evolves with time t as
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s'=1

s"=2

s

Figure 4.1: Node attachment in the SCD model. We start with a triangle (white
nodes). Every node has a clustering coefficient equal to 1. In next time step, we
attach node with index s′ = 1, which brings two new edges (m = 2 for the SCD
model) marked with solid lines. Attaching an edge to an old node s is driven by
clustering preference (4.2). Another edge is attached to the neighbourhood of the
node s. The process continues further. In the CD model m − 1 edges are added
to the neighbourhood of the node s.

∂k(s, t)
∂t

=
k(s, t)−1∫ t

1 k(s, t)−1ds
. (4.5)

Let us suppose, that the solution of (4.5) has the form

k(s, t) = b[f(s) + g(s)]α (4.6)

Then, with a help of the equation (4.5), we get

k(s, t) =
[
2

1
2 [f(s) + g(t)]

] 1
2 . (4.7)

where the expressions 1−α = α and b2α = 1 are used. From the initial condition
k(t, t) = 1 and the equation (4.7) it is possible to derive, that f(s) = 1

2 − g(s).
Seeking g(t) in the form g(t) = loga(t) we finally have

k(s, t) =
[
2

1
2

[
1/2− loga

(
t

s

)]] 1
2

. (4.8)

and
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Figure 4.2: Log-log plots of the degree and clustering distributions for SCD model
(m = 2, N = 20000).

g′(t) =
1∫ t

1
ln2(a)ds

[ln(a)+2ln( t
s
)]

1
2

=
1

f(a)− (aπ)
1
2 t[Erf(d(a)

1
2 )− Erf((d(a) + ln(t))

1
2 )]
,

(4.9)

where f(a) = 2
1
2

ln2(a)
and d(a) = ln(a)

2 . For great t the error function Erf
((

ln(a)
2 +

ln(t)
) 1

2
)

= 1 and from the equation (4.5) we find that a = 2.964. It is well known

that such solutions as (4.8) do not lead to the power law degree distribution,
but the distribution decreases exponentially [3]. We can therefore state, that the
clustering driven node linking preference itself is not responsible for the scale-free
network structure.
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SCD model can be compared to the model of Vázquez (2.3.7) with only one
surfer and the probability one, that a visited vertex increases its degree by one.
The SCD model differs from that of Vázquez, by the way of the edge addition.
In the most simplified version of the V model, each time unit one edge or one
edge and one node is added. We can compare the SCD model with a simplified V
model, where the parameter qe (the probability of following an edge from selected
node) is set to 1

2 , because we add two edges in one time unit. SCD model also
introduces the clustering driven preference (4.4) into the rate equation (2.38).
Having in mind the above mentioned facts, the probability Ak (that the degree
of a vertex of degree k increases by 1 when a surfer walks on the graph) in our
SCD model is:

Ak =
1
N

[
(1− qe)

2
kc

+ qevak

]
, (4.10)

where c is an average clustering coefficient (2.5) and qe = 1
2 .

Analogically, as in 2.3.7, using the fact that vs = 1, and introducing (4.10) in
(2.38) we get the equation from which we are able to derive the degree distribution

∂Np(k)
∂t

= − [AkNp(k)−Ak−1Np(k − 1)] + vaδk,0. (4.11)

For large k we can use a continuous approach and with the help of (2.34) and
(4.10) rewrite the equation (4.11):

∂Np(k)
∂t

= −∂AkNp(k)
∂k

, (4.12)

vap(k) = −∂ [qv(1− qe)/(2kc)p(k) + qevakp(k)]
∂k

(4.13)

∂p(k)
∂k

= p(k)
va(1 + qe) + 2(1−qe)

k2c

(qe − 1) 2
kc − qevak

. (4.14)

For qe = 0, these equations describe the same model as in (4.5) In this model
only one node and one edge with a preference proportional to k−1 are added at
each time unit. The solution of (4.14) with qe = 0 shows directly that the cluster-
ing driven term of Ak is not responsible for the scale-free structure of the network.

For qe 6= 0 the solution of this equation (4.14) is

p(k) ∝ k−γ , γ = 1 +
1
qe

(4.15)

which also agrees with the solution of Vázquez [62].
As stated before, in the SCD model, clustering coefficient is given by the

equation (4.4). From (4.4) and (4.1) it is obvious, that the scaling exponent
δ = 1. This was also verified by numerical simulations (Fig. 4.2).
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The generalized clustering driven model (CD model) with m > 2 links added
at each time step has been studied numerically. I have developed a network with
N = 20000 nodes and m = 3. The significant difference of our model and that
of Vázquez [62] is, that in the Vázquez model, the exponent of the degree distri-
bution γ depends on the parameter qe (4.15). In our model, as m grows, scaling
exponent γ quickly adjusts itself to the value γ = 3. This holds even for the
randomly driven model where the clustering preference is replaced by a random
choice (Fig. 4.6b). The reason is simple. Number of edges in the Vázquez model
changes with time as

∂E

∂t
= vN. (4.16)

where v = qe
k
N . In CD model each time unit a fix rate of edges (m > 2) is added.

That means that the equation (4.16) is rewritten as

∂E

∂t
= m = qek. (4.17)

It is easy to calculate the average degree k for our model.

k=
∑N

i ki
N

=
2mt
t

= 2m. (4.18)

Incorporating this equation into (4.17) we get, that qe for all m is

qe =
m

k
=

m

2m
=

1
2
, (4.19)

That means that the degree distribution scaling exponent γ = 3 (4.15), as it is
also confirmed by the numerical simulations (Fig. 4.4a).

For the CD network, I have calculated numerically an average clustering coef-
ficient c and found, it to be rather high, c = 0.6. I checked its independence of the
network size and examined the small world properties of the network. Separation
of nodes (2.1) changes with system size as ` ∝ log(N) (Fig. 4.3), confirming the
small world network structure.

As it was written before, our clustering driven process leads to the scale
free network with hierarchy. It is also true for the same process with random
attachment kernel. These facts are reflected in the power law scaling of p(k) and
c(k) (Fig. 4.4, 4.7, a, b), (4.1, 4.15), where
γ exponent is independent from the number of new edges m (Fig. 4.6b, 4.7c). On
the other hand exponent δ seems to decrease with m as m−α, where α = 0.1
(Fig. 4.6a).

To check how the properties of CD model depend on the initial conditions,
I have evaluated our model with πnew for a set of initial modules (star, circle,
triangle). I have found that γ and δ exponents are independent of the initial
conditions.
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Figure 4.3: The dependence of the ` on the system size for CD model. N is the
size of the network. The line represents 1

2 log(N) in the log-linear plot.

How does our network look visually? To show this, I have visualized both CD
models with π and πnew for the same m and in the same stages of development
(Fig. 4.5). CD models with π and πnew does not seem to show any visual differ-
ences. The visualization has been made with a help of Network Workbench tool
[58].

To conclude this section, I agree with Vázquez, that independently of the
node attachment kernel, local rules are decisive for the scale free property and
hierarchy in the final network topology. It is due to the fact, that the local rule
introduces effective preferential attachment [62]. When new node comes to the
system, it adds new edges to the neighbours of some old node. Thus the nodes
with more neighbours (higher node degree) have better chance to gain a new
edge. This was an effective preferential attachment introduced to the CD model.

4.4 Conclusions

I and my co-workers propose a clustering driven model of growing network (CD
model). We have found, that simplified version of this model can be compared to
the Vázquez network with the parameter qe = 1

2 , one surfer and the probability
of new link addition equal one (V model) [62].

Difference in CD and V model lies in the node and edge adding rule. In
our CD model, each time unit one node and a fixed ratio of edges come to the
system. This is not true for the V model. In the CD model we use the clustering
preference for the new node linking, but as I have shown, this is not substantial.
Degree distribution of the clustering driven model and the model with random
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Figure 4.4: Degree (a) and clustering (b) coefficient distribution for CD network:
N = 20000 nodes, m = 3 and attachment probability πnew. Both plots are log-log.

preference scales as p(k) ∝ k−γ , where γ = 3. Nevertheless these models differ
from that of Vázquez [62]. Together with my co-workers, I have shown analytically
that exponent γ = 3 is independent on the other network parameters, contrary
to the V model, where γ = 1 + 1

qe
, qe being the probability of surfer to follow a

link incident to the chosen node.
In the numerical studies of the CD model, I have shown that the growing

process creates a network with hierarchy, as well as the scale free property. Such
networks are ubiquitous in the nature, even more then simple scale free nets
lacking hierarchy in node ordering.
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(a) (b)

Figure 4.5: Visualization of CD networks. (a) CD model with attachment prob-
ability π. (b) CD model with attachment probability πnew. Number of nodes in
both networks is 100 nodes and the parameter m = 3.

In agreement with Barabási and Ravász I have shown, that addition of a
certain pattern is necessary to establish a hierarchy in the network. However,
this pattern does not consist of a fixed module. It is rather created naturally by
connecting m− 1 neighbours of aSSS certain node s to a new coming node s′. I
also agree with Barabási and Ravasz that the δ exponent (4.1) is m dependent
and thus non universal. I have shown numerically, that both γ and δ exponents
are independent of the initial conditions.

To summarize, we have found a process which leads to the hierarchical scale
free network. In this process local rules pre-dominate the global rules of choosing
a new node.
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Figure 4.6: (a) δ dependence on the number of new edges m. δ decreases with
m as m−α, where α = 0.1. (b) γ dependence on the number of new edges m.
Calculated for CD network with 20000 nodes, attachment probability is πnew.
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Figure 4.7: Random model with the local rule. At each time a node is attached
and connected with an edge to one randomly chosen existing node s. Then it is
connected with m − 1 nodes in the neighbourhood of the node s. Network has
N = 20000 nodes, parameter m = 3. (a) degree distribution, (b) the dependence
of the clustering coefficient on the node degree (c) the dependence of the degree
distribution exponent γ from the parameter m. All plots are in the logarithmic
scale.



Chapter 5

Functional brain networks

5.1 Introduction

Complex network theory is not only theoretically interesting, but has also prac-
tical applications. To study a model is useful, because with a help of the model
one can explain properties of various real networks. For example a small-world
model was successful in an effort to improve the performance of the routing in
the peer-to-peer Freenet network [67]. High ability of using local information to
find a target in semiinformative search reported by Milgram [44] was used to find
a decentralized search algorithms, working for example on the US airline network
[59]. Models of complex networks were successfully used to model network of In-
ternet routers [27, 66], word wide web [4], language networks [15, 40, 20], protein
interactions [45], large social networks in investigation and optimization prob-
lems relating to the spread of information or diseases in these networks [63, 57],
composing music using structures found in compositions of famous artists [60]
and many others [52, 6, 3]

One of many areas, where complex networks can help to understand the struc-
ture and processes behind, are functional brain networks [16]. Brain functional
networks are extracted from functional magnetic resonance imaging (fMRI). fMRI
is a technique of in vivo brain activity imaging [33]. It measures the blood oxy-
genation level dependent (BOLD) signal, related to neural activity in the brain.
Signal from the whole brain is recorded sequentially in slices of thousands of voxels
(Fig. 5.2). fMRI data are used to visualize the brain activity, to study the struc-
ture and active voxels under various conditions, localize brain areas responsible
for different functions of the brain [56] . In addition, it is possible to analyze the
data to seek the underlying functional brain networks, i.e. networks of functional
units that temporarily self-organize themselves to engage in a given task or to
engage in spontaneous background activity during the rest condition [16]. Geisel

43
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et. all [19] and later Chialvo et. all [16] used graph theory to study the structure
of functional brain network. These networks should depict the functional depen-
dency between different voxels. To create a network from the measured data, one
considers voxels to be nodes of the network, link between two voxels is created if
their activities are well correlated through time. Some studies have shown that
functional brain networks have characteristics of small world networks and that
they have power law degree distributions which indicates the scale-free structure
[16, 2, 61].

In [41] possible differences between functional networks for brain in different
states of activity or performing different tasks were studied. It was reported that
the scale-free structure, reflected by the linear part of the log-log plot of degree
distributions is more pronounced for the brain performing a given task than for
the brain in a resting state. This means that during the simple motor task of
finger tapping, the structure of the network was more complex [41]. These results
were obtain on networks created upon random sampled subset of voxel pairs.
Here I show extended analysis of the same data using all vector pairs as possible
candidates for connection.

In this chapter I will also present a case study of functional brain networks of
old people with dementia. It is known that the structure of the brain is affected
by dementia [8, 65]. The question is whether the topology of functional brain
networks reflect this fact. Study on differences in functional brain networks of
young, nondemented and demented adults was also performed by Buckner [14].
However, topological characteristics as small-worldness or degree distribution or
hierarchicity were not examined. My analysis on their data fills the gap. Here I
would like to state, I got the data with a help of Dr. Liz Franz and Dr. Lubica
Benušková from the University of Otago, Dunedin, New Zealand.

5.2 Network construction and analysis

Output of fMRI brain imagining consists of voxel activity record. Voxel is a part
of a brain, having approximately 3mm3. The activity is recorded in slices. Slices
are recorded sequentially and one scan takes approximately 2 seconds. Voxels are
real 3D points in the brain, containing several neurons.

Position in space or anatomical connections among neurons suggest direct
ways to create networks. However, as I mentioned above, intention of functional
brain networks is to reflect the mutual dependency of voxel activities. During
experiment, scans were repeated periodically. Thus for each voxel we have a vector
of activities in different time points. To create a functional network we take each
voxels as a node in a graph. The functional dependency of two voxels is expressed
by creating an edge between them. Let us have a function f(x, y) that defines
relation between voxels x and y represented by vectors of their intensities in
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Figure 5.1: fMRI experiment. A brain is scanned in slices, that are few millimeters
thick. Each slice is divided by a mesh to voxels. Size of one voxel is 3mm3. Result
of scanning is set of voxel activities for each scanned slice [39].

different time points. We say that there is a ’functional’ connection between voxel
x and voxel y if f(x, y) > r, where r is a threshold parameter of the functional
brain network. Graph of a functional brain network FBN(V, f, r) underlined by
a set of voxels V , is defined as follows:

Definition 2. FBN(V, f, r) = {V,E} = {(x, y)|x ∈ V ∧ y ∈ V ∧ f(x, y) > r},

where V is a set of nodes and E set of edges of the graph. Thus the algorithm to
create a graph is straightforward:

• For each pair of voxels x and y calculate the function f(x, y). If the calcu-
lated value is larger than parameter r, create an edge between voxels x and
y.

Usually a Pearson correlation coefficient is used as a function f [16, 41]. Pearson
correlation of two random variables X and Y is defined as

ρ(X,Y ) =
cov(X,Y )
δxδy

, (5.1)

where cov is covariance and δx and δy are standard deviations. If we have two
variable samples (voxels intensities over time in our case) with n measurements
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of X and Y written as xi and yi where i = 1, 2, ..., n then the sample correlation
coefficient, can be used to estimate the Pearson correlation between X and Y :

ρ(X,Y ) =
n
∑
xiyi −

∑
xi
∑
xi√

n
∑
x2
i − (

∑
xi)2

√
n
∑
y2
i − (

∑
yi)2

. (5.2)

In my analysis I consider also anticorrelation (correlation is lower than some
negative threshold) as a candidate for an edge. Thus, we can write the function
f as

f = |ρ(X,Y )| =

∣∣∣∣∣∣ n
∑
xiyi −

∑
xi
∑
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∑
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i − (

∑
xi)2

√
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∑
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∑
yi)2

∣∣∣∣∣∣ . (5.3)

Inspired by previous work on the analysis of functional brain networks [53]
I used Granger causality as other measure for the selection of the function f .
Granger causality is a statistical concept of causality that is based on prediction.
According to Granger causality, if a signal X ”G-causes” a signal Y , then past
values of X should contain information that together with past values of Y help
to predict values of Y . Its mathematical formulation is based on linear regression
modelling of stochastic processes [30].

G-causality is normally tested in the context of linear regression models. For
illustration, consider a bivariate linear autoregressive model of two variables.
Model Mxy:

X(t) =
p∑
j=1

A1,jX(t− j) +
p∑
j=1

A2,jY (t− j) + EXY (t) (5.4)

Model Mx:

X(t) =
p∑
j=1

B1,jX(t− j) + EX(t) (5.5)

where p is the order of the model. Matrixes of coefficients (A,B) describe the
contributions of each lagged observation to the predicted values of X(t). EXY
and EX are residuals (prediction errors) for each model. If the variance of EX
(model MX) is reduced by the inclusion of the Y terms (model MXY ), then it is
said that Y (or X) G-causes X.

The Granger causality between X and Y can be tested by performing an
F-test of the null hypothesis that A2 = 0. As the Granger causality is directed
value, we considered one direction of the Granger causality (X G-causes Y or Y
G-causes X) as sufficient to create an edge. The n for the function f we have
used

f = max(FXY , FY X). (5.6)
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where FXY (FY X) denotes value of the F-test that Y (X) granger causes X (Y ).

In my measurements I have tried several values for the threshold parameter
r. I have started with small values of the parameter r which led to the networks
with almost all possible edges present. Networks became disconnected on a cer-
tain value of the parameter r Then I chose this value as the final value for the
threshold parameter r.

From the visualization of one slice of measured fMRI data, mapped to the
brain (Fig. 5.2) one can see than only a small part of voxels is active. However
in the measured data, almost every voxel has some very low non-zero intensity.
These are often voxels outside the brain region. Draining veins oxygenation causes
high voxel intensities[49]. To avoid these noisy effects one can set up thresholds
to remove voxels with too low and too high intensities from data.

Figure 5.2: Regional voxel activation associated with a Stroop task (naming of
colors) [55]. Six participants were scanned. Each plot represents one person. [29]

The question is how to determine these thresholds. On (Fig. 5.3) is a plot of
the distribution of the average voxel intensities. Data came from the experiment
on the University of Otago, where subjects were measured during active (test) and
resting phase. Most of the voxels have intensity lower than 100 units (and most of
these are zeroes), however, there is a peak around the intensity of 350 units. My
idea was to incorporate only voxels with the intensity around this peak, as these
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should be the voxels most involved in the brain activity. I discussed this idea with
Dr. Liz Franz from the University of Otago who was making these experiments.
In distributions depicted on (Fig. 5.3) voxels with the intensity between 200 and
600 units represent 15% of all voxels.
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Figure 5.3: Distribution of average voxel intensities during rest (a) and test (b)
phase. Distributions are joined through 4 subjects. Data are from an experimental
series of a sample database associated with fMRIotago, Dunedin, New Zealand
(see 5.3).

5.3 Active and resting functional brain networks

Markošová et. all [41] have extracted functional brain networks from fMRI data
based on temporal correlations of voxel activities during the rest and test periods.
In their experiment subjects performed simple finger tapping task during the test
phase. The test phase was followed by the rest period in which brain relaxes
doing nothing. fMRI scans were taken several times during each of these periods.
Thus the functional brain networks for these two periods could be created. They
studied the topology of these networks in terms of small-world and scale-free
properties. The small-world property of generated functional brain networks was
quite clearly evident whereas the scale-free character was less obvious. There were
some differences between the rest and test functional brain networks. The scale-
free properties were more pronounced in the test phase of measurement. This
effect is clearly visible for the measurement of all four persons. However, they
used only 80 million randomly chosen voxel pairs as edge candidates. Here I am
presenting a new analysis of their data using all possible voxel pairs. In addition
I also analyzed the data with the help of the Granger causality. To filter out only
active voxels I took into account only voxels around the peak emerged in the
distribution of voxel intensities, as described in section 5.2 (Fig. 5.3).
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5.3.1 Material and methods

FMRI data came from an experimental series of a sample database from the
University of Otago, Dunedin, New Zealand. Four subjects were scanned. Data
were acquisited during initial rest cyclus (16 seconds) when the measured person
was asked to do nothing. This initial period was followed by 6 cycles of test (20
seconds) and rest (20 seconds). The first, 16 seconds long rest period was not con-
sidered for network creation. The task was a bimanual finger tapping, in which
subjects tap once per second using thumb-index finger opposition movements.
Subjects were tapping with both hands according to a 1 Hz tone signal. The
tone remains on for test and rest period with a change in pitch. Each rest/test
epoch contains 32,728 voxels [(Z = 1 to 8 slices) (X = 64) (Y = 64)], with 10
acquisition cycles with 2 s TR (i.e., 20 s epoch) [41].

In order to emphasize the signal features I have averaged the data in all rest
and test periods for each subject. Plotting joined voxel intensity distribution for
rest and rest periods has shown that in both distributions there is a peak present
at size of 350 units (Fig. 5.3). Considering voxels around these peaks (intensities
in range from 200 to 600) we have chosen 15% of all voxels to create functional
brain networks.

I have created two networks for each subject. First using the Pearson cor-
relation as function f (2), with the threshold r = 0.9 and the other using the
Granger causality with the threshold r = 50. For each network I have calculated
small world characteristics such as node separation (2.1), and the average clus-
tering coefficient(2.5). I have also studied degree distribution (2.6) to determine
whether the networks have scale-free character. In addition to the original analy-
sis [41] the clustering distribution (2.7) was measured. This measure, as described
in Chapter 2, indicates hierarchical network structure.

5.3.2 Results

Results of my analysis are shown in the Table 5.1(for Pearson correlation (5.3))
and in the Table 5.2 (for Granger causality (5.6)). To verify the small-world prop-
erty I have calculated the average clustering coefficient and the node separation of
all networks. crandom (2.14) for this graphs is 10−3− 10−4 and `random ≈ 4 (2.13)
for the graphs with the same size and average degree. Using these values I have
calculated the small-world index (2.8) for networks created using Pearson corre-
lation, which is rather high (si ∼ 100 to 300). Surprisingly the average clustering
coefficient for the networks based on the Granger causality is very low (∼ 10−3)
and thus the small-world index is only ∼ 1. Low node separation with a low
clustering coefficient resembles more random than small-world networks. I have
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calculated the degree distribution for all subjects and both test and rest condi-
tions. I have found the power law scaling with the scaling exponent 1.1 < γ < 3.3
(1.9 < γ < 5.7) for Pearson correlation (Granger causality). This confirms the
scale-free property. As in the original study [41], I did not discover any significant
difference between the values of γ for the test and rest condition in individual
subjects. Nor the differences were noticed between the rest and test conditions
for certain subjects. This indicates similar scale-free structure of the network in
both conditions.

network N c ` k γ

otago1-pearson-0.9-rest 4901 0.375 5.49 35 1.370
otago1-pearson-0.9-test 4869 0.289 7.41 12 1.193
otago2-pearson-0.9-rest 4302 0.262 6.77 11 1.803
otago2-pearson-0.9-test 4304 0.283 5.99 21 1.417
otago2-pearson-0.9-rest 3446 0.246 8.77 5 3.257
otago3-pearson-0.9-test 3491 0.245 9.75 5 1.848
otago4-pearson-0.9-rest 3819 0.263 7.14 8 2.031
otago4-pearson-0.9-test 3834 0.267 7.87 9 2.106

Table 5.1: Properties of functional brain networks based on Pearson correlation
(5.3) with the threshold r = 0.9. Here N is the number of selected voxels, c is the
average clustering coefficient, ` the node separation, k the average node degree, γ
the scaling exponent of the degree distribution. For each subject a rest and test
networks were created.

network N c ` k γ

otago1-granger-50-rest 5517 0.002 4.71 18 1.961
otago1-granger-50-test 5534 0.001 5.07 8 2.950
otago2-granger-50-rest 4978 0.001 5.38 6 3.185
otago2-granger-50-test 5000 0.002 5.00 8 3.219
otago3-granger-50-rest 4279 0.0009 6.15 5 5.667
otago3-granger-50-test 4291 0.001 5.98 5 5.324
otago4-granger-50-rest 4389 0.001 5.55 6 4.326
otago4-granger-50-test 4452 0.001 5.66 5 5.294

Table 5.2: Properties of functional brain networks based on Granger causality
(5.6) with the threshold r = 50. Here N is the number of selected voxels, c is the
average clustering coefficient, ` the node separation, k the average node degree, γ
the scaling exponent of the degree distribution. For each subject a rest and test
networks were created.

I can confirm the results from [41]. There is a difference between the shape of



CHAPTER 5. FUNCTIONAL BRAIN NETWORKS 51

the degree distribution for averaged rest and test periods for the networks created
using the Pearson correlation. Scale-free structure, reflected by the linear part of
the log-log plot is more pronounced for the test period (Fig. 5.4). We can see that
the linear part in the degree distribution of the network constructed from data
obtained during test period covers longer range (degree k from 10 to 80) than the
network from the data obtained during the rest period (degree k from 10 to 180).
However, more detailed studies are necessary to decide whether the short linear
part is significant for the rest phase. Also, in this stage of my research, I am not
able to decide whether the lack of differences between the topology of networks
in the rest and the test phase is caused by the fact that the analyzed functional
brain networks did not have enough nodes. The other possibility is that there
is no real difference between the functional networks in different phases. I did
not observe any difference in the topology for networks based on the Granger
causality (Fig. 5.5). Even the more pronounced linear part of the test period
degree distribution was not present in these networks.
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Figure 5.4: Subject Otago2. Log-log plot of the degree distribution of the func-
tional brain network. Networks based on the Pearson correlation (5.3) with the
threshold r = 0.9 (a) rest phase (b) test phase.

To make the analysis complete, I have also studied the possibility of the
emergence of a hierarchy in the functional brain networks (2.7). On the (Fig. 5.6)
clustering distribution of the functional brain network of the subject Otago2 in
rest and test phase is depicted. According to the distribution, there is no hierarchy
present in the functional brain network. This is slightly surprising as there was
hierarchicity discovered in anatomical human brain networks by modelling of
interregional covariance in cortical thickness [11]. Moreover in contrary there
was quite a strong hierarchicity of functional brain networks reported in [43]. I
suppose that the hierarchy of functional brain networks should be studied more
deeply also with the relation to the modularity of functional brain networks. As



CHAPTER 5. FUNCTIONAL BRAIN NETWORKS 52

Γ = 2.683

10 20 50 100 200 500
k10-5

10-4

0.001

0.01

0.1
pHkL

(a)

Γ = 2.062

10 20 50 100 200 500
k10-5

10-4

0.001

0.01

0.1
pHkL

(b)

Figure 5.5: Subject Otago2. Log-log plot of the degree distribution of the func-
tional brain network. Networks based on the Granger causality (5.6) with the
threshold r = 50 (a) rest phase (b) test phase.

has been shown in [43], modularity decomposition of functional brain networks
seems to reflect the modularity of anatomical brain networks. These studies are
still at the beginning.

Thus hierarchy of brain networks should be studied more deeply also with the
relation to the modularity discovered in functional brain networks in rest. This
organization reflects the known brain areas associated with specific functions [43].

5 10 50 100 500
k0.20

0.30

cHkL

(a)

5 10 50 100 500
k

0.25

0.3

0.35

0.4

cHkL

(b)

Figure 5.6: Log-log plot of the average clustering coefficient for a node degree of
the functional brain network of the subject ’otago2’. Networks based on Pearson
correlation (5.3) with the threshold r = 0.9 (a) rest phase (b) test phase.



CHAPTER 5. FUNCTIONAL BRAIN NETWORKS 53

5.4 Functional brain networks and dementia

The limits of what functional brain networks are able to tell us are intensively
studied. For example Buckner [14] presents a comprehensive fMRI study of young
adults, nondemented older adults and demented adults. fMRI brain scans were
taken while subjects were performing a simple sensory-motor task. They reported
some differences between the fMRI data, but no systematic patterns or statisti-
cally significant differences were discovered. On the same data I have analyzed
properties of functional brain networks. The results of this study are presented
in next sections. As I have already mentioned, it is known that dementia affects
the anatomical structure of a brain [8, 65]. The main question, I would like to
answer is whether the functional brain networks will also reflect these changes.

5.4.1 Material and methods

FMRI data were gained from 44 subjects. 15 young adults (18-24 years) , 16
nondemented old adults (66-83 years) and 13 demented old adults(63-89). The
cognitive task the people were asked to fulfill was simple finger tapping. Partici-
pants watched a transient large field 8Hz flickering checkerboard and pressed key
at the onset of the flickering. 60 data acquisitions were made for each subject.
In each test phase, scans in 8 timepoints were taken. Brains of participants were
scanned only during the active phase. In each scan 65,536 voxels [(Z = 1 to 16
slices) (̃X = 64) (̃Y = 64)] were measured (Fig. 5.1). I have averaged data from
all 60 acquisitions to gain one functional brain network for each subject. From
voxel intensities distributions (Fig. 5.7) have identified that the peak is at level
of 500 units and selected voxels with the average intensity in range between 300
and 650 units whitch makes 15% - 18% of all voxels.
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Figure 5.7: Distribution of average voxel intensities. (a) young people (b) old
people(c) old people with dementia. Data were collected from all persons in a
group. Peak is presented at value of 500 units. Voxels with intensities between
300 and 650 units were considered for functional brain networks.

I have generated two networks for each subject. I have used the Pearson cor-
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relation (5.3) with the threshold r = 0.9 and the Granger causality (5.6) with the
threshold r = 80. These are the critical thresholds. After these values the gener-
ated networks became disconnected. For all generated networks I have calculated
all relevant characteristics such as node separation (2.1), average clustering coef-
ficient (2.5), degree and clustering distributions. All of them were calculated with
the help of NWB tool [58].

5.4.2 Results

Measured parameters of all calculated networks are in Table A.1 (Appendix A).
Calculation of the small-world index (2.8) for the networks based on Pearson
correlation gives value around 20 showing that these networks have the small-
world property. In the case of Granger causality, networks showed the same effect
as described in the previous section. Average clustering coefficients are low (∼
0.003) showing a lack of small world structure.

In (Fig. B.1−B.4) (Appendix B) and (Fig. B.5−B.7) (Appendix B) degree
distributions of all networks of all subjects are depicted. The scale-free power-law
degree distribution (2.9 is present in all networks. However the difference among
the groups is not quite obvious. There is a kind of tendency for younger subjects
to have longer linear part in the log-log plot. But in each of the three groups
(young, nondemented old and demented persons) there are exceptions from this
behavior. To decide whether the effect has some significance, deeper statistical
analysis is needed. The problem is that, the deeper statistical analysis requires
more data, which is not easy to get. What can be told is that this tendency is
more visible in networks created with a help of the Pearson correlation than those
with the help of the Granger causality.

In agreement with the study of the data from the previous experiment, the
clustering distribution did not follow the clustering distribution c(k) ∝ k−δ (2.10)
characteristic for the networks with a hierarchical structure. In (Fig. 5.8) is an
example of this distribution for one subject of each group. There are lot of nodes
with a high clustering coefficient and only a few with a small one.

5.5 Conclusions

In the first of my studies I have examined functional brain networks of four
subjects, all of them were measured in two different conditions: during rest and
during bimanual finger tapping task (test). I have revised [41] and made more
detailed analysis of the data. In comparison to the original work I have considered
all possible vector pairs as candidates for correlation links. I have also studied
functional brain networks created with a help of the Granger causality. In the
second study I have used Buckners fMRI dataset [14] and analyzed networks
from 44 subjects of different ages, some of them with dementia. Only networks
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Figure 5.8: Log-log plot of the average clustering coefficient in relation to the node
degree. (a) young subject (b) nondemented old (c) demented old. All networks
created using Pearson correlation with the threshold r = 0.9.

generated with the help of the Pearson correlation (generated for all persons from
both data sets) have the small-world property. Networks based on the Granger
causality have a different structure with a much lower values of average clustering
coefficient ∼ 10−3 (2.5). Reason for this should be examined further. I have
been expecting that the Granger causality describes the real dependency better
as it takes also nonlinear dependencies into account, contrary to the Pearson
correlation.

My results in relation to the scale-free property confirmed the results in [41].
However, the authors state that there is a possibility that functional brain net-
works have exponential and not power law degree distribution. Exponential degree
distribution would follow a line in the log-linear plot. Networks I have created do
not show this in log-linear plot (Fig. 5.9).
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Figure 5.9: Log-linear plot of the degree distribution of the functional brain net-
work of the subject ’otago2’. Networks created using Pearson correlation with
the threshold r = 0.9 (a) rest phase (b) test phase.
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Amaral et al.[7] modelled network growth where the node degree expansion
is constrained by node aging and cost limitations. They have shown that these
constraints results in scale-free networks with a power law distribution and an
exponentially decaying tail. Such a model seems to fit the degree distribution
of studied functional brain networks and possibly explain the doubts about the
power-law degree distribution mentioned in [41].

The differences between structure (mainly the degree distribution) of func-
tional brain network of active, task performing brain and the brain in resting
state were not too convincing. Neither were differences between functional net-
works between subjects having and not having dementia (see Appendix A)

In both cases I have shown that the clustering distribution (2.7) does not
follow (2.10). This indicates a lack of hierarchy in the network [51]. On the other
hand we have processed a raw data without any previous fMRI preprocessing.
Recently a new technique based on the diffusion MRI was used to generate large,
comprehensive white matter connectional datasets of the entire brain for two hu-
man subjects [32]. In this paper the question of the influence of data preprocessing
on the final structure of functional brain networks was addressed.

The bimanual finger tapping task used for acquisition of Otago test data or
motoric reaction to the blinking point used in the Buckner’s experiment [14] are
very simple cognitive tasks. The question is whether the structure and topology
of functional brain network changes with a more demanding tasks. Or it is just
more related to the anatomical connections and independent from the performed
task? What is the relationship between anatomical brain networks and emerging
functional brain networks is not clear. It is a task for the future studies, never-
theless first investigations show, that modular decomposition of functional brain
networks might be helpful [43]. Latest studies [43] have shown that there is a
modularity in the functional networks and that these modules correspond to the
various regions in the brain responsible for different tasks.

Functional brain networks raised a lot of questions. Their investigations are
at their beginning. There is even no agreement about the best way of extracting
them. Latest studies [43] exhibit first attempts to retrieve necessary thresholds
(r) from the data and give more accurate mathematical basis of the network
extraction. I see several possibilities how to continue functional brain network
research:

1. Modular network decomposition and the question of its correspondence to
the functional brain areas (visual cortex, motor cortex, etc.) is an interest-
ing task to investigate. Relation between scale-free structure, modularity
and hierarchy in functional brain networks can be also considered, possibly
giving an answer on how the work of brain activity is organized.

2. To develop an exact mathematical basis of the network extraction. Then
the functional brain network model can be created with a help of measured



CHAPTER 5. FUNCTIONAL BRAIN NETWORKS 57

data and network theory. Having such model, it would be possible to predict
which areas are active in certain cognitive tasks.

The problem each such research faces, is the lack of the data. Scanners are
usually possessed by hospitals and used for medical treatment. Those, which
are in possession of scientific institutes are often beyond the reach, because the
measurement time is expensive. Nevertheless, I hope, on the basis of cooperation
with Liz Franz and Ľubica Benušková from University of Otago, Dunedin, New
Zealand, to get more data to perform further analysis along the development of
the theoretical methods and models. As we can see functional brain networks are
complex networks with a structure which is not very well known. It is not sure
what the best way to extract these networks from measured data is, and how to
explain them. The debate on this subject continues [25, 43]. What I suppose ,is
that anatomical brain networks explain the functional networks and vice versa.
To fulfill this goal a lot of studies are necessary. To create a good functional brain
network model is an incredibly difficult task. Nevertheless, I suppose that such
model can be developed in the future.



Chapter 6

Conclusions and discussion

Scientific methods give us possibility to study and design complex networks. Find-
ing and measuring statistical properties such as node separation (2.1), clustering
coefficient (2.5) or degree distribution (2.6) helps us to characterize the struc-
ture and behaviour of networks. Through the network models we can study the
impact of these properties on the network evolution. We use mathematical and
computational models to generate large networks and thus predict the future of
real networks according measured parameters. Moreover, on the basis of suitable
models, one is able to create network with properties desirable from the point
of informatics for example. One is able to improve anddevelop fast search and
navigation algorithms, design computer networks with a structure resistant to
random failures or to place receivers and transmitters of the wireless network in
the proper positions.

My thesis presents a combination of empirical work, measurements and exper-
iments, and explanatory modelling and analysis of models. I and my co-workers
have developed two theoretical models. First, the Word web model generates net-
work with a similar statistical properties as the real positional word webs (Section
3.3). The other one, the clustering driven model (Section 4.2) includes a process
that leads to the generation of scale-free hierarchical network. I have also pre-
sented experimental study of two real complex systems. The positional word web
of several large texts (chapter 3) and the functional brain networks (Chapter 5).

Here I give the summary of my contributions in several areas covered by this
thesis.

Positional word web: Together with my co-workers I have developed a
model of growing network, that combines the preferential attachment (2.26) and
the preferential edge rewiring (3.2). Networks generated by this model have small
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world and scale-free structure. I am providing an analytical evidence, that degree
distribution of these networks have two scaling regimes. The scaling exponent of
the steeper part of the degree distribution can be modified through the parameters
of the model (see chapter 3).

I have tested the validity of the model on the positional world web of The
Bible. This was a natural choice, as the edge rewiring process was inspired by
the words losing and gaining a new context in the language evolution. Our model
[47] explains the difference between the exponent of the steeper part of the degree
distribution predicted by the DM model [20] and the value measured by Cancho
and Solé [15] in their positional word web. However, my numerical studies show
that there is no evidence of two scaling regimes in the positional word web of The
Bible. The same holds for the networks generated using our model. I have shown
numerically that this is due to the network size, or due to the too big parameter c
(3.2). The second regime appears in the network, if there are nodes with a degree
higher than the kcross parameter (3.8) (Fig. 3.3).

Measuring of clustering distribution (2.7) has shown that there is a hierar-
chical structure in all - real positional word web and generated networks (see
Chapter 3).

Clustering driven model: I and my co-workers have used mechanism of
preferential attachment to develop a clustering driven model of growing network
(CD model) [4.2]. This model is based on preferential attachment driven by clus-
tering coefficient and a local rule of adding edges to the nodes in selected cluster.
A simplified version of this model can be compared to the Vázquez network with
one surfer [62]. We have used the solution Vázquez random walk model to show
analytically, that the scaling exponent of the degree distribution of the SCD
model is γ = 3 and is independent on the other parameters. To show this, I have
used the solution of the Vázquez model we developed. I described this solution in
Section (2.3.7). Furthermore, the CD model is a stochastic model that leads to
the creation of a network with a weakly hierarchical structure (see Chapter 4).

In addition, we have shown that the clustering driven node addition itself is
not responsible for the scale-free structure of a network. I agree with Vázquez,
that independently on the node attachment kernel, local rules are decisive for
the scale free property and hierarchy in the final network topology. It is due to
the fact, that the local rule introduces effective preferential attachment [62] (see
Chapter 4).

Functional brain networks: My work on functional brain networks involved
studies of two datasets. For both I have constructed functional brain networks
based on Pearson correlation (5.3) and Granger causality (5.6).

In the first study, I have examined functional brain networks of four subjects,
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all of them were measured in two different conditions: during rest and during
bimanual fingertapping task (test) [41]. I have revisited the paper [41] and made
more detailed analysis of the data. In both conditions (rest and test), all gener-
ated functional brain networks have the small-world and the scale-free property.
However, there was only a small difference in the length of the linear part of the
degree distribution of functional brain networks of active, task performing brain
and the brain in resting state (see Chapter 5).

In the second study I have used Buckners fMRI dataset [14] and analyzed
networks from 44 subjects of different ages, some of them with dementia. The
small world and scale-free property were present in generated networks as well.

In both cases, I have shown that the clustering distribution (2.7) does not
follow c(k) ≈ k−δ (2.10). This indicates a lack of hierarchy in the network [51].

My research has opened many questions and I have several ideas for the future
investigation in the areas my research has addressed.

Positional word web: Positional word web networks studied in my work,
were not large enough to show all properties of our model. Bigger real and gen-
erated networks should be studied to confirm the validity of the proposed model.
We will try to find an analytical solution to determine the kcross point. Later
we can think about extending the model with further mechanisms. For exam-
ple the parameter used for edge rewiring is a constant. But how will the model
change when we rewire mrt edges? Or how will the capacity of a node (number of
neighbours the node can have) affect the generated networks. This effect is quite
expected as the context of each word in language must be somehow limited.

Clustering driven model: In Chapter 4 I have shown our analytical solu-
tion of the simplified clustering driven model. But the analytical equations and
solution of the original model is still unknown and further research is required.
The clustering driven model has the ability to generate a scale-free structure
thanks to the local rule of adding edges to a selected node and its neighbours.
But how strict has this ”locality” to be? What happens if we try to break it
and add edges not to the closest neihgbours but to the next closest neighbours?
How far can we go before the network will lose its small-world and hierarchical
structure?

Functional brain networks: Functional brain networks raised a lot of ques-
tions. Their studies are at the beginning. I can see several possibilities how to
continue functional brain network research:

1. Tasks performed by subjects in my studies were easy from cognitive pont
of view. I expect that a more demanding task (reading or solving math-
ematical equations) can lead to differences in the structure of functional
brain networks among different subjects and performed tasks. I hope, on
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the basis of cooperation with Liz Franz and Ľubica Benušková from Univer-
sity of Otago, Dunedin, New Zealand, to get more data to perform further
analysis.

2. Modular network decomposition and the question of its correspondence to
the functional brain areas (visual cortex, motor cortex, etc.) can be studied.
Relation between scale-free, modularity and hierarchy in functional brain
networks should be investigated, possibly giving answer on how the brain
activity is organized when the brain fulfills a cognitive task.

3. To build an exact mathematical basis of the network extraction. There is
even no agreement about the best way of extracting them. Latest studies
[43] exhibit first attempts to retrieve necessary thresholds (r) based on
accurate mathematical basis.

4. A long term goal is to find a network model that will explain the creation
and evolution of functional brain networks.

Another part of complex network research is their visualization. I would like
to develop algorithms that will display the networks in a way that expresses
they scale-free structure, hierarchy or extract highly connected clusters. I believe
that such visualization can help us to better understand the meaning of these
properties and the processes that lead to creation of complex networks. For ex-
ample visualization of functional brain networks can show the relation between
the functional and anatomical structure of a brain.

In short, I would like to continue my research in building theoretical models,
analyzing large scale real world networks and visualization of complex structures
and processes that lead to their emergence.
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Table A.1: Properties of all complex networks used in this thesis. Here N is the
number of nodes, c is the average clustering coefficient (2.5), ` is the node separa-
tion (2.1), k the average node degree, γ the degree distribution scaling coefficient
(2.9), δ the scaling coefficient of the clustering distribution (2.10) pointing to
hierarchicity.

network N c ` k γ δ

language word webs and generated networks
drv 11379 0.772 2.18 46 1.674 1.300
asv 10076 0.768 2.18 46 1.654 1.272
nrsv 14716 0.718 2.24 50 1.651 1.249
bev 4942 0.764 2.12 60 1.325 1.348
kjv 11592 0.771 2.18 47 1.659 1.296
prg 21104 0.700 2.27 49 1.970 1.238

kjvGen 11592 0.093 2.76 42 1.644 0.422
kjvGenME 11592 0.234 2.72 45 1.717 0.558

prgGen 21104 0.085 2.81 45 1.752 0.523
prgGenME 21104 0.166 2.80 47 1.743 0.594
gen20000 20000 0.002 3.79 13 1.50, 3.53

clustering driven models
SCD model 20000 0.730 6.88 4 2.995 1.000
CD model 20000 0.627 5.60 6 2.916 0.973

Random model 20000 0.658 7.24 6 2.988 0.955
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network N c ` k γ δ

functional brain networks - test vs rest study - fMRIOtago data
otago1-pearson-0.9-rest 4901 0.375 5.49 35 1.370
otago1-pearson-0.9-test 4869 0.289 7.41 12 1.193
otago2-pearson-0.9-rest 4302 0.262 6.77 11 1.803
otago2-pearson-0.9-test 4304 0.283 5.99 21 1.417
otago3-pearson-0.9-rest 3446 0.246 8.77 5 3.257
otago3-pearson-0.9-test 3491 0.245 9.75 5 1.848
otago4-pearson-0.9-rest 3819 0.263 7.14 8 2.031
otago4-pearson-0.9-test 3834 0.267 7.87 9 2.106
otago1-granger-50-rest 5517 0.002 4.71 18 1.961
otago1-granger-50-test 5534 0.001 5.07 8 2.950
otago2-granger-50-rest 4978 0.001 5.38 6 3.185
otago2-granger-50-test 5000 0.002 5.00 8 3.219
otago2-granger-50-rest 4279 0.0009 6.15 5 5.667
otago3-granger-50-test 4291 0.001 5.98 5 5.324
otago4-granger-50-rest 4389 0.001 5.55 6 4.326
otago4-granger-50-test 4452 0.001 5.66 5 5.294

functional brain networks - dementia study
young1-pearson-0.9 10222 0.345 4.06 86 1.405
young2-pearson-0.9 11423 0.332 4.07 84 1.471
young3-pearson-0.9 9040 0.356 4.04 86 0.997
young4-pearson-0.9 10850 0.326 4.14 67 1.289
young5-pearson-0.9 11519 0.333 4.06 86 1.281
young6-pearson-0.9 11808 0.349 3.89 124 1.179
young7-pearson-0.9 9337 0.339 4.13 75 1.318
young8-pearson-0.9 13741 0.315 4.10 64 0.958
young9-pearson-0.9 10420 0.338 4.07 81 1.271
young10-pearson-0.9 11206 0.327 4.08 79 1.528
young11-pearson-0.9 11275 0.350 3.94 111 1.235
young12-pearson-0.9 11466 0.336 4.05 79 1.141
young13-pearson-0.9 10915 0.396 3.75 181 0.857
young14-pearson-0.9 8867 0.337 4.18 67 1.353

nondemented1-pearson-0.9 3177 0.414 4.34 42 0.821
nondemented2-pearson-0.9 10429 0.378 3.83 132 0.865
nondemented3-pearson-0.9 9194 0.421 3.64 203 0.768
nondemented4-pearson-0.9 12044 0.351 3.91 108 0.903
nondemented5-pearson-0.9 9449 0.388 3.85 131 0.898
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network N c ` k γ δ

nondemented6-pearson-0.9 9253 0.375 3.86 118 0.972
nondemented7-pearson-0.9 11101 0.338 4.04 89 1.175
nondemented8-pearson-0.9 9034 0.382 3.85 142 0.999
nondemented9-pearson-0.9 9714 0.425 3.66 221 0.911
nondemented10-pearson-0.9 10289 0.317 4.20 49 1.265
nondemented11-pearson-0.9 12104 0.326 4.10 65 0.893
nondemented12-pearson-0.9 10286 0.356 3.95 119 1.285
nondemented13-pearson-0.9 10768 0.367 3.88 114 0.857
nondemented14-pearson-0.9 10188 0.419 3.75 224 0.989
nondemented15-pearson-0.9 10293 0.353 3.97 91 1.087

demented1-pearson-0.9 11024 0.425 3.62 198 0.616
demented2-pearson-0.9 8372 0.325 4.30 43 1.196
demented3-pearson-0.9 9618 0.366 3.93 96 0.884
demented4-pearson-0.9 8082 0.395 3.85 114 0.754
demented5-pearson-0.9 11181 0.382 3.78 170 1.020
demented6-pearson-0.9 11196 0.416 3.64 201 0.648
demented7-pearson-0.9 11768 0.346 3.97 100 1.082
demented8-pearson-0.9 9249 0.366 3.91 98 0.859
demented9-pearson-0.9 7967 0.349 4.08 69 1.008
demented10-pearson-0.9 8949 0.348 4.05 75 1.092
demented11-pearson-0.9 9381 0.362 3.97 90 0.917
demented12-pearson-0.9 9639 0.316 4.23 44 1.130

nondemented1-granger-80.0 3178 0.005 4.45 10 3.878
nondemented2-granger-80.0 10436 0.003 3.37 42 1.026
nondemented3-granger-80.0 9200 0.004 3.26 48 0.989
nondemented4-granger-80.0 12045 0.003 3.38 34 1.273
nondemented5-granger-80.0 9453 0.003 3.46 38 1.281
nondemented6-granger-80.0 9255 0.004 3.54 31 1.320
nondemented7-granger-80.0 11101 0.003 3.52 27 1.597
nondemented8-granger-80.0 9037 0.004 3.40 32 1.298
nondemented9-granger-80.0 9724 0.004 3.28 42 1.170
nondemented10-granger-80.0 10290 0.002 3.71 21 2.016
nondemented11-granger-80.0 12104 0.003 3.57 28 1.363
nondemented12-granger-80.0 10288 0.003 3.59 25 1.754
nondemented13-granger-80.0 10769 0.004 3.39 33 1.265
nondemented14-granger-80.0 10194 0.005 3.41 35 1.286
nondemented15-granger-80.0 10297 0.002 3.57 28 1.430

demented1-granger-80.0 11036 0.004 3.18 53 0.934
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network N c ` k γ δ

demented2-granger-80.0 8372 0.003 3.81 18 2.475
demented3-granger-80.0 9626 0.003 3.52 28 1.403
demented4-granger-80.0 8090 0.003 3.60 25 1.413
demented5-granger-80.0 11178 0.003 3.39 33 1.276
demented6-granger-80.0 11203 0.004 3.17 58 0.939
demented7-granger-80.0 11769 0.003 3.47 31 1.368
demented8-granger-80.0 9254 0.003 3.55 25 1.568
demented9-granger-80.0 7973 0.002 3.69 20 1.865
demented10-granger-80.0 8949 0.003 3.65 22 1.897
demented11-granger-80.0 9390 0.003 3.49 27 1.516
demented12-granger-80.0 9640 0.002 3.63 22 1.687
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Appendix B

Figures B.1 - B.4 and B.5 - B.7 display log-log plots of degree distributions of
all subjects from the dementia study, divided into three groups (young, nonde-
mented, demented) for networks created using Pearson correlation and Granger
causality.
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Figure B.1: Log-log plot of the degree distribution of all subjects from the de-
mentia study divided into young (left), nondemented old (center) and demented
old (right). All networks created using Pearson correlation with the threshold
r = 0.9.

72



APPENDIX B. APPENDIX B 73

Γ = 0.997

1´10410 50 100 500 1000 5000
k10-5

10-4

0.001

0.01

0.1
pHkL

(a)

Γ = 0.768

1´10410 50 100 500 1000 5000
k10-5

10-4

0.001

0.01

0.1
pHkL

(b)

Γ = 0.884

1´10410 50 100 500 1000 5000
k10-5

10-4

0.001

0.01

0.1
pHkL

(c)

Γ = 1.289

1´10410 50 100 500 1000 5000
k10-5

10-4

0.001

0.01

0.1
pHkL

(d)

Γ = 0.903

1´10410 50 100 500 1000 5000
k10-5

10-4

0.001

0.01

0.1
pHkL

(e)

Γ = 0.754

1´10410 50 100 500 1000 5000
k10-5

10-4

0.001

0.01

0.1
pHkL

(f)

Γ = 1.281

1´10410 50 100 500 1000 5000
k10-5

10-4

0.001

0.01

0.1
pHkL

(g)

Γ = 0.898

1´10410 50 100 500 1000 5000
k10-5

10-4

0.001

0.01

0.1
pHkL

(h)

Γ = 1.020

1´10410 50 100 500 1000 5000
k10-5

10-4

0.001

0.01

0.1
pHkL

(i)

Γ = 1.179

1´10410 50 100 500 1000 5000
k10-5

10-4

0.001

0.01

0.1
pHkL

(j)

Γ = 0.972

1´10410 50 100 500 1000 5000
k10-5

10-4

0.001

0.01

0.1
pHkL

(k)

Γ = 0.648

1´10410 50 100 500 1000 5000
k10-5

10-4

0.001

0.01

0.1
pHkL

(l)

Γ = 1.318

1´10410 50 100 500 1000 5000
k10-5

10-4

0.001

0.01

0.1
pHkL

(m)

Γ = 1.175

1´10410 50 100 500 1000 5000
k10-5

10-4

0.001

0.01

0.1
pHkL

(n)

Γ = 1.082

1´10410 50 100 500 1000 5000
k10-5

10-4

0.001

0.01

0.1
pHkL

(o)

Figure B.2: Log-log plot of the degree distribution of all subjects from the de-
mentia study divided into young (left), nondemented old (center) and demented
old (right). All networks created using Pearson correlation with the threshold
r = 0.9.
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Figure B.3: Log-log plot of the degree distribution of all subjects from the de-
mentia study divided into young (left), nondemented old (center) and demented
old (right). All networks created using Pearson correlation with the threshold
r = 0.9.
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Figure B.4: Log-log plot of the degree distribution of all subjects from the de-
mentia study divided into young (left), nondemented old (center) and demented
old (right). All networks created using Pearson correlation with the threshold
r = 0.9.
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Figure B.5: Log-log plot of the degree distribution of all subjects from the demen-
tia study divided into young (left), nondemented old (center) and demented old
(right). All networks created using Granger causality with the threshold r = 80.
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Figure B.6: Log-log plot of the degree distribution of all subjects from the demen-
tia study divided into young (left), nondemented old (center) and demented old
(right). All networks created using Granger causality with the threshold r = 80.
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Figure B.7: Log-log plot of the degree distribution of all subjects from the demen-
tia study divided into young (left), nondemented old (center) and demented old
(right. All networks created using Granger causality with the threshold r = 80.
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