Logika pre

 informatikov 2Propositional Logic

Equational Logic

Kvantifikačná logika

Extension of theories

Basic bootstrapping of PA

Lecture 6

Recapitulation of extensions

- T^{\prime} is an extension of T if $T^{\prime} \vDash A$ for all $A \in T\left(T^{\prime}\right.$ can prove new facts about formulas of \mathcal{L}_{T})
- T^{\prime} is a conservative extension of T if for all $A \in \mathcal{L}_{T}$ from $T^{\prime} \vDash A$ we get $T \vDash A\left(T^{\prime}\right.$ cannot prove new facts about formulas of \mathcal{L}_{T} but it can about formulas of $\mathcal{L}_{T^{\prime}}$),
- Special case of conservative extensions are extensions by definitions where no new facts about formulas of $\mathcal{L}_{T^{\prime}}$ can be proved because every theorem of T^{\prime} can be translated to an equivalent theorem of T.

Goals

- For arbitrary theory T we have learnt to prove theorems A of extensions T^{\prime} as logical consequences: $T^{\prime} \vDash A$,
- we will now study a particular theory Peano arithmetic (PA)
- our goal is to show that the clauses of legal CL definitions are theorems in definitional extensions of PA
- Thus all properties of CL programs are provable in PA but the extensions make for readability and for the computability directly from the clauses

Peano arithmetic

The language of PA consists of the constant 0 and function symbols $x^{\prime}, x+y, x \cdot y$.
The standard structure \mathcal{N} has the domain \mathbb{N} of natural numbers with the intended interpretaion of symbols in that order as zero, successor, addition, and multiplication functions.
The axioms of PA are

$$
\begin{array}{cl}
x^{\prime} \neq 0 & x^{\prime}=y^{\prime} \rightarrow x=y \\
0+y=y & x^{\prime}+y=(x+y)^{\prime} \\
0 \cdot y=0 & x^{\prime} \cdot y=(x \cdot y)+y \\
A[0, \vec{y}] \wedge \forall x\left(A[x, \vec{y}] \rightarrow A\left[x^{\prime}, \vec{y}\right]\right) \rightarrow A[x, \vec{y}]
\end{array}
$$

for all formulas $A[x, \vec{y}]$ of the language of PA. The last axioms are called the axioms of mathematical induction with x called the induction variable and \vec{y} (if any) the parameters

Incompleteness of PA: Goodstein's sequence

For $x>0$ write the number $x-1$ fully in base $n \geq 2$. For instance, for $x=528$ and $n=2$:
$x=528=2^{9}+2^{4}+1=2^{2^{3}+1}+2^{2^{2}}=2^{2^{2^{1}+1}}+2^{2^{2^{1}}}$
$x=527=2^{2^{2^{1}+1}}+2^{2^{1}+1}+2^{2^{1}}+2^{1}+1$ and change to base
$n+1=3$:
$P_{n}(x)=3^{3^{3^{1}+1}}+3^{3^{1}+1}+3^{3^{1}}+3^{1}+1$.
Subtract one and change to base 4, obtain $P_{n+1}\left(P_{n}(x)\right)$, and continue. This is called Goodstein's sequence There is a formula $A[n, x]$ of PA which says Goodstein's sequence for $n \geq 2$ and any x terminates in finitely many steps in 0
We have $\vDash^{\mathcal{N}} \forall n \forall x A[n, x]$ but PA $\nvdash \forall n \forall x A[n, x]$. Hence by Gödel's completeness there is a non-standard structure \mathcal{M} for natural numbers s.t. $\vDash^{\mathcal{M}} \mathrm{PA}+\neg \forall n \forall x A[n, x]$.

Incompleteness theorem of Gödel

To every consistent extension T of PA in the same language there is a sentence A of PA such that $\vDash^{\mathcal{N}} T+A$ but neither $T \vdash A$ nor $T \vdash \neg A$.
Thus arithmetic is essentially incomplete, i.e. to every such T there is a non-standard model of arithmetic \mathcal{M} such that $\vDash^{\mathcal{M}} T+\neg A$.

