Extension of theories

Extension of theories

Lecture 5

• Gödel's completeness and soundness:

$$T \vDash A$$
 iff $T \vdash A$

• Reduction of predicate logic to propositional:

$$T \vDash A$$
 iff T , Eq, $\mathbf{Q} \vDash_{p} A$

Extension of theories

Extensions of theories

- Extension of languages: \mathcal{L}' is an extension of \mathcal{L} if every symbol of \mathcal{L} is a symbol of \mathcal{L}' ,
- Extension of theories: T' is an extension of T if the language of T' extends the language of T and T' ⊢ A for all A ∈ T,
- Conservative extensions: An extension *T'* of *T* is conservative iff from *T'* ⊢ *A* where *A* is in the language of *T* we have *T* ⊢ *A*
- Consistent theories: A theory T is consistent if T ⊭ ⊥.
 Clearly, if T' is conservative over a consistent T then also T' is consistent

Extension of theories

Extension by definitions with predicate symbols

- Let T be a theory in \mathcal{L} which does not contain *n*-ary predicate symbol P, and $A[\vec{x}]$ a formula of \mathcal{L} with just the *n*-variables \vec{x} free,
- then $T' = T + \forall \vec{x} (P(\vec{x}) \leftrightarrow A[\vec{x}])$ is an **extension** of T in the language $\mathcal{L} + P$,
- Elimination of P: Let B^* be like B but with every $P(\vec{\tau})$ replaced by $A[\vec{\tau}]$,
- $T' \vdash B \leftrightarrow B^*$, proof is straightforward,
- T' is conservative over T: If $T' \vDash B \in \mathcal{L}$ take any $\vDash^{\mathcal{M}} T$, expand it to $\vDash^{\mathcal{M}'} T'$, conclude $\vDash^{\mathcal{M}'} B$, and $\vDash^{\mathcal{M}} B$. Hence $T \vDash B$
- Translation: $T' \vdash B$ iff $T \vdash B^*$ for any $B \in \mathcal{L} + P$

Extension of theories

Extension by definitions with function symbols

- Let T be a theory in L which does not contain n-ary function symbol f, and A[x, y] a formula of L with just the n + 1-variables x, y free,
- if the existence condition: $T \vdash \exists y A[\vec{x}, y]$ holds then
- $T' = T + A[\vec{x}, f(\vec{x})]$ is **conservative** over T: If $T' \vDash B \in \mathcal{L}$ take any $\vDash^{\mathcal{M}} T$, expand it to $\vDash^{\mathcal{M}'} T'$, conclude $\vDash^{\mathcal{M}'} B$, and $\vDash^{\mathcal{M}} B$. Hence $T \vDash B$
- if also the **uniqueness condition**: $T \vdash A[\vec{x}, y_1] = A[\vec{x}, y_2] \rightarrow y_1 = y_2$ holds
- then $T'' = T + \forall \vec{x}(f(\vec{x}) = y \leftrightarrow A[\vec{x}, y])$ is conservative over T because T' extends T''.
- Elimination of f: Let B^{*} be like B but with every atomic subformula C_y[f(τ)] replaced by ∃y(A[τ, y] ∧ C[y]),
- $T'' \vdash B \leftrightarrow B^*$, proof is straightforward,
- Translation: $T'' \vdash B$ iff $T \vdash B^*$ for any $B \in \mathcal{L} + P$