Equational logic

Language of equational logic

 \mathcal{L} consists of **terms** given by **denumerable** sets of **function symbols** f_i and **predicate symbols** P_i (each with *arity* $n \ge 0$). We always have = among predicate symbols.

Terms: are concrete sequences of symbols defined by:

- 1. (object) variables $x_0, x_1, \ldots, y_0, y_1, \ldots$ are terms,
- 2. if τ_1, \ldots, τ_n are terms and the function symbol f_i has arity $n \ge 0$ then $f_i(\tau_1, \ldots, \tau_n)$ is a term.

Function symbols of arity 0 are *constants*

Formulas are concrete sequences of symbols consisting of:

- 1. *atomic* formulas $P_i(\tau_1, \ldots, \tau_n)$ with τ_1, \ldots, τ_n terms,
- 2. propositional formulas \bot , \top , $\neg A_1$, $A_1 \lor A_2$, $A_1 \land A_2$, $A_1 \rightarrow A_2$, $A_1 \leftrightarrow A_2$ with A_1 , A_2 formulas,

We write $\tau_1 = \tau_2$ for **identities** =(τ_1, τ_2).

Predicate symbols of arity 0 are *propositional constants* and they correspond to propositional variables.

Quasi-tautological consequence

We wish to define **equationally valid** sequents $T \vDash_i S$ such that if $T \vDash_p S$ then $T \vDash_i S$ (i.e. all tautologies are eq. valid). But we also wish to use the properties of =, for instance, $\vDash_i \tau_1 = \tau_2 \rightarrow \tau_2 = \tau_1$ which is not in general a tautology but it is a **quasi-tautology**.

If $T \vDash_i A$ we say that A is a **quasi-tautological** consequence of T.

We wish the **reduction** to propositional logic:

$$T \vDash_i S$$
 iff $T, Eq \vDash_p S$

where Eq are the axioms of identity.

Identity (equational) axioms

for every equational language \mathcal{L} the set of sentences $\tau = \tau$ are **reflexivity** axioms,

 $\tau = \sigma \to \sigma = \tau$

are symmetry axioms,

 $\tau = \sigma \to \sigma = \rho \to \tau = \rho$

are transitivity axioms, and

$$\tau_{1} = \sigma_{1} \rightarrow \cdots \rightarrow \tau_{n} = \sigma_{n} \rightarrow$$
$$f(\tau_{1}, \dots, \tau_{n}) = f(\sigma_{1}, \dots, \sigma_{n})$$
$$\tau_{1} = \sigma_{1} \rightarrow \cdots \rightarrow \tau_{n} = \sigma_{n} \rightarrow$$
$$P(\tau_{1}, \dots, \tau_{n}) \rightarrow P(\sigma_{1}, \dots, \sigma_{n})$$

are substitution axioms where $f, P \in \mathcal{L}$

We designate all by Eq and call them equation (identity) axioms (for \mathcal{L}).

Interpretation of languages of identity

We wish to introduce **interpretations** \mathcal{M} of \mathcal{L} corresponding to propostional valuations v such that $\models_i^{\mathcal{M}} A$ if A **is satisfied in** \mathcal{M} .

This should extend propositional valuations, for instance, we wish:

- $\models_i^{\mathcal{M}} A \wedge B$ iff $\models_i^{\mathcal{M}} A$ and $\models_i^{\mathcal{M}} B$
- $\models_i^{\mathcal{M}} \neg A \text{ iff not } \models_i^{\mathcal{M}} A$

But we also wish $\vDash_{i}^{\mathcal{M}} Eq$, i.e. for instance: • if $\vDash_{i}^{\mathcal{M}} \tau_{1} = \tau_{2}$ then $\vDash_{i}^{\mathcal{M}} \tau_{2} = \tau_{1}$

Interpretations $\ensuremath{\mathcal{M}}$ for L

consist of **domains** D, of interpretions $f^{\mathcal{M}}$ of functions symbols $f \in \mathcal{L}$ as n-ary functions over D and of interpretions $P^{\mathcal{M}}$ of predicate symbols $P \in \mathcal{L}$ as n-ary relations over D. $\langle D, \ldots f^{\mathcal{M}}, \ldots P^{\mathcal{M}}, \ldots \rangle$ are **structures for** \mathcal{L} . In **interpretations** \mathcal{M} we also need to **assign objects** $x^{\mathcal{M}}$ from D to the (object) variables x.

Terms τ of \mathcal{L} are *interpreted* in \mathcal{M} by **denotations** $\tau^{\mathcal{M}} \in D$ s.t.

• $f(\tau_1,\ldots,\tau_n)^{\mathcal{M}}=f^{\mathcal{M}}(\tau_1^{\mathcal{M}},\ldots,\tau_n^{\mathcal{M}}).$

Atomic formulas are interpreted by defining:

• $\models_i^{\mathcal{M}} P(\tau_1, \ldots, \tau_n)$ iff $P^{\mathcal{M}}(\tau_1^{\mathcal{M}}, \ldots, \tau_n^{\mathcal{M}})$,

•
$$\models_i^{\mathcal{M}} \tau_1 = \tau_2$$
 iff $\tau_1^{\mathcal{M}} = \tau_2^{\mathcal{M}}$

and we close the satisfaction relation propositionally.

Saturation of identity sequents

We define $T \vDash_i S$ to hold iff for all interpretations \mathcal{M} satisfying T, i.e. $\vDash_i^{\mathcal{M}} T$, there is an $A \in S$ s.t. $\vDash_i^{\mathcal{M}} A$. Thus $\vDash_i A$, i.e. A is a quasi-tautology, iff $\vDash_i^{\mathcal{M}} A$ for all \mathcal{M} . We have • $T \vDash_i S$ iff $\tau = \tau, T \vDash_i S$

•
$$\tau_1 = \tau_2, T \vDash_i S$$
 iff $\tau_2 = \tau_1, \tau_1 = \tau_2, T \vDash_i S$

•
$$\tau_1 = \tau_2, \tau_2 = \tau_3, T \vDash_i S$$
 iff

$$\tau_1 = \tau_3, \tau_1 = \tau_2, \tau_2 = \tau_3, T \vDash_i S$$

•
$$\vec{\tau} = \vec{\rho}, T \vDash_i S$$
 iff $f(\vec{\tau}) = f(\vec{\rho}), \vec{\tau} = \vec{\rho}, T \vDash_i S$

• $\vec{\tau} = \vec{\rho}, P(\vec{\tau}), T \vDash_i S$ iff $P(\vec{\rho}), \vec{\tau} = \vec{\rho}, P(\vec{\tau}), T \vDash_i S$ plus all saturations corresponding to the propositional ones.

Tableau rules for identity

reflexivity rules:

$$\tau = \tau$$

symmetry rules:

$$\frac{\tau \equiv \sigma}{\sigma \equiv \tau}$$

transitivity rules:

$$\frac{\tau = \sigma \quad \sigma = \rho}{\tau = \rho}$$

substitution rules:

$$\frac{\tau_1 = \sigma_1 \cdots \tau_n = \sigma_n}{f(\tau_1, \dots, \tau_n) = f(\sigma_1, \dots, \sigma_n)} \quad f \in \mathcal{L}$$
$$\frac{\tau_1 = \sigma_1 \cdots \tau_n = \sigma_n \ P(\tau_1, \dots, \tau_n)}{P(\sigma_1, \dots, \sigma_n)} \quad P \in \mathcal{L}$$

20

Equationally saturated sequents

 $T \vDash_i S$ is **equationally saturated** if it is propositionally saturated and

- $\tau = \tau \in T$
- if $\tau_1 = \tau_2 \in T$ then $\tau_2 = \tau_1 \in T$
- if $\tau_1 = \tau_2, \tau_2 = \tau_3 \in T$ then $\tau_1 = \tau_3 \in T$
- if $\vec{\tau} = \vec{\rho} \in T$ then $f(\vec{\tau}) = f(\vec{\rho}) \in T$
- if $\vec{\tau} = \vec{\rho}, P(\vec{\tau}) \in T$ then $P(\vec{\rho}) \in T$

We have $T \vDash_i S$ iff all equationally saturated sons are closed.