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Recursive clausal formulas

For recursive clausal definitions we extend clausal formulas for
f to recursive ones with a new rule:
• f (s[x]) = z ∧ A1[x, z ; v ] is a recursive clausal formula if

• s is a sequence of terms not applying the function symbol
f and,

• A1[x, z ; v ], is a recursive clausal formula.

Our plan is to extend PA for suitable clausal formulas A[x; v ]
by extension by definition of f such that

` f (x) = v ← A[x; v ]

and then unfold this into provably equivalent recursive
clauses for f
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Iterated functions gA
For every recursive clausal formula A[x; v ] we will define an
explicit clausal formula B[n, a, x; v ] for an explicit definition of
a three-argument function gA(x , n, a) (below only g) such that

` g((x1; . . . ; xn), n, a) = v ← B[n, a, x; v ]

(when x is not an n-tuple then g yields 0) and for an unary
measure function µ and a numeral C ≡ k we have

` g(x , n, a) = v1→ µ(v) < µ(x)

` 2 | g(x , 0, a)

Such an A is called regular.
We then define the iteration function g∗ and from it explicitly

f (x) = g∗((x1; . . . ; xn),C , 0)

PA will then prove the recursive clauses unfolded from A.
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Construction of B

By recursion on the structure of A. When A is:
• s[x] = v then B[n, a, x] is (s[x])0 = v .
• ∃z1(D1[x, z1] ∧ A1[x, z1; v ]) ∨ · · · ∨ ∃zk(Dk [x, zk ] ∧
Ak [x, zk , v ]) then B is
∃z1(D1[x, z1] ∧ B1[n, a, x, z1; v ]) ∨ · · · ∨ ∃zk(Dk [x, zk ] ∧
Bk [n, a, x, zk , v ])

• f (s[x]) = z ∧ A1[x, z ; v ] we obtain B1[n, a, x, z ; v ] by IH
and set B to

Adj(a) = 0 ∧ (n = 0 ∧ (0)0 = v ∨ n > 0 ∧ (s[x])1 = v) ∨
∃z∃b(a = z ; b∧B1[m, b, x, z ; v ]))
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Clausal definitions of predicates P
are by clausal definitions of their characteristic functions f
such that ` f (x) = v ← A[x; v ] where the (recursive) clausal
formula A has the final assignments of the form 1 = v (true)
or 0 = v (false) and recursions in it are always followed by
discriminations on zero:

f (s) = z ∧ (z = 0 ∧ A1 ∨ z > 0 ∧ A1)
where neither A1 nor A2 contain z free.
We then explicitly define P(x)↔ f (x) > 0 and prove in PA
the (recursive) clauses for P obtained by unfolding of A where:

f (x) = v ← B ∧ 1 = v ⇒ P(x) ← B
f (x) = v ← B ∧ 0 = v ⇒ ¬P(x)← B
We also change all above unfolded recursions as follows:

[¬]P(x)← B ∧ f (s)=z ∧ z=0 ∧ A1⇒[¬]P(x)← · · · ¬P(s) ∧ A1
[¬]P(x)← B ∧ f (s)=z ∧ z>0 ∧ A2⇒[¬]P(x)← · · ·P(s) ∧ A2
to recursive predicate clauses:

[¬]P(x)← · · · ¬P(s) ∧ A1
[¬]P(x)← · · ·P(s) ∧ A2
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