
Logika pre
informatikov

2

Propositional
Logic

Equational
Logic

Kvantifikačná
logika

Extension of
theories

Peano
Arithmetic

Extensions of
PA

Introduction
of dyadic
concatenation
into PA

Introduction
of dyadic
pairing into
PA

The Schema
of Nested
Iteration in
PA

CL: Explicit
Definitions

CL: Recursive
Definitions

Recursive clausal definitions

Lecture 12



Logika pre
informatikov

2

Propositional
Logic

Equational
Logic

Kvantifikačná
logika

Extension of
theories

Peano
Arithmetic

Extensions of
PA

Introduction
of dyadic
concatenation
into PA

Introduction
of dyadic
pairing into
PA

The Schema
of Nested
Iteration in
PA

CL: Explicit
Definitions

CL: Recursive
Definitions

Recursive clausal formulas

For recursive clausal definitions we extend clausal formulas for
f to recursive ones with a new rule:
• f (s[x]) = z ∧ A1[x, z ; v ] is a recursive clausal formula if

• s is a sequence of terms not applying the function symbol
f and,

• A1[x, z ; v ], is a recursive clausal formula.

Our plan is to extend PA for suitable clausal formulas A[x; v ]
by extension by definition of f such that

` f (x) = v ← A[x; v ]

and then unfold this into provably equivalent recursive
clauses for f



Logika pre
informatikov

2

Propositional
Logic

Equational
Logic

Kvantifikačná
logika

Extension of
theories

Peano
Arithmetic

Extensions of
PA

Introduction
of dyadic
concatenation
into PA

Introduction
of dyadic
pairing into
PA

The Schema
of Nested
Iteration in
PA

CL: Explicit
Definitions

CL: Recursive
Definitions

Iterated functions gA
For every recursive clausal formula A[x; v ] we will define an
explicit clausal formula B[n, a, x; v ] for an explicit definition of
a three-argument function gA(x , n, a) (below only g) such that

` g((x1; . . . ; xn), n, a) = v ← B[n, a, x; v ]

(when x is not an n-tuple then g yields 0) and for an unary
measure function µ and a numeral C ≡ k we have

` g(x , n, a) = v1→ µ(v) < µ(x)

` 2 | g(x , 0, a)

Such an A is called regular.
We then define the iteration function g∗ and from it explicitly

f (x) = g∗((x1; . . . ; xn),C , 0)

PA will then prove the recursive clauses unfolded from A.



Logika pre
informatikov

2

Propositional
Logic

Equational
Logic

Kvantifikačná
logika

Extension of
theories

Peano
Arithmetic

Extensions of
PA

Introduction
of dyadic
concatenation
into PA

Introduction
of dyadic
pairing into
PA

The Schema
of Nested
Iteration in
PA

CL: Explicit
Definitions

CL: Recursive
Definitions

Construction of B

By recursion on the structure of A. When A is:
• s[x] = v then B[n, a, x] is (s[x])0 = v .
• ∃z1(D1[x, z1] ∧ A1[x, z1; v ]) ∨ · · · ∨ ∃zk(Dk [x, zk ] ∧
Ak [x, zk , v ]) then B is
∃z1(D1[x, z1] ∧ B1[n, a, x, z1; v ]) ∨ · · · ∨ ∃zk(Dk [x, zk ] ∧
Bk [n, a, x, zk , v ])

• f (s[x]) = z ∧ A1[x, z ; v ] we obtain B1[n, a, x, z ; v ] by IH
and set B to

Adj(a) = 0 ∧ (n = 0 ∧ (0)0 = v ∨ n > 0 ∧ (s[x])1 = v) ∨
∃z∃b(a = z ; b∧B1[m, b, x, z ; v ]))



Logika pre
informatikov

2

Propositional
Logic

Equational
Logic

Kvantifikačná
logika

Extension of
theories

Peano
Arithmetic

Extensions of
PA

Introduction
of dyadic
concatenation
into PA

Introduction
of dyadic
pairing into
PA

The Schema
of Nested
Iteration in
PA

CL: Explicit
Definitions

CL: Recursive
Definitions

Clausal definitions of predicates P
are by clausal definitions of their characteristic functions f
such that ` f (x) = v ← A[x; v ] where the (recursive) clausal
formula A has the final assignments of the form 1 = v (true)
or 0 = v (false) and recursions in it are always followed by
discriminations on zero:

f (s) = z ∧ (z = 0 ∧ A1 ∨ z > 0 ∧ A1)
where neither A1 nor A2 contain z free.
We then explicitly define P(x)↔ f (x) > 0 and prove in PA
the (recursive) clauses for P obtained by unfolding of A where:

f (x) = v ← B ∧ 1 = v ⇒ P(x) ← B
f (x) = v ← B ∧ 0 = v ⇒ ¬P(x)← B
We also change all above unfolded recursions as follows:

[¬]P(x)← B ∧ f (s)=z ∧ z=0 ∧ A1⇒[¬]P(x)← · · · ¬P(s) ∧ A1
[¬]P(x)← B ∧ f (s)=z ∧ z>0 ∧ A2⇒[¬]P(x)← · · ·P(s) ∧ A2
to recursive predicate clauses:

[¬]P(x)← · · · ¬P(s) ∧ A1
[¬]P(x)← · · ·P(s) ∧ A2


	CL: Recursive Definitions

