```
Logika pre
informatikov
    2
Propositional
Logic
Equational
Logic
Kvantifikačná
logika
Extension of
theories
```


Recursive clausal definitions

Lecture 12

Recursive clausal formulas

For recursive clausal definitions we extend clausal formulas for f to recursive ones with a new rule:

- $f(\mathbf{s}[\mathbf{x}])=z \wedge \mathbf{A}_{1}[\mathbf{x}, z ; v]$ is a recursive clausal formula if
- \mathbf{s} is a sequence of terms not applying the function symbol f and,
- $\mathbf{A}_{1}[\mathbf{x}, z ; v]$, is a recursive clausal formula.

Our plan is to extend PA for suitable clausal formulas $\mathbf{A}[\mathbf{x} ; v]$ by extension by definition of f such that

$$
\vdash f(\mathbf{x})=v \leftarrow \mathbf{A}[\mathbf{x} ; v]
$$

and then unfold this into provably equivalent recursive clauses for f

Iterated functions g_{A}

For every recursive clausal formula $\mathbf{A}[\mathbf{x} ; v]$ we will define an explicit clausal formula $\mathbf{B}[n, a, \mathbf{x} ; v]$ for an explicit definition of a three-argument function $g_{A}(x, n, a)$ (below only g) such that

$$
\vdash g\left(\left(x_{1} ; \ldots ; x_{n}\right), n, a\right)=v \leftarrow \mathbf{B}[n, a, \mathbf{x} ; v]
$$

(when x is not an n-tuple then g yields 0) and for an unary measure function μ and a numeral $C \equiv \underline{k}$ we have

$$
\begin{aligned}
& \vdash g(x, n, a)=v 1 \rightarrow \mu(v)<\mu(x) \\
& \vdash 2 \mid g(x, 0, a)
\end{aligned}
$$

Such an \mathbf{A} is called regular.
We then define the iteration function g^{*} and from it explicitly

$$
f(\mathbf{x})=g^{*}\left(\left(x_{1} ; \ldots ; x_{n}\right), C, 0\right)
$$

PA will then prove the recursive clauses unfolded from \mathbf{A}.

Construction of B

By recursion on the structure of \mathbf{A}. When \mathbf{A} is:

- $\mathbf{s}[\mathbf{x}]=v$ then $\mathbf{B}[n, a, \mathbf{x}]$ is $(\mathbf{s}[\mathbf{x}]) \mathbf{0}=v$.
- $\exists \mathbf{z}_{1}\left(\mathbf{D}_{1}\left[\mathbf{x}, \mathbf{z}_{1}\right] \wedge \mathbf{A}_{1}\left[\mathbf{x}, \mathbf{z}_{1} ; v\right]\right) \vee \cdots \vee \exists \mathbf{z}_{k}\left(\mathbf{D}_{k}\left[\mathbf{x}, \mathbf{z}_{k}\right] \wedge\right.$ $\left.\mathbf{A}_{k}\left[\mathbf{x}, \mathbf{z}_{k}, v\right]\right)$ then \mathbf{B} is
$\exists \mathbf{z}_{1}\left(\mathbf{D}_{1}\left[\mathbf{x}, \mathbf{z}_{1}\right] \wedge \mathbf{B}_{1}\left[n, a, \mathbf{x}, \mathbf{z}_{1} ; v\right]\right) \vee \cdots \vee \exists \mathbf{z}_{k}\left(\mathbf{D}_{k}\left[\mathbf{x}, \mathbf{z}_{k}\right] \wedge\right.$ $\left.\mathbf{B}_{k}\left[n, a, \mathbf{x}, \mathbf{z}_{k}, v\right]\right)$
- $f(\mathbf{s}[\mathbf{x}])=z \wedge \mathbf{A}_{1}[\mathbf{x}, z ; v]$ we obtain $\mathbf{B}_{1}[n, a, \mathbf{x}, z ; v]$ by IH and set \mathbf{B} to

$$
\begin{aligned}
& \operatorname{Adj}(a)=0 \wedge(n=0 \wedge(0) \mathbf{0}=v \vee n>0 \wedge(\mathbf{s}[\mathbf{x}]) \mathbf{1}=v) \vee \\
& \left.\exists z \exists b\left(a=z ; b \wedge \mathbf{B}_{1}[m, b, \mathbf{x}, z ; v]\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& {[\neg] P(\mathbf{x}) \leftarrow \mathbf{B} \wedge f(\mathbf{s})=z \wedge z=0 \wedge \mathbf{A}_{1} \Rightarrow[\neg] P(\mathbf{x}) \leftarrow \cdots \neg P(\mathbf{s}) \wedge \mathbf{A}_{1}} \\
& {[\neg] P(\mathbf{x}) \leftarrow \mathbf{B} \wedge f(\mathbf{s})=z \wedge z>0 \wedge \mathbf{A}_{2} \Rightarrow[\neg] P(\mathbf{x}) \leftarrow \cdots P(\mathbf{s}) \wedge \mathbf{A}_{2}}
\end{aligned}
$$

