```
Logika pre
informatikov
    2
Propositional
Logic
Equational
Logic
Kvantifikačná
logika
Extension of
theories
```


Peano

```
Arithmetic
PA
Introduction of dyadic concatenation into PA
Introduction of dyadic
pairing into PA
The Schema of Nested Iteration in PA
```


Explicit clausal definitions

Extensions of Lecture 11

CL: Explicit

Examples of Discriminators built into CL

Discriminators without patterns:

- negation: $\mathbf{A} \mid \neg \mathbf{A}$
- test on zero: $\mathbf{s}=0 \mid \mathbf{s}>0$
- trichotomy: $\mathbf{s}<\mathbf{t}|\mathbf{s}=\mathbf{t}| \mathbf{s}>\mathbf{t}$

Discriminators with patterns:

- let: $\mathbf{s}=z$
- binary: $\mathbf{s}=z 0 \wedge z=0|\mathbf{s}=z 0 \wedge z>0| \mathbf{s}=z 1$
- division by four: $\mathbf{s}=4 \cdot z+v \wedge 0 \leq v \leq 3$
- exactly one alternative holds
- pattern variables uniquely exist

Examples of Provable discriminators

- discr. on the head of lists: $\operatorname{Adj}(\mathbf{s})=0 \mid \mathbf{s}=z ; t$
- discr. on the tail of lists:

$$
\operatorname{Adj}(\mathbf{s})=0 \mid \mathbf{s}=t \boxplus(z ; u) \wedge \operatorname{Adj}(u)=0
$$

\bullet
The head discrimination used in a clausal definition:

$$
\begin{aligned}
& \operatorname{Rev}(t)=t \\
& \operatorname{Rev}(x ; t)=\operatorname{Rev}(t) \boxplus(x ; 0)
\end{aligned} \leftarrow \operatorname{Adj}(t)
$$

$$
\begin{array}{ll}
g^{*}(x, n, a)=v & \leftarrow g(x, n, a)=v \mathbf{0} \\
g^{*}(x, n+1, a)=g^{*}\left(x, n, a \boxplus\left(g^{*}(v, C, 0) ; 0\right)\right) & \leftarrow g(x, n+1, a)=v \mathbf{1}
\end{array}
$$ special discrimination for g^{*} : provided PA proves

$$
\begin{gathered}
g(x, n, a)=v 1 \rightarrow \mu(v)<\mu(x) \\
2 \mid g(x, 0, a)
\end{gathered}
$$

we have $g(\mathbf{s}, \mathbf{n}, \mathbf{a})=v \mathbf{0} \mid g(\mathbf{s}, \mathbf{n}, \mathbf{a})=v \mathbf{1} \wedge \mathbf{n}=m+1$ This is used in the clauses for g^{*} :

General form of provable discriminators

We use bold variables \mathbf{x} for possibly empty sequences of variables x_{1}, \ldots, x_{n}, we let $\exists \mathbf{x} \mathbf{D}$ to stand for $\exists x_{1} \ldots \exists x_{n} \mathbf{D}$ (n can be empty), and write $\mathbf{x}=\mathbf{y}$ for $x_{1}=y_{1} \wedge \cdots x_{n}=y_{n}$.
Suppose that PA proves for $k \geq 1$:

$$
\begin{gathered}
\exists \mathbf{z}_{1} \mathbf{D}_{1}\left[\mathbf{z}_{1}\right] \vee \exists \mathbf{z}_{2} \mathbf{D}_{2}\left[\mathbf{z}_{2}\right] \vee \cdots \vee \exists \mathbf{z}_{k} \mathbf{D}_{k}\left[\mathbf{z}_{k}\right] \\
\mathbf{D}_{i}\left[\mathbf{z}_{i}\right] \rightarrow \neg \mathbf{D}_{j}\left[\mathbf{z}_{j}\right] \quad \text { for all } 1 \leq i \neq j \leq k \\
\mathbf{D}_{i}\left[\mathbf{z}_{i}\right] \wedge \mathbf{D}_{i}[\mathbf{w}] \rightarrow \mathbf{z}_{i}=\mathbf{w} \quad \text { for all } 1 \leq i \leq k
\end{gathered}
$$

This means that exactly one $\mathbf{D}_{i}[\mathbf{z}]_{i}$ holds with uniquely determined patterns \mathbf{z}_{i}.
We can then use

$$
\mathbf{D}_{1}\left[\mathbf{z}_{1}\right]\left|\mathbf{D}_{2}\left[\mathbf{z}_{2}\right]\right| \cdots \mid \mathbf{D}_{k}\left[\mathbf{z}_{k}\right]
$$

as provable discriminators (we can even permit conditional discrimination).

In the following we will write $\mathbf{A}[\mathbf{x} ; v]$ for a formula with the output variable v free and with other free variables among the input variables \mathbf{x}
A formula $\mathbf{A}[\mathbf{x} ; v]$ is a clausal formula if \mathbf{A} is either of a form

- $\mathbf{s}[\mathbf{x}]=v$ or
$\exists \mathbf{z}_{1}\left(\mathbf{D}_{1}\left[\mathbf{x}, \mathbf{z}_{1}\right] \wedge \mathbf{A}_{1}\left[\mathbf{x}, \mathbf{z}_{1} ; v\right]\right) \vee \cdots \vee \exists \mathbf{z}_{k}\left(\mathbf{D}_{k}\left[\mathbf{x}, \mathbf{z}_{k}\right] \wedge \mathbf{A}_{k}\left[\mathbf{x}, \mathbf{z}_{k}, v\right]\right)$ where $\mathbf{D}_{1}, \ldots, \mathbf{D}_{k}$ is a provable discriminator and $\mathbf{A}_{1}, \ldots, \mathbf{A}_{k}$ are clausal formulas.

Using clausal formulas in explicit definitions

In all clausal formulas $\mathbf{A}[\mathbf{x} ; v]$ for every \mathbf{x} the output variable is uniquely determined, i.e. PA proves:

$$
\begin{gathered}
\exists v \mathbf{A}[\mathbf{x} ; v] \\
\mathbf{A}[\mathbf{x} ; v] \wedge \mathbf{A}[\mathbf{x} ; w] \rightarrow v=w
\end{gathered}
$$

We can thus explictly introduce into PA a new function symbol f by:

$$
f(\mathbf{x})=v \leftrightarrow \mathbf{A}[\mathbf{x} ; v],
$$

or in CL by $f(\mathbf{x})=\mu_{v}[\mathbf{A}[\mathbf{x} ; v]]$.
The above equivalence is actually equivalent in PA to

$$
f(\mathbf{x})=v \leftarrow \mathbf{A}[\mathbf{x} ; v]
$$

because if in the direction $(\rightarrow) f(\mathbf{x})=v$ holds then $\mathbf{A}[\mathbf{x} ; w]$ for some w by existence and $w=f(\mathbf{x})$ by (\leftarrow).

Unfolding the clausal formulas

We now assign to every formula B, every clausal formula $\mathbf{A}[\mathbf{x} ; v]$ and a new function symbol f a finite set of clauses by the unfolding operator $U[f, \mathbf{B}, \mathbf{A}]$ such that:

- if $\mathbf{A} \equiv \mathbf{s}[\mathbf{x}]=v$ then $U[f, \mathbf{B}, \mathbf{A}]=\{f(\mathbf{x})=v \leftarrow \mathbf{B} \wedge \mathbf{s}[\mathbf{x}]=v\}$ and if
$\mathbf{A} \equiv \exists \mathbf{z}_{1}\left(\mathbf{D}_{1}\left[\mathbf{x}, \mathbf{z}_{1}\right] \wedge \mathbf{A}_{1}\left[\mathbf{x}, \mathbf{z}_{1} ; v\right]\right) \vee \cdots \vee \exists \mathbf{z}_{k}\left(\mathbf{D}_{k}\left[\mathbf{x}, \mathbf{z}_{k}\right] \wedge \mathbf{A}_{k}\left[\mathbf{x}, \mathbf{z}_{k}, v\right]\right)$
then

$$
U[f, \mathbf{B}, \mathbf{A}]=\cup_{1 \leq i \leq k} U\left[f,\left(\mathbf{B} \wedge \mathbf{D}_{i}\left[\mathbf{x}, \mathbf{z}_{i}\right]\right), \mathbf{A}_{i}\left[\mathbf{x}, \mathbf{z}_{i}, v\right]\right]
$$

If $U[f, \top, \mathbf{A}[\mathbf{x} ; v]]=\left\{\mathbf{C}_{1}, \ldots \mathbf{C}_{m}\right\}$ then we have

$$
\vdash f(\mathbf{x})=b \leftarrow \mathbf{A}[\mathbf{x} ; v] \text { iff } \vdash \mathbf{C}_{1} \text { and } \ldots \text { and } \vdash \mathbf{C}_{m}
$$

