Propositional Logic

The language of propositional logic

Propositional formulas are formed from

- propositional variables $\left(P_{0}, P_{1}, \ldots\right)$ by
- propositional connectives which are -nullary: truth (T), falsehood (\perp)
-unary: negation (\neg)
-binary: disjunction (\vee), conjunction (\wedge) implication (\rightarrow), equivalence (\leftrightarrow)

Binary are infix ($\rightarrow, \leftrightarrow$ groups to the right, the rest to the left)
Precedence from highest is $\neg, \wedge, \vee,(\rightarrow, \leftrightarrow)$. Thus
$P_{1} \rightarrow P_{2} \leftrightarrow P_{3} \vee \neg P_{4} \wedge P_{5}$ abbreviates
$P_{1} \rightarrow\left(P_{2} \leftrightarrow\left(P_{3} \vee\left(\neg\left(P_{4}\right) \wedge P_{5}\right)\right)\right)$

Truth functions

We identify the truth values true and false with the nullary symbols T and \perp respectively. The remaining connectives are interpreted as functions over truth values satisfying:

P_{1}	P_{2}	$\neg P_{1}$	$P_{1} \wedge P_{2}$	$P_{1} \vee P_{2}$	$P_{1} \rightarrow P_{2}$	$P_{1} \leftrightarrow P_{2}$
\perp	\perp	\top	\perp	\perp	\top	\top
\perp	\top	\top	\perp	\top	\top	\perp
\top	\perp	\perp	\perp	\top	\perp	\perp
\top	\top	\perp	\top	\top	\top	\top

We have

$$
\begin{aligned}
A \leftrightarrow B & \equiv(A \rightarrow B) \wedge(B \rightarrow A) \\
\neg A & \equiv A \rightarrow \perp \\
A \rightarrow B & \equiv \neg A \vee B \\
A & \wedge B
\end{aligned}
$$

Tautologies

Of special interest are those propositional formulas A which are true (T) for all possible truth values of its propositional variables, in writing $\vDash_{p} A$.
Every such formula is a tautology.
Tautologies are the cornerstones of mathematical logic.
Some examples of (schemas of) tautologies:

$$
\begin{gathered}
\vDash_{p}(A \rightarrow B \rightarrow C) \leftrightarrow A \wedge B \rightarrow C \\
\vDash_{p}(A \rightarrow B \rightarrow C) \leftrightarrow(A \rightarrow B) \rightarrow A \rightarrow C \\
\vDash_{p}(A \rightarrow B) \leftrightarrow \neg B \rightarrow \neg A
\end{gathered}
$$

for any propositional formulas A, B, and C

Propositional satisfaction relation

A propositional valuation, or an propositional assignment v is a (possibly infinite) set $v \subset \mathbb{N}$ The idea is that the $P_{i} \equiv \top$ iff $i \in v$.

We say that a formula A is satisfied in v, in writing ${ }_{p}^{v} A$, if A is true for the assignment v. We thus have: $\vDash_{p}^{v} P_{i}$ iff $i \in v$
$\vDash_{p}^{v} \neg A$ iff not $\vDash_{p}^{v} A$ iff $\not{ }_{p}^{v} A$
$\vDash_{p}^{v} A \wedge B$ iff $\vDash_{p}^{v} A$ and $\vDash_{p}^{v} B$
$\vDash_{p}^{v} A \vee B$ iff $F_{p}^{v} A$ or $\vDash_{p}^{v} B$
$\vDash_{p}^{v} A \rightarrow B$ iff whenever $\vDash_{p}^{v} A$ also $\vDash_{p}^{v} B$

Thus A is a tautology iff $\xi^{v} A$ for all valuations v.

Coincidence property if two valuations v and w are such that $i \in v$ iff $i \in w$ for all P_{i} occurring in A then $\vDash_{p}^{v} A$ iff $\vDash_{p}^{w} A$

Satisfaction relation for sets of propositional formulas

For T a set of formulas and v a valuation (both possibly infinite), we say that v satisfies T, in writing $\vDash_{p}^{v} T$, iff for all $A \in T$ we have $\vDash_{p}^{v} A$.

We say that S is a propositional (tautological) consequence of T, in writing $T \vDash_{p} S$, iff for all v satisfying T (i.e. $\vDash_{p}^{v} T$) at least one $A \in S$ is satisfied (i.e. $\vDash_{p}^{v} A$)

The special case when $T \vDash_{p}\{A\}$ is the most important relation in mathematical logic. We write $T \vDash_{p} A$ instead of $T \vDash_{p}\{A\}$ and say that A tautologically follows from T. Note that $\emptyset \vDash_{p}\{A\}$ iff A is tautology.

If $T \vDash_{p} S$ holds then we say that the propositional sequent $T \vDash_{p} S$ is valid

Compactness theorem for propositional consequence

$T \vDash_{p} S$ iff there are finite $T^{\prime} \subset T$ and $S^{\prime} \subset S$ s.t. $T^{\prime} \vDash_{p} S^{\prime}$.

If $T^{\prime}=\left\{A_{1}, \ldots, A_{n}\right\}$ and $S^{\prime}=\left\{B_{1}, \ldots, B_{m}\right\}$ we have $T^{\prime} \vDash_{p} S^{\prime}$ iff

$$
\vDash_{p} A_{1} \wedge \cdots \wedge A_{n} \rightarrow B_{1} \vee \cdots \vee B_{m}
$$

Saturation of propositional sequents

Closure:

$A, T \vDash_{p} A, S ; \perp, T \vDash_{p} S ; T \vDash_{p} \top, S$ are valid Flattenings:

- $T \vDash_{p} A \rightarrow B, S$ iff $A, T \vDash_{p} B, A \rightarrow B, S$
- $T \vDash_{p} A \vee B, S$ iff $T \vDash_{p} A, B, A \vee B, S$
- $A \wedge B, T \vDash_{p} S$ iff $A, B, A \wedge B, T \vDash_{p} S$

Splits:

- $A \rightarrow B, T \vDash_{p} S$ iff
$B, A \rightarrow B, T \vDash_{p} S$ and $A \rightarrow B, T \vDash_{p} A, S$
- $A \vee B, T \vDash_{p} S$ iff
$A, A \vee B, T \vDash_{p} S$ and $B, A \vee B, T \vDash_{p} S$
- $T \vDash_{p} A \wedge B, S$ iff
$T \vDash_{p} A, A \wedge B, S$ and $T \vDash_{p} B, A \wedge B, S$
Inversions:
- $T \vDash_{p} \neg A, S$ iff $A, T \vDash_{p} \neg A, S$
- $\neg A, T \vDash_{p} S$ iff $\neg A, T \vDash_{p} A, S$

Cuts:

$T \vDash_{p} S$ iff $A, T \vDash_{p} S$ and $T \vDash_{p} A, S$
Here A_{1}, \ldots, A_{k} stands for $A_{1}, \ldots, A_{k}, \emptyset$ and A_{1}, \ldots, A_{k}, S stands for $S \cup\left\{A_{1}, \ldots, A_{k}\right\}$.

Propositional tableaux as trees of sequents

A branch with formulas $A_{1}, \ldots, A_{n}, B_{1} *, \ldots, B_{m} *$ can be viewed as a finite sequent:
$\left\{A_{1}, \ldots, A_{n}\right\} \vDash_{p}\left\{B_{1}, \ldots B_{m}\right\}$ A tableau can be viewed as a conjunction of sequents corresponding to its branches.
Tableau rules: correspond to saturation of sequents:
A branch closes when it contains $\perp, \mathrm{T} *, A, A *$ Flattens:

$$
\frac{A \rightarrow B *}{A, B *} \frac{A \vee B *}{A *, B *} \frac{A \wedge B}{A, B}
$$

Splits:

$$
\frac{A \rightarrow B}{B \mid A *} \frac{A \vee B}{A \mid B} \frac{A \wedge B *}{A * \mid B *}
$$

Inversions, Cuts, and Axioms:

$$
\frac{\neg A *}{A} \frac{\neg A}{A *} \overline{A \mid A *} \bar{A} \text { when } A \in T
$$

Saturated sequents

A sequent $T \vDash_{p} S$ (a branch of a tableau) is saturated if no rule can be applied to it, i.e.

- if $A \rightarrow B \in S$ then $A \in T$ and $B \in S$
- if $A \vee B \in S$ then $A \in S$ and $B \in S$
- it $A \wedge B \in T$ then $A \in T$ and $B \in T$
- if $A \rightarrow B \in T$ then $B \in T$ or $A \in S$
- if $A \vee B \in T$ then $A \in T$ or $B \in T$
- if $A \wedge B \in S$ then $A \in S$ or $B \in S$
- if $\neg A \in S$ then $A \in T$
- if $\neg A \in T$ then $A \in S$

If a saturated sequent is closed then it is valid because it cannot be falsified in any v.

If a saturated sequent is valid then it is closed, because if not closed then $v=\left\{i \mid P_{i} \in T\right\}$ falsifies the sequent.

Soundness and completeness of propositional tableaux

We write $T \vDash_{p} S \triangleright_{p} T^{\prime} \vDash_{p} S^{\prime}$ when the first sequent is a father of the second one.

We have $T \vDash_{p} S$ iff $T^{\prime} \vDash_{p} S^{\prime}$ for all saturated sons.

When we write $T \vdash_{p} A$ for there is a closed tableau for the goal A then we have

Soundness: if $T \vdash_{p} A$ then $T \vDash_{p} A$

Completeness: if $T \vDash_{p} A$ then $T \vdash_{p} A$

