Propositional Logic

The language of propositional logic

Propositional formulas are formed from

- propositional variables (P_0, P_1, \ldots) by
- propositional connectives which are
 nullary: truth (⊤), falsehood (⊥)
 - •**unary**: negation (\neg)
 - binary: disjunction (∨), conjunction (∧)
 implication (→), equivalence (↔)

Binary are **infix** (\rightarrow , \leftrightarrow groups to the right, the rest to the left)

Precedence from highest is \neg , \land , \lor , $(\rightarrow, \leftrightarrow)$. Thus

 $P_1 \to P_2 \leftrightarrow P_3 \lor \neg P_4 \land P_5 \text{ abbreviates}$ $P_1 \to (P_2 \leftrightarrow (P_3 \lor (\neg (P_4) \land P_5)))$

Truth functions

We identify the **truth values** *true* and *false* with the nullary symbols \top and \bot respectively. The remaining connectives are **interpreted** as functions over truth values satisfying:

P_1	P ₂	$\neg P_1$	$P_1 \wedge P_2$	$P_1 \lor P_2$	$P_1 \rightarrow P_2$	$P_1 \leftrightarrow P_2$
			\perp		T	T
			\perp	Т	Т	\perp
			\perp	Т	\perp	\perp
			Т	Т	Т	Т

We have

$$A \leftrightarrow B \equiv (A \rightarrow B) \land (B \rightarrow A)$$
$$\neg A \equiv A \rightarrow \bot$$
$$A \rightarrow B \equiv \neg A \lor B$$
$$A \land B \equiv \neg (\neg A \lor \neg B)$$

Tautologies

Of special interest are those propositional formulas A which are true (\top) for all possible truth values of its propositional variables, in writing $\vDash_p A$.

Every such formula is a **tautology**.

Tautologies are the cornerstones of mathematical logic.

Some examples of (schemas of) tautologies:

$$\models_{p} (A \to B \to C) \leftrightarrow A \land B \to C$$
$$\models_{p} (A \to B \to C) \leftrightarrow (A \to B) \to A \to C$$
$$\models_{p} (A \to B) \leftrightarrow \neg B \to \neg A$$

for any propositional formulas A, B, and C

Propositional satisfaction relation

A propositional valuation, or an propositional assignment v is a (possibly infinite) set $v \subset \mathbb{N}$ The idea is that the $P_i \equiv \top$ iff $i \in v$.

We say that a formula A is satisfied in v, in writing $\vDash_p^v A$, if A is true for the assignment v. We thus have: $\vDash_p^v P_i$ iff $i \in v$ $\vDash_p^v \neg A$ iff not $\vDash_p^v A$ iff $\nvDash_p^v A$ $\vDash_p^v A \land B$ iff $\vDash_p^v A$ and $\vDash_p^v B$ $\vDash_p^v A \lor B$ iff $\vDash_p^v A$ or $\vDash_p^v B$ $\vDash_p^v A \to B$ iff whenever $\vDash_p^v A$ also $\vDash_p^v B$

Thus A is a tautology iff $\models^{v} A$ for all valuations v.

Coincidence property if two valuations v and w are such that $i \in v$ iff $i \in w$ for all P_i occurring in A then $\vDash_p^v A$ iff $\vDash_p^w A$

Satisfaction relation for sets of propositional formulas

For T a set of formulas and v a valuation (both possibly infinite), we say that v **satisfies** T, in writing $\vDash_p^v T$, iff for all $A \in T$ we have $\vDash_p^v A$.

We say that S is a propositional (tautological) consequence of T, in writing $T \vDash_p S$, iff for all v satisfying T (i.e. $\vDash_p^v T$) at least one $A \in S$ is satisfied (i.e. $\vDash_p^v A$)

The special case when $T \vDash_p \{A\}$ is the most important relation in mathematical logic. We write $T \vDash_p A$ instead of $T \vDash_p \{A\}$ and say that A **tautologically follows from** T. Note that $\emptyset \vDash_p \{A\}$ iff A is tautology.

If $T \vDash_p S$ holds then we say that the **propositional sequent** $T \vDash_p S$ is valid

Compactness theorem for propositional consequence

 $T \vDash_p S$ iff there are finite $T' \subset T$ and $S' \subset S$ s.t. $T' \vDash_p S'$.

If $T' = \{A_1, \ldots, A_n\}$ and $S' = \{B_1, \ldots, B_m\}$ we have $T' \vDash_p S'$ iff

 $\vDash_p A_1 \land \cdots \land A_n \to B_1 \lor \cdots \lor B_m$

Saturation of propositional sequents

Closure:

 $A, T \vDash_p A, S; \perp, T \vDash_p S; T \vDash_p \top, S$ are valid **Flattenings**:

- $T \vDash_p A \to B, S$ iff $A, T \vDash_p B, A \to B, S$
- $T \vDash_p A \lor B, S$ iff $T \vDash_p A, B, A \lor B, S$
- $A \land B, T \vDash_p S$ iff $A, B, A \land B, T \vDash_p S$ Splits:

•
$$A \rightarrow B, T \vDash_p S$$
 iff
 $B, A \rightarrow B, T \vDash_p S$ and $A \rightarrow B, T \vDash_p A, S$
• $A \lor B, T \vDash_p S$ iff
 $A, A \lor B, T \vDash_p S$ and $B, A \lor B, T \vDash_p S$
• $T \vDash_p A \land B, S$ iff
 $T \vDash_p A, A \land B, S$ and $T \vDash_p B, A \land B, S$
Inversions:

•
$$T \vDash_p \neg A, S$$
 iff $A, T \vDash_p \neg A, S$

• $\neg A, T \vDash_p S$ iff $\neg A, T \vDash_p A, S$

Cuts:

 $T \vDash_p S$ iff $A, T \vDash_p S$ and $T \vDash_p A, S$

Here A_1, \ldots, A_k stands for $A_1, \ldots, A_k, \emptyset$ and A_1, \ldots, A_k, S stands for $S \cup \{A_1, \ldots, A_k\}$.

Propositional tableaux as trees of sequents

A branch with formulas $A_1, \ldots, A_n, B_1^*, \ldots, B_m^*$ can be viewed as a finite *sequent*:

 $\{A_1, \ldots, A_n\} \vDash_p \{B_1, \ldots, B_m\}$ A tableau can be viewed as a conjunction of sequents corresponding to its branches.

Tableau rules: correspond to saturation of sequents:

A branch **closes** when it contains \bot , $\top *$, A, A***Flattens:**

$A \rightarrow B *$	$A \lor B *$	$A \wedge B$
A, B*	$\overline{A*, B*}$	$\overline{A, B}$

Splits:

A -	$\rightarrow B$	$A \lor B$		$A \wedge B *$	
B	A*	\overline{A}	B	$\overline{A*}$	B*

Inversions, Cuts, and Axioms:

$$\frac{\neg A*}{A} \quad \frac{\neg A}{A*} \quad \frac{\neg A}{A \mid A*} \quad \frac{\neg}{A} \text{ when } A \in T$$

Saturated sequents

A sequent $T \vDash_p S$ (a branch of a tableau) is saturated if no rule can be applied to it, i.e.

- if $A \to B \in S$ then $A \in T$ and $B \in S$
- if $A \lor B \in S$ then $A \in S$ and $B \in S$
- it $A \wedge B \in T$ then $A \in T$ and $B \in T$
- if $A \to B \in T$ then $B \in T$ or $A \in S$
- if $A \lor B \in T$ then $A \in T$ or $B \in T$
- if $A \wedge B \in S$ then $A \in S$ or $B \in S$
- if $\neg A \in S$ then $A \in T$
- if $\neg A \in T$ then $A \in S$

If a saturated sequent is closed then it is valid because it cannot be falsified in any v.

If a saturated sequent is valid then it is closed, because if not closed then $v = \{i \mid P_i \in T\}$ falsifies the sequent.

Soundness and completeness of propositional tableaux

We write $T \vDash_p S \succ_p T' \vDash_p S'$ when the first sequent is a **father** of the second one.

We have $T \vDash_p S$ iff $T' \vDash_p S'$ for all saturated sons.

When we write $T \vdash_p A$ for there is a closed tableau for the goal A then we have

Soundness: if $T \vdash_p A$ then $T \models_p A$

Completeness: if $T \vDash_p A$ then $T \vdash_p A$