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The language of propositional logic

Propositional formulas are formed from

• propositional variables (P0, P1, . . .) by

• propositional connectives which are

•nullary: truth (>), falsehood (⊥)

•unary: negation (¬)

•binary: disjunction (∨), conjunction (∧)

implication (→), equivalence (↔)

Binary are infix (→,↔ groups to the right, the

rest to the left)

Precedence from highest is ¬, ∧, ∨, (→,↔).

Thus

P1 → P2 ↔ P3 ∨ ¬P4 ∧ P5 abbreviates

P1 → (P2 ↔ (P3 ∨ (¬(P4) ∧ P5)))
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Truth functions

We identify the truth values true and false

with the nullary symbols > and ⊥ respectively.

The remaining connectives are interpreted as

functions over truth values satisfying:

P1 P2 ¬P1 P1∧P2 P1∨P2 P1→P2 P1↔P2
⊥ ⊥ > ⊥ ⊥ > >
⊥ > > ⊥ > > ⊥
> ⊥ ⊥ ⊥ > ⊥ ⊥
> > ⊥ > > > >

We have

A ↔ B ≡ (A → B) ∧ (B → A)

¬A ≡ A → ⊥
A → B ≡ ¬A ∨B

A ∧B ≡ ¬(¬A ∨ ¬B)

3



Tautologies

Of special interest are those propositional for-

mulas A which are true (>) for all possible

truth values of its propositional variables, in

writing �p A.

Every such formula is a tautology.

Tautologies are the cornerstones of mathemat-

ical logic.

Some examples of (schemas of) tautologies:

�p (A → B → C) ↔ A ∧B → C

�p (A → B → C) ↔ (A → B) → A → C

�p (A → B) ↔ ¬B → ¬A

for any propositional formulas A, B, and C
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Propositional satisfaction relation

A propositional valuation, or an propositional

assignment v is a (possibly infinite) set v ⊂ N
The idea is that the Pi ≡ > iff i ∈ v.

We say that a formula A is satisfied in v, in

writing �v
p A, if A is true for the assignment v.

We thus have: �v
p Pi iff i ∈ v

�v
p ¬A iff not �v

p A iff 6�v
p A

�v
p A ∧B iff �v

p A and �v
p B

�v
p A ∨B iff �v

p A or �v
p B

�v
p A → B iff whenever �v

p A also �v
p B

Thus A is a tautology iff �v A for all valua-

tions v.

Coincidence property if two valuations v and

w are such that i ∈ v iff i ∈ w for all Pi occurring

in A then �v
p A iff �w

p A
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Satisfaction relation for sets of

propositional formulas

For T a set of formulas and v a valuation (both

possibly infinite), we say that v satisfies T , in

writing �v
p T , iff for all A ∈ T we have �v

p A.

We say that S is a propositional (tautologi-

cal) consequence of T , in writing T �p S, iff

for all v satisfying T (i.e. �v
p T ) at least one

A ∈ S is satisfied (i.e. �v
p A)

The special case when T �p {A} is the most

important relation in mathematical logic. We

write T �p A instead of T �p {A} and say that

A tautologically follows from T . Note that

∅ �p {A} iff A is tautology.

If T �p S holds then we say that the proposi-

tional sequent T �p S is valid
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Compactness theorem for propositional

consequence

T �p S iff there are finite T ′ ⊂ T and S′ ⊂ S s.t.

T ′ �p S′.

If T ′ = {A1, . . . , An} and S′ = {B1, . . . , Bm} we

have T ′ �p S′ iff

�p A1 ∧ · · · ∧An → B1 ∨ · · · ∨Bm
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Saturation of propositional sequents

Closure:
A, T �p A, S; ⊥, T �p S; T �p >, S are valid
Flattenings:
• T �p A → B, S iff A, T �p B, A → B, S

• T �p A ∨B, S iff T �p A, B, A ∨B, S

• A ∧B, T �p S iff A, B, A ∧B, T �p S

Splits:
• A → B, T �p S iff
B, A → B, T �p S and A → B, T �p A, S

• A ∨B, T �p S iff
A, A ∨B, T �p S and B, A ∨B, T �p S

• T �p A ∧B, S iff
T �p A, A ∧B, S and T �p B, A ∧B, S

Inversions:
• T �p ¬A, S iff A, T �p ¬A, S

• ¬A, T �p S iff ¬A, T �p A, S

Cuts:
T �p S iff A, T �p S and T �p A, S

Here A1, . . . , Ak stands for A1, . . . , Ak, ∅ and
A1, . . . , Ak, S stands for S ∪ {A1, . . . , Ak}.
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Propositional tableaux as trees of
sequents

A branch with formulas A1, . . . , An, B1∗, . . . , Bm∗
can be viewed as a finite sequent:
{A1, . . . , An} �p {B1, . . . Bm} A tableau can be
viewed as a conjunction of sequents correspond-
ing to its branches.
Tableau rules: correspond to saturation of
sequents:
A branch closes when it contains ⊥, >∗, A, A∗
Flattens:

A → B∗
A, B∗

A ∨B∗
A∗, B∗

A ∧B

A, B

Splits:

A → B

B | A∗
A ∨B

A | B

A ∧B∗
A∗ | B∗

Inversions, Cuts, and Axioms:

¬A∗
A

¬A

A∗ A | A∗ A
when A ∈ T
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Saturated sequents

A sequent T �p S (a branch of a tableau) is

saturated if no rule can be applied to it, i.e.

• if A → B ∈ S then A ∈ T and B ∈ S

• if A ∨B ∈ S then A ∈ S and B ∈ S

• it A ∧B ∈ T then A ∈ T and B ∈ T

• if A → B ∈ T then B ∈ T or A ∈ S

• if A ∨B ∈ T then A ∈ T or B ∈ T

• if A ∧B ∈ S then A ∈ S or B ∈ S

• if ¬A ∈ S then A ∈ T

• if ¬A ∈ T then A ∈ S

If a saturated sequent is closed then it is valid

because it cannot be falsified in any v.

If a saturated sequent is valid then it is closed,

because if not closed then v = {i | Pi ∈ T}
falsifies the sequent.
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Soundness and completeness of

propositional tableaux

We write T �p S Bp T ′ �p S′ when the first se-

quent is a father of the second one.

We have T �p S iff T ′ �p S′ for all saturated

sons.

When we write T `p A for there is a closed

tableau for the goal A then we have

Soundness: if T `p A then T �p A

Completeness: if T �p A then T `p A
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