
Peano Arithmetic and Clausal Language

Paul J. Voda

November 2004

Table of Contents

Peano Arithmetic and Clausal Language . 1
1 Basic Bootstrapping of PA . 1
2 Extensions of PA by Predicate Symbols . 7
3 Extensions of PA by Function Symbols . 12
4 Dyadic Concatenation Function in PA . 15
5 Dyadic Pairing and List Concatenation Functions in PA 27
6 Closure of PA under a Schema of Nested Iteration 34
7 Clausal Definitions . 38

1 Basic Bootstrapping of PA

In this section we introduce and prove basic theorems of the formal system of
arithmetic called Peano arithmetic.

1.1 Language of Peano arithmetic. The language LPA of Peano arithmetic
consists of the constant 0, the unary function symbol x′, and of two binary
function symbols x + y and x·y. Both + and · associate to the left and · has
greater precedence than +.

We will abbreviate 0′ as 1 but only in this section.

1.2 Axioms of Peano arithmetic. The axioms of Peano arithmetic consist
of universal closures of the following six formulas:

P̀A 0 6= x′ (1)

P̀A x′ = y′ → x = y (2)

P̀A 0 + y = y (3)

P̀A x′ + y = (x+ y)′ (4)

P̀A 0·y = y (5)

P̀A x′·y = x·y + y (6)

and for every formula φ[x] of LPA and an indicated variable x a universal closure
of the axiom of (mathematical) induction Ixφ[x]:

P̀A φ[0] ∧ ∀x(φ[x]→ φ[x′])→ φ[x] . (7)

The induction formula φ[x] can contain, in addition to the induction variable x,
zero or more free variables as parameters.

We use the symbol P̀A φ of provability in PA as an abbreviation for PA ` φ.

1.3 The standard model N of PA. The standard model N of Peano arith-
metic is the structure for LPA whose domain is the set of natural numbers N
and the interpretations 0N , ′N , +N , and ·N of the function symbols of LPA are
in that order the number 0, the successor function S(x) = x + 1, the addition,
and multiplication functions. We leave to the reader the obvious demonstration
that N satisfies the six axioms 1.2(1) through 1.2(6).

We now prove that also the induction axioms 1.2(7) are satisfied inN . So take
any formula φ[x, ~y] of LPA with all its free variables among the indicated ones.
We wish to show N � ∀x∀~yIxφ[x, ~y]. For that we take any ~d ≡ d1, . . . , dn ∈ N
and it clearly suffices to show N � ∀xφ[x, ~d]. So assume on the contrary that
N 2 φ[m, ~d] for some m ∈ N. Furthermore, assume that m is the least such
number. We thus have the base case assumption N � φ[0, ~d], the inductive
assumption: N � ∀x(φ[x, ~d]→ φ[x, ~d]), and N 2 φ[m, ~d]. Consider now two
cases. If m = 0 then we get a contradiction with the base case assumption. If
m > 0 then we have N � φ[m− 1, ~d] by the minimality of m and we get a
contradiction N � φ[(m− 1) + 1, ~d] from the inductive assumption.

1.4 Informal reasoning by induction. The typical situation of use of ax-
ioms of mathematical induction Ixφ[x] is that we use it in an instantiation x := τ :

φ[0] ∧ ∀x(φ[x]→ φ[x′])→ φ[τ]

under certain assumptions ψ1, . . . , ψk. The goal is to derive the formula φ[τ] by
considering two cases.

In the base case we prove φ[0] under the above assumptions.
In the inductive case we prove φ[x′] under the same assumptions ψ1, . . . , ψk to

which we add inductive hypothesis φ[x], shortly IH, as an additional assumption.
Both cases taken together then prove φ[τ] from Ixφ[τ] by modus ponens.

1.5 Induction rules in CL. CL has many built in rules of induction all of
which are justified by a reduction to the axioms of mathematical induction 1.2(7).
The use of induction rules in CL is restricted to the beginning of proofs where
after some initial flattennings we have a goal φ[x, y1, . . . , yn]∗ under assumptions
(also called side formulas) ψ1, . . . , ψk neither of which has the induction variable
x nor the optional distinguished variables y1, . . . , yn free. Both the induction
formula and side formulas may contain additional parameters ~z free.

In order to prove the formula ∀y1 . . .∀ynφ[x, y1, . . . , yn] by an induction rule
called R we use a CL-command ind R;x; y1; . . . ; yn. The reader will note that the
distinguished variables are universally quantified in the induction formula (the
parameters ~z (if any) are not). The number n is usually 0, i.e. ind R;x, when
the induction formula is φ[x, y1, . . . , yn].

2

The axioms 1.2(7) of mathematical induction directly justify the induction
rule of CL called N1. The above command with R = N1, i.e. the command
ind N1;x; y1; . . . ; yn, invokes the rule

φ[0, ~y]∗
∣∣∣ ∀~yφ[x, ~y]
φ[x′, ~y]∗

(1)

which is equivalent to the use of the axiom of mathematical induction

P̀A ∀~yφ[0, ~y] ∧ ∀x(∀~yφ[x, ~y]→ ∀~yφ[x′, ~y])→ ∀~yφ[x, ~y] (2)

followed by two splits, eigen-variable rules on x and ~y, and a flatten.

1.6 Case analysis on 0 and positive numbers. The base case analysis is
on 0 and on positive numbers:

P̀A x = 0 ∨ ∃y x = y′ (1)

which is proved by induction on x. In the base case there is nothing to prove. In
the inductive case we get ∃y x′ = y′ from x′ = x′.

1.7 Case analysis rules in CL. CL has many built in rules of case analysis
on x which are justified by theorems in a form of disjunctions as 1.6(1) which
specify possible forms of x. If we wish to use a rule of case analysis called R with
the variable z we give a CL-command case R; z.

The theorem 1.6(1) justifies a case rule calledN1 where after saying caseN1; z
the following rule is applied:

z = 0 | z = y′

with an eigen-variable y. The rule is equivalent to a use of the theorem 1.6(1)
followed by a split and an eigen-variable rule on y.

1.8 Nullpoints of addition. We have the following property of addition:

P̀A x+ y = 0↔ x = 0 ∧ y = 0 (1)

In the direction (→) assume x+y = 0 and consider two cases by 1.6(1). If x = 0

then we have 0 = 0+y
1.2(3)
= 0. The case x = x′1 for some x1 cannot hold because

it leads to a contradiction: 0 = x′1 + y
1.2(4)
= (x + y)′ by 1.2(1). In the direction

(←) the property is a direct consequence of 1.2(3).

1.9 Addition is commutative. In order to prove that + commutes

P̀A x+ y = y + x (1)

3

we need two lemmas

P̀A x+ 0 = x (2)

P̀A x+ y′ = x′ + y. (3)

(2) is proved by induction on x. In the base case we have 0 + 0
1.2(3)
= 0 and in

the inductive case:
x′ + 0

1.2(4)
= (x+ 0)′ IH= x′ .

(3) is proved by induction on x. In the base case we have

0 + y′
1.2(3)
= y′

1.2(3)
= (0 + y)′

1.2(4)
= 0′ + y .

In the inductive case we have

x′ + y′
1.2(4)
= (x+ y′)′ IH= (x′ + y)′

1.2(4)
= x′′ + y .

We now prove (1) by induction on x. In the base case we have

0 + y
1.2(3)
= y

(2)
= y + 0 .

In the inductive case we have

x′ + y
1.2(4)
= (x+ y)′ IH= (y + x)′

1.2(4)
= y′ + x

(3)
= y + x′ .

From now on we will not explicitly indicate the uses of the two axioms of addition
1.2(3)(4).

1.10 Addition is associative. That the addition is associative

P̀A (x+ y) + z = x+ (y + z) (1)

is proved by induction on x. In the base case we have:

(0 + y) + z = y + z = 0 + (y + z) .

In the inductive case we have:

(x′ + y) + z = (x+ y)′ + z = ((x+ y) + z)′ IH= (x+ (y + z))′ = x′ + (y + z) .

1.11 Cancellation rules for addition. Cancellation rules for the addition
are:

P̀A z + x = z + y → x = y (1)

P̀A x+ z = y + z → x = y . (2)

(1) is proved by induction on z. In the base case we have

0 + x = 0 + y ⇒ x = y .

4

In the inductive case we have

z′ + x = z′ + y ⇒ (z + x)′ = (z + y)′
1.2(2)⇒ z + x = z + y

IH⇒ x = y .

(2) is proved as follows:

x+ z = y + z
1.9(1)⇒ z + x = z + y

(1)⇒ x = y .

From now on we will not explicitly indicate the properties of addition proved
until now.

1.12 Successor versus addition. We have

P̀A x+ 1 = x′ (1)

because
x+ 1 = x+ 0′

1.9(3)
= x′ + 0 =

1.9(2)
= x′ .

This means that PA proves P̀A 0 ∨ ∃y x = y + 1 from 1.6(1). This justifies the
case rule of CL called N such that the command case N ; z applies the rule:

z = 0 | z = y + 1

with an eigen-variable y.
Similarly, CL has an induction rule calledN which for a command indN ;x; y1; . . . yn

issued in the situation described in Par. 1.5 applies the rule:

φ[0, ~y]∗
∣∣∣ ∀~yφ[x, ~y]
φ[x+ 1, ~y]∗

(2)

The rule is justified by

P̀A ∀~yφ[0, ~y] ∧ ∀x(∀~yφ[x, ~y]→ ∀~yφ[x+ 1, ~y])→ ∀~yφ[x, ~y] (3)

which is straightforwardly proved from (1) and 1.5(2).

1.13 Multiplication by 0 and 1. We have

P̀A x·0 = 0 (1)

P̀A x·1 = 1 . (2)

(1) is proved by induction on x. In the base case we have 0·0 1.2(5)
= 0. In the

inductive case we have:

x′·0 1.2(6)
= x·0 + 0 = x·0 IH= 0 .

(2) is proved by induction on x. In the base case we have 0·1 1.2(5)
= 0. In the

inductive case we have

x′·1 1.2(6)
= x·1 + 1 = 1 + x·1 IH= 1 + x = x+ 1 = x′ .

5

1.14 Units of multiplication. Multiplication has the following property

P̀A x·y = 1↔ x = 1 ∧ y = 1 . (1)

Indeed, in the direction (→) we assume x·y = 1 and consider three cases for x.

The case x = 0 leads to the contradiction 0′ = 1 = 0·y 1.2(5)
= 0. If x = 1 then we

have
1 = 1·y = 0′·y 1.2(6)

= 0·y + y
1.2(5)
= 0 + y = y .

The case x = x′′1 for some x1 cannot happen, This is shown by considering two
cases for y. The case y = 0 leads to a contradiction

0′ = 1 = x′′1 ·0
1.13(1)

= 0 .

Also the second case y = y′1 for some y1 leads to a contradiction:

0′ = 1 = x′′1 ·y′1
1.2(6)
= x′1·y′1 + y′1

1.2(6)
= x1·y′1 + y′1 + y′1 = (x1·y′1 + y1 + y1)′′ .

The direction (←) follows from the following

1·1 = 0′·1 1.2(6)
= 0·1 + 1

1.2(5)
= 0 + 1 = 1 .

1.15 Multiplication distributes over addition. The distributive property
of the multiplication:

P̀A z·(x+ y) = z·x+ z·y (1)

is proved by induction on z. In the base case we have

0·(x+ y)
1.2(5)
= 0 = 0 + 0

1.2(5)
= 0·x+ 0·y .

In the inductive case we have

z′·(x+ y)
1.2(6)
= z·(x+ y) + (x+ y) IH= (z·x+ z·y) + (x+ y) =

z·x+ (z·y + (x+ y)) = z·x+ (z·y + (y + x)) = z·x+ ((z·y + y) + x)
1.2(6)
=

z·x+ (z′·y + x) = z·x+ (x+ z′·y) = (z·x+ x) + z′·y 1.2(6)
= z′·x+ z′·y .

From now on we will not explicitly indicate the uses of the two axioms of mul-
tiplication 1.2(5)(6).

1.16 Multiplication is commutative. That the multiplication commutes:

P̀A x·y = y·x (1)

is proved by induction on x. In the base case we have

0·y = 0
1.13(1)

= y·0 .

In the inductive case we have

x′·y = x·y + y
1.13(2)

= x·y + y·1 IH= y·x+ y·1 1.15(1)
= y·(x+ 1) = y·x′ .

6

1.17 Multiplication is associative. The proof that the multiplication is as-
sociative:

P̀A (x·y)·z = x·(y·z) (1)

is by induction on x. In the base case we have

(0·y)·z = 0·z = 0 = 0·(y·z) .

In the inductive case we have

(x′·y)·z = (x·y + y)·z 1.16(1)
= z·(x·y + y)

1.15(1)
= z·(x·y) + z·y 1.16(1)

=

(x·y)·z + y·z IH= x·(y·z) + y·z = x′·(y·z) .

1.18 Cancellation rules for multiplication. Cancellation rules for the mul-
tiplication are:

P̀A z 6= 0 ∧ z·x = z·y → x = y (1)

P̀A z 6= 0 ∧ x·z = y·z → x = y . (2)

(1) follows by the commutativity of multiplication from (2) which is proved
by assuming z = z′1 for some z1 and continuing by induction on x with the
induction formula ∀y(x·z′1 = y·z′1 → x = y). In the base case we take any y,
assume 0·z′1 = y·z′1, and consider two cases. If y = 0 then we have x = 0 = y
trivially. The case y = y′1 for some y1 leads to a contradiction:

0 = 0·z′1 = y′1·z′1 = y·z′1 + z′1 = (y1·z′1 + z1)′ .

In the inductive case we take any y, assume x′·z′1 = y·z′1, and consider two cases
again. If y = 0 then the assumption is shown contradictory similarly as above.
If y = y′1 then we have

x·z′1 + z′1 = x′·z′1 = y′1·z′1 = y1·z′1 + z′1

and so x·z′1 = y1·z′1. We obtain x = y1 by IH and so we get x′ = y′1.
From now on we will not explicitly refer to the properties of multiplication

proved until now.

2 Extensions of PA by Predicate Symbols

We study in this section the effect of extensions by definitions of PA on the
axioms of induction.

2.1 Extensions of PA by definitions and induction axioms. Extensions
T of PA by definitions prove all induction axioms of T , i.e. T ` Ixφ[x] for all
formulas φ of LT . This is because the new symbols in LT can be translated away

7

from φ to the formula φ∗ ∈ LPA. We, namely, have T ` Ixφ[x]↔ (Ixφ[x])? and
PA ` (Ixφ[x])?. Hence T ` (Ixφ[x])? because T extends PA and thus T ` Ixφ[x].

In order to escape the irritating references to extensions of extensions of PA
we will relativize our terminology. We will designate by PA not only the basic
theory of Peano arithmetic, i.e. the six axioms for the function symbols of PA
and infinitely many induction axioms, but also the current extension of Peano
arithmetic. We will also designate by LPA the language of the current extension
of PA. Thus both the language and the axioms of PA will be relative notions
depending on the context where the symbols LPA and PA are used. It will be
always possible to determine the meaning of both symbols.

We will also use the expression standard model of PA in the relativized sense
to designate the unique expansion of the standard model N of PA to the model
of the current extension of PA.

We will be using the symbol of provability P̀A φ in the relativized sense as
T ` φ where T is the current extension of PA. We will also use the symbol P̀Ax φ
with the meaning of P̀A φ when we will wish to emphasize that the formula φ is
the defining axiom of the new extension of PA.

2.2 Comparison predicates. We introduce into PA the binary comparison
predicates <, ≤, >, and ≥ by explicit definitions:

P̀Ax x < y ↔ ∃z x+ z′ = y (1)

P̀Ax x ≤ y ↔ x < y ∨ x = y (2)

P̀Ax x > y ↔ y < x (3)

P̀Ax x ≥ y ↔ y ≤ x . (4)

The relation ≤ has the following property:

P̀A x ≤ y ↔ ∃z x+ z = y . (5)

Indeed, in the direction (→) assume x ≤ y and consider two cases by the defini-
tion (2). If x < y then we have x+z′ = y from the definition and so ∃z x+z = y
holds. If x = y then we have x+ 0 = y and ∃z x+ z = y holds again.

In the direction (←) assume x+ z = y for some z and consider two cases for
z. If z = 0 we have x = x+ 0 = y. If z = z′1 for some z1 then we have x+ z′1 = y
and so x < y holds from the definition. In either case we have x ≤ y from the
definition.

2.3 The relation < is a linear order. The relation < (and also >) is a
linear order because we have

P̀A ¬x < x (1)

P̀A x < y ∧ y < z → x < z (2)

P̀A x < y ∨ x = y ∨ y < x . (3)

The properties are called in that order irreflexivity, transitivity, and linearity.

8

(1): By induction on x. In the base case we have: 0+ z′ = (0+ z)′ 6= 0 and so
¬∃z 0 + z′ = 0 from which we get ¬0 < 0 from definition. In the inductive case
we derive a contradiction by assuming x′ < x′ as follows. We have x′+z′ = x′ for
some z from the definition and from (x+ z′)′ = x′ + z′ = x′ we obtain x+ z′ = x
from which we get x < x contradicting IH.

(2): Assume x < y and y < z from which we get x+a′ = y and y+ b′ = z for
some a and b from the definitions. Hence, x+(a+ b′)′ = x+a′ + b′ = y+ b′ = z,
i.e. ∃c x+ c′ = z and so we have x < z.

For (3) we need an auxiliary property

P̀A 0 < x′ (4)

which follows from 0 + x′ = x′ by existential instantiation and the definition.
(3): By induction on x. In the base case we wish to prove 0 < y∨0 = y∨y < 0

for which we consider two cases. If y = 0 the property holds trivially. If y = y′1

for some y1 then we have 0
(4)
< y′1 = y. In the inductive case we wish to prove

x′ < y ∨ x′ = y ∨ y < x′. From the inductive hypothesis (3) we consider three
cases. If x < y then we have x′ + z = x+ z′ = y for some z from the definition
and so x′ ≤ y by 2.2(5). From this we get x′ < y or x′ = y from the definition.

If x = y we have y + 0′ = x + 0′ = x′ + 0 = x′ and so y < x′ from the
definition.

Finally, if y < x we have y + z′ = x for some z from the definition and so
y + z′′ = (y + z′)′ = x′ from which we get y < x′ from the definition.

2.4 Ordering properties of relation ≤. The predicate ≤ constitutes a (to-
tal) ordering relation which is reflexive, transitive, antisymmetric, and linear.
This is expressed in that order as follows:

P̀A x ≤ x (1)

P̀A x ≤ y ∧ y ≤ z → x ≤ z (2)

P̀A x ≤ y ∧ y ≤ x→ x = y (3)

P̀A x ≤ y ∨ y ≤ x . (4)

Property (1) follows directly from the definition. Property (2) follows from the
transitivity of <.

(3): If x ≤ y, y ≤ x, and x 6= y hold then we obtain x < y and y < x from
the definitions. From this we get x < x by transitivity which contradicts the
irreflexivity of <.

Property (4) is a direct consequence of linearity 2.3(3) of <.

2.5 Laws and rules of trichotomy and dichotomy. The laws of trichotomy
and dichotomy are in that order the following formulas:

P̀A x < y ∨ x = y ∨ x > y (1)

P̀A x ≤ y ∨ x > y . (2)

9

The laws are typically used for case analysis and they are directly proved from
the definitions of <, >, ≤, and from the linearity 2.3(3).

CL has built in case rules called Trich and Dich which are justified in that
order by (1) and (1). The command case Trich;x, y applies the rule:

x < y | x = y | x > y

and the command case Dich;x, y applies the rule:

x ≤ y | x > y

2.6 Additional properties of comparisons. We have the following addi-
tional properties of the comparison relations:

P̀A x 6< 0 (1)

P̀A 0 ≤ x (2)

P̀A x < x′ (3)

P̀A x < y ↔ x′ ≤ y . (4)

(1) Assume on the contrary x < 0. We then have x+ z′ = 0 for some z from the
definition and we get the contradiction z′ = 0 by 1.8(1).

(2) is a direct consequence of (1) and 2.5(2).
(3): We have x+ 0′ = (x+ 0)′ = x′ and so ∃z x+ z = x′ holds. We now get

x < x′ from the definition.
For (4) we have x < y iff x + z′ = y for some z iff x′ + z = y for some z iff

x′ ≤ y by 2.2(5).

2.7 Monotonicity of addition and multiplication. Addition and multi-
plication are monotone:

P̀A x < y ↔ z + x < z + y (1)

P̀A x < y ↔ x+ z < y + z (2)

P̀A z > 0→ x < y ↔ z·x < z·y (3)

P̀A z > 0→ x < y ↔ x·z < y·z . (4)

(1): We have x < y iff x + u′ = y for some u iff, by 1.11(1) and properties of
identity, z + (x + u′) = z + y for some u iff (z + x) + u′ = z + y for some u iff
z + x < z + y.

Property (2) follows from (1) by commutativity of addition.
(3): In the direction (→) assume z = z′1 and x + u′ = y for some z1 and u.

We have

z′1·y = z′1·(x+ u′) = z′1·x+ z′1·u′ = z′1·x+ (z1·u′ + u′) = z′1·x+ (z1·u′ + u)′

and so z′1·x < z′1·y holds by definition.

10

In the direction (←) assume z = z′1 and prove

∀y(z′1·x < z′1·y → x < y)

by induction on x. In the base case take any y and assume z′1·0 < z′1·y. We
then have 0 < z′1·y. If it were the case that y = 0 we would get a contradiction
0 < z′1·0 = 0 with 2.3(1). Hence y = y′1 for some y1 and we have 0 < y by 2.3(4).

In the inductive case take any y and assume z′1·x′ < z′1·y. If it were the case
that y = 0 we would get a contradiction z′1·x′ < z′1·0 = 0 with 2.6(1). Hence
y = y′1 for some y1 and we have

x·z′1 + z′1 = x′·z′1 = z′1·x′ < z′1·y′1 = y′1·z′1 = y1·z′1 + z′1 .

We now obtain x·z′1 < y1·z′1 by (2) and x < y1 by IH. Hence x′ = x + 1
(2)
<

y1 + 1 = y′1.
Property (4) follows from (3) by the commutativity of multiplication.

2.8 Induction with measure. Suppose that PA has been extended to contain
the predicate < and that µ[~x] and φ[~x] are respectively a term and a formula
in the language of (the current extension of) PA. Then the following formula is
called the induction on the measure µ[~x] for φ[~x]:

P̀A ∀~x(∀~y(µ[~y] < µ[~x]→ φ[~y])→ φ[~x])→ φ[~x] (1)

The measure induction is proved by taking any ~x, assuming its antecedent for-
mula (which is said to assert the progressiveness of µ) and proving by induction
on z the auxiliary formula:

∀~y(µ[~y] < z → φ[~y]) (2)

In the base case when z = 0 there is nothing to prove. In the inductive case
assume (2) as IH, take any ~y such that µ[~y] < z + 1 and we wish to prove φ[~y].
Towards that end we consider two cases. If µ[~y] < z then the goal follows from
IH. If µ[~y] = z then we instantiate the assumption of the progressivess with
~x := ~y and obtain φ[~y] from it since its antecedent is equivalent to (2). With (2)
proved, we instantiate it with ~y := ~x and z := µ[~x] + 1 to obtain φ[~x].

Induction with measure (1) justifies in CL the command indm µ[~x] where the
following rule is applied:

∀~y(µ[~y] < µ[~x]→ φ[~y])
φ[~x]∗

for eigen-variables ~x.
In the special case when µ[~x] is just the variable x, the induction formula (1)

simplifies to

P̀A ∀x(∀y(y < x→ φ[y])→ φ[x])→ φ[x] (3)

11

and it is called the complete induction on x for φ[x]. The CL command indm x
applies the following rule:

∀y(y < x→ φ[y])
φ[x]∗

for an eigen-variable x.

2.9 The least number principle. Let T be an extension by definitions of PA
containing the predicate <, φ[x] a formula of LT with the indicated variable x
free and with possibly additional parameters, and y a new variable. The formula
of the least number principle for φ is the following one:

∃xφ[x]→ ∃x(φ[x] ∧ ∀y(y < x→ ¬φ[y])) . (1)

The least number principle says that if the property φ[x] holds for some x then
it holds for the least such x.

2.10 Theorem Every extension by definitions T of PA containing the pred-
icate < proves the schema of the least number principle 2.9(1).

Proof. We prove 2.9(1) in T from the complete induction for ¬φ:

T ` ∀x(∀y(y < x→ ¬φ[y])→ ¬φ[x])→ ¬φ[x]

which is a theorem of T by 2.8(3). Its converse is

φ[x]→ ∃x(∀y(y < x→ ¬φ[y]) ∧ φ[x])

and 2.9(1) logically follows by quantifier operations. ut

3 Extensions of PA by Function Symbols

We will extend PA by some basic functions such as division, introduce extensions
by minimization, and prove that they are extensions by definition.

3.1 Explicit definitions. Let T be an extension of PA and τ [~x] a term of
LT with at most the n-variables ~t free. The extension of T with the new n −
ary function symbol f and the defining axiom the universal closure of T `
f(~x) = τ [~x] is called an extension by an explicit definition.

3.2 Theorem If T is an extension by definitions of PA then an extension of
T by explicit definition of a function symbol is also an extension by definition.

Proof. Extend T to S by f(~x) = y ↔ τ [~x] = y whose existence and uniqueness
conditions are trivially provable in T . This last formula is equivalent in S to
f(~x) = τ [~x]. ut

12

3.3 Small constants. We have used 1 as abbreviation for the term 0′ in
Sect. 1. We now introduce the symbols 1, 2, 3, 4, . . . into PA as constants by
explicit definitions:

P̀Ax 1 = 0′ (1)

P̀Ax 2 = 1′ (2)

P̀Ax 3 = 2′ (3)

P̀Ax 4 = 3′ (4)
...

3.4 Extensions by minimization. Let T be an extension of PA contain-
ing the predicate < and φ[~x, y] a formula of LT with all free variables among
the indicated ones where ~x contains n ≥ 0 variables. If T proves the existence
condition:

T ` ∃yφ[~x, y] (1)

then the extension of T to S with the n-ary function symbol f and with the
defining axioms the universal closures of φ[~x, f(~x)] and

y < f(~x)→ ¬φ[~x, y] . (2)

is called extension by minimization.
We will use a more suggestive notation as an abbreviation for both defining

axioms:

f(~x) = µy[φ[~x, y]] . (3)

The idea is that the function f defined by this definition yields for every ~x the
minimal y such that φ[~x, y] holds because on accord of the existence condition
∃yφ[~x, y] there is at least one such y.

Note that the second defining axiom is equivalent in S to

φ[~x, y]→ f(~x) ≤ y

whenever T contains also the predicate ≤.

3.5 Theorem If T is an extension by definitions of PA containing the predi-
cate < then an extension of T by minimization is also an extension by definition.

Proof. Extend T to S with f(~x) = y ↔ ψ[~x, y] where ψ[~x, y] abbreviates φ[~x, y]∧
∀z(z < y → ¬φ[~x, z]).

Since ψ[~x, f(~x)] is equivalent in S to the both defining axioms for the mini-
mization, it suffices to prove in T the existence and uniqueness conditions for ψ.
We note that the existence condition ∃yψ[~x, y] is the consequent of the instance
of the least number principle

T ` ∃yφ[~x, y]→ ∃y(φ[~x, y] ∧ ∀z(z < y → ¬φ[~x, z])) ,

13

which is provable in T by Thm. 2.10. We thus get ∃yψ[~x, y] in T from 3.4(1).
For the proof of the uniqueness condition we work in T , assume ψ[~x, y1],

ψ[~x, y2], and consider three cases. If y1 < y2 then we obtain ¬φ[~x, y1] from
ψ[~x, y2] which contradicts φ[~x, y1] implied by ψ[~x, y1]. If y1 > y2 we derive a
contradiction similarly. Thus it must be the case that y1 = y2. ut

3.6 Modified subtraction. The following property is needed for the intro-
duction of the modified subtraction:

P̀A y ≤ x→ ∃d x = y + d . (1)

The property follows directly from 2.2(5). However, in CL it must be proved
by induction on y. In the base case when y = 0 it suffices to instantiate the
existential quantifier with d := x. In the inductive when y + 1 ≤ x we wish to
prove ∃d x = (y + 1) + d. Since y < x, we get x = y + d0 for some d0 by IH.
It must be the case that d0 > 0, i.e. d0 = d1 + 1 for some d1, and it suffices to
instantiate d := d1.

We can now introduce the modified subtraction function by minimization:

P̀Ax x .− y = µd[y ≤ x→ y + d = x] (2)

because its existence condition ∃d(y ≤ x→ x = y+d) follows from (1) by prenex
operations. We have

P̀A y ≤ x→ y + (x .− y) = x (3)

P̀A x < y → x .− y = 0 (4)

(3): This is the positive part of the defining axiom (2).
(4): Assume x < y and take any z < x .− y. From the negative part of (2)

we get not y ≤ x → y + z = x contradicting x < y. Thus x .− y ≤ z and hence
x .− y = 0.

3.7 Integer division and remainder. The property (1) is needed for the
introduction of the integer division and remainder functions and the property
(2) asserts their uniqueness:

P̀A y > 0→ ∃q∃r(x = q·y + r ∧ r < y) (1)

P̀A r1 < y ∧ r2 < y ∧ q1·y + r1 = q2·y + r2 → q1 = q2 ∧ r1 = r2 . (2)

(1): We assume y > 0 and prove the consequent by complete induction on x
where we consider three cases by trichotomy. When x < y then we instantiate
q := 0 and r := x. When x = y we instantiate q := 1 and r := 0. Finally, when
x > y we obtain a d such that y + d = x from 3.6(1). Since d < x, we obtain
q1 and r1 such that x = q1·d + r1 and r1 < y from IH. We now instantiate:
q := q1 + 1 and r = r1.

(2): We assume r1 < y and r2 < y and prove ∀q2(q1·y + r1 = q2·y + r2 →
q1 = q2 ∧ r1 = r2) by induction on q1. In the base case when q1 = 0 we assume

14

r1 = q2·y + r2 and consider two cases on q2. If q2 = 0 then r1 = r2 directly. If
q2 = p+ 1 for some p then we have a contradiction r1 = p·y + y + r2 ≥ y.

In the inductive case we assume (q1 +1)·y+r1 = q2·y+r2 and consider again
two cases on q2. The case q2 = 0 leads to a similar contradiction as above so we
must have q2 = p+ 1 for some p. Hence q1·y+ r1 = p·y+ r2 by cancelling y and
we get q1 = p, r1 = r2 from IH and then q1 + 1 = q2.

We can now introduce the integer division and remainder functions by two
minimizations:

P̀Ax x÷ y = µq[y > 0→ ∃r(x = q·y + r ∧ r < y)]

P̀Ax x mod y = µr[y > 0→ ∃q(x = q·y + r ∧ r < y)]

because their existence conditions follow from (1) by prenex operations.

4 Dyadic Concatenation Function in PA

In order to be able to introduce into PA recursive definitions we need some
kind of coding afforded by a pairing function and its associated concatenation
function. The extensions of PA presented in this section lead to the introduction
of both in Paragraphs 5.3 and 5.4.

4.1 The predicate of divisibility. The binary divisibility predicate x | y,
read as x divides y is defined in PA by an explicit definition:

P̀Ax x | y ↔ ∃z y = z·x . (1)

The predicate of divisibility is a relation of partial order (similar to ≤ but without
the linearity 2.4(4)) which satisfies the reflexivity, transitivity, and antisymmetry.
The partial order is with the least element 1 and the greatest element 0:

P̀A x | x (2)

P̀A x | y ∧ y | z → x | z (3)

P̀A x | 0 (4)

P̀A x | 1↔ x = 1 (5)

P̀A x | y → x | y·z (6)

P̀A x | 2·y → 2 | x ∨ x | y . (7)

(2): We have x = 1·x and so 1 witnesses x | x, i.e. ∃z x = z·x.
(3): Assume x | y and y | z, i.e. y = a·x and z = b·y for some a and b. Then

z = b·y = b·a·x and so b·a witnesses x | z.
(4): We have 0 = 0·x and so 0 witnesses x | 0.
(5): The direction (←) follows from (2). In the direction (→) we assume x | 1,

i.e. x·z = 1 for some z, and obtain x = 1 from 1.14(1).
(6): From x | y we get x·w = y for some w and thus w·z witnesses x | y·z.

15

(7): Assume x | 2·y, i.e. x·z = 2·y for some z. We have x = 2·q + r for some
q and r < 2 from 3.7(1). If r = 0 then q·z witnesses 2 | x. If r = 1 we use 3.7(1)
again to get z = 2·p+ s for some p and s < 2. Thus 2·(2·q·p+ p+ q·s) + s = 2·y
and we get 2·q·p+ p = y from 3.7(2) and p witnesses x = (2·q + 1) | y.

4.2 Powers of two. The predicate Pow2(p) of p being a power of 2, i.e. such
that ∃x p = 2x, cannot be introduced without coding via 2x but it has a neat
explicit definition:

P̀Ax Pow2(p)↔ ∀d(d | p→ d = 1 ∨ 2 | d) .

We first prove the following properties of the predicate:

P̀A ¬Pow2(0) (1)

P̀A Pow2(x1)↔ x = 0 (2)

P̀A Pow2(x0)↔ x > 0 ∧ Pow2(x) . (3)

(1): Assume contrary Pow2(0). We have 3 | 0 by 4.1(4) and the instantiation of
the definition of Pow2(0) with d := 3 yields 2 | 3, i.e. 2·z = 3 = 2·1 + 1 for some
z. The use of 3.7(2) yields a contradiction 0 = 1.

(2): In the direction (→) we assume Pow2(x1). We have x1 | x1 by 4.1(2)
and we consider two cases. The case 2 | x1 leads to a contradiction by 3.7(2).
Thus 2 - x1 and using the definition of Pow2(x1) with d := x1 yields x1 = 1
and hence x = 0. In the direction (←) we wish to prove Pow2(1), i.e. ∀d(d | 1→
d = 1 ∨ 2 | d), so we take any d such that d | 1 and obtain d = 1 by 4.1(5).

(3): In the direction (→) we assume Pow2(x0) and consider two cases. The
case x = 0 contradicts (1). Thus x > 0. In order to prove Pow2(x) we take any
d such that d | x. By 4.1(6) we have d | x0 and from the assumption Pow2(x0)
we get the desired d = 1 or 2 | d. In the direction (←) we assume x > 0 and
Pow2(x). In order to prove Pow2(x0) we take any d such that d | x0. We consider
two cases. If 2 | d there is nothing to prove. If 2 - d then we get d | x by 4.1(7).
We now use the assumption Pow2(x) to get the desired d = 1.

The three above theorems of PA are equivalent to the clauses for Pow2 which
are by recursion on binary notation:

Pow2(x1) ← x = 0 (4)
Pow2(x0) ← x > 0 ∧ Pow2(x) (5)
¬Pow2(x0)← x = 0 . (6)

The following paragraph introduces tools for proving properties of functions and
predicates satisfying clausal recurrences with recursion on binary notation.

4.3 Binary case analysis and induction. Assume that PA has been ex-
tended to contain the predicate < and the explictly introduced binary successor

16

functions x0 = 2·x+ 0 and x1 = 2·x+ 1. We have

P̀A x > 0 ∧ x = y0→ y < x (1)

P̀A x < x1 (2)

P̀A ∃y x = y0 ∨ ∃y x = y1 (3)

P̀A ∃y(x = y0 ∧ y = 0) ∨ ∃y(x = y0 ∧ y > 0) ∨ ∃y x = y1 . (4)

(1): It cannot be the case that y = 0 and so y = z+1 for some z which witnesses
y < x in 2.2(1).

(2): y witnesses y < x in 2.2(1).
(3): Use 3.7(1) with y := 2 to obtain x = 2·y + r and r < 2 for some y and r

and consider two cases. When r = 0 then x = y0. When r = 1 then x = y1.
(4): A straigthforward consequence of (3) by considering two subcases y = 0

and y > 0 when x = y0.
The theorem (4) justifies the binary case rule of CL invoked by case Nb;x

where CL automatically performs the obvious split, flatten, and eigen-variable
rules:

x = y0
y = 0

∣∣∣ x = y0
y > 0

∣∣∣ x = y1

with y a new eigen-variable.
Let φ[x] be a formula of PA with the indicated variable x free and with pos-

sibly additional parameters. The binary induction on x for φ[x] is the following
formula:

P̀A φ[0] ∧ ∀x(x > 0 ∧ φ[x]→ φ[x0]) ∧ ∀x(φ[x]→ φ[x1])→ φ[x] . (5)

Binary induction is reducible to complete induction as follows. Assume the three
formulas in the antecedent and continue with complete induction on x for the
formula φ[x] where we do the binary case analysis on x. When x = y0 and
y = 0 for some y then x = y0 = 0 and so φ[x] holds from the first assumption.
When x = y0 and y > 0 for some y then y < x by (1) and so φ[y] holds
by the inductive hypothesis of the complete induction. We now use the second
assumption to derive φ[y0]. Finally, when x = y1 for some y then y < x by (2),
we get φ[y] by IH, and φ[y1] follows from the third assumption.

The theorem (5) justifies the rule of binary induction of CL invoked by
ind Nb;x where CL automatically performs the obvious split, flatten, and eigen-
variable rules:

x = 0
φ[x0]∗

∣∣∣∣∣ x > 0
φ[x]
φ[x0]∗

∣∣∣∣∣ φ[x]
φ[x1]∗

4.4 An auxiliary property of Pow2. We can now use the clausal recurrences
of Pow2 from Par. 4.2 to prove

P̀A Pow2(p) ∧ Pow2(q) ∧ p < 2·q → p ≤ q (1)

17

by binary induction on p with the induction formula ∀q(1). The only interesting
case is p0 with p > 0 and p0 < 2·q, i.e. p < q. We then do a binary case on q,
and again, the only interesting case is when q = q10 for some q1 > 0. But then
IH applies with q := q1, since Pow2(q1).

4.5 Powers of dyadic length. The function 2|x| yields two to the power of
|x| which is the dyadic length (i.e. a number of dyadic digits) of x. We cannot
introduce into PA without additional coding either the dyadic length function
or the exponentiation function 2z. Fortunately, for positive numbers x + 1 the
power 2|x+1| is of the same dyadic size as x + 1. This suggests the contextual
definition (3). However, in CL we must define 2|x| by minimization:

P̀Ax 2|x| = µp[Pow2(p) ∧ x+ 1 < 2·p] (1)

whose existence condition

P̀A ∃p(Pow2(p) ∧ x+ 1 < 2·p) (2)

is proved by induction on x. When x = 0 we take p := 1. For x + 1 we obtain
from IH a power q such that x+ 1 < 2·q and take p := q0. Note that (2) asserts
that there are anboundedly many powers of two.

P̀A 2|x| = p↔ Pow2(p) ∧ p ≤ x+ 1 ∧ x+ 1 < 2·p . (3)

In the direction (→) we get Pow2(2|x|) and x + 1 < 2·2|x| from the positive
part of (1). In order to obtain 2|x| ≤ x + 1 we consider three binary cases for
2|x|. The case 2|x| = 0 contradicts x+ 1 < 2·2|x|. The case 2|x| = q1 for some q
implies q = 0 and hence 2|x| = 1 by the clauses for Pow2. But then x = 0 from
x + 1 < 2·2|x| and so 2|x| ≤ x + 1. The most interesting case is the remaining
one when 2|x| = q0 for some q > 0. Then Pow2(q) by the clauses for Pow2 and,

since q < 2|x|, we get 2|x| = 2·q
minimal part of (1)

≤ x+ 1.
In the direction (←) we assume Pow2(p) and p ≤ x+1 < 2·p. We then have:

2|x|
minimal part of (1)

≤ p ≤ x+ 1
positive part of (1)

< 2·2|x| .

By the positive part also Pow2(2|x|) which, used with Pow2(p) in 4.4(1), yields
also p ≤ 2|x|.

We now prove as theorems of PA the following properties which are also
clauses of CL for 2|x| by dyadic recursion on notation:

P̀A 2|0| = 1 (4)

P̀A 2|x1| = 2·2|x| (5)

P̀A 2|x2| = 2·2|x| (6)

where the dyadic successor function x2 = 2·x + 2 is introduced into PA by an
explicit definition. The proofs are straightforward, for instance in order to prove

18

(6), we use the implication → of (3) to get Pow2(2|x|) and 2|x| ≤ x+ 1 < 2·2|x|.
Thus 2|x| > 0 and hence Pow2(2·2|x|) by the clauses for Pow2. Since the above
inequalities trivially imply 2·2|x| ≤ x2 < 2·(2·2|x|), we use← of (3) with x := x2
and p := 2·2|x| to obtain the desired 2|x2| = 2·2|x|.

The following paragraph introduces tools for proving properties of functions
and predicates satisfying clausal recurrences with recursion on dyadic notation.

4.6 Dyadic case analysis and induction. Assume that PA has been ex-
tended to contain the predicate < and the binary-dyadic successor functions.
We then have

P̀A x < x2 (1)

P̀A x = 0 ∨ ∃y x = y1 ∨ ∃y x = y2 . (2)

(1): Use x : 1 as the witness for x < x2 in 2.2(1).
(2): Do the binary case analysis on x. When x = y0 and y = 0 for some y

then the first goal x = 0 holds. When x = y0 and y > 0 for some y then y = z+1
for some z. Since x = (z + 1)0 = z2, the third goal ∃y x = y2 holds for y := z.
Finally, when x = y1 for some y then the second goal ∃y x = y1 holds.

The theorem (2) justifies the dyadic case rule of CL invoked by case N2;x
where CL automatically performs the obvious split and eigen-variable rules:

x = 0 | x = y1 | x = y2

with y a new eigen-variable.
Let φ[x] be a formula of PA with the indicated variable x free and with pos-

sibly additional parameters. The dyadic induction on x for φ[x] is the following
formula:

P̀A φ[0] ∧ ∀x(φ[x]→ φ[x1]) ∧ ∀x(φ[x]→ φ[x2])→ φ[x] . (3)

Dyadic induction is reducible to complete induction as follows. Assume the three
formulas in the antecedent and continue with the complete induction on x for
the formula φ[x] where we do the dyadic case analysis on x. When x = 0 then
φ[x] holds from the first assumption. When x = y1 for some y then y < x by
4.3(2) and so φ[y] holds by the inductive hypothesis of the complete induction.
We now use the second assumption to derive φ[y1]. Finally, when x = y2 for
some y then y < x by (1), we get φ[y] by IH, and φ[y2] follows from the third
assumption.

The theorem (3) justifies the rule of dyadic induction of CL invoked by
ind N2;x where CL automatically performs the obvious split, flatten, and eigen-
variable rules:

φ[0]∗
∣∣∣ φ[x]
φ[x1]∗

∣∣∣ φ[x]
φ[x2]∗

19

4.7 Auxiliary properties of 2|x|. The clauses for 2|x| in Par. 4.5 are by
recursion on dyadic notation and they are used together with dyadic induction
and case analysis to prove the following properties:

P̀A 2|x| > 0 (1)

P̀A x > 0→ 2|2
|x|| = 2|x| . (2)

(1): By a trivial dyadic induction on x.
(2): By dyadic induction on x. In the base case there is nothing to prove.
In the first inductive case, when x := x1, we wish to prove 2|2·2

|x|| = 2·2|x|.
In order to employ the inductive assumption x > 0 → 2|2

|x|| = 2|x| we consider
two cases. When x = 0 the goal is trivially satisfied from the clauses for 2|x|.
When x > 0 then IH applies. We now consider three dyadic cases for 2|x|. The
case 2|x| = 0 leads to a contradiction: 1 = 2|0| = 2|2

|x|| IH= 2|x| = 0.
When 2|x| = y1 for somy y then we get a contradiction as follows: 2·2|y| =

2|y1| = 2|2
|x|| IH= 2|x| = y1.

Finally, when 2|x| = y2 for some y then Then 2·2|y| = 2|y2| = 2|2
|x|| IH= 2|x| =

y2 and hence:

2|2·2
|x|| = 2|2·y2| = 2|y12| = 4·2|y| = 2·y2 = 2·2|x| .

In the second inductive case when x := x2 the proof is similar.

4.8 Dyadic concatenation. The two-place function x ? y of dyadic concate-
nation is explicitly defined as

P̀Ax x ? y = x·2|y| + y . (1)

We now prove as theorems of PA the following properties which are also clauses
of CL for ? by recursion on dyadic notation:

P̀A x ? 0 = x (2)

P̀A x ? y1 = (x ? y)1 (3)

P̀A x ? y2 = (x ? y)2 (4)

The properties have straightforward proofs. For instance, (3):

x ? y1 = x·2|y1| + y1 = x·2·2|y| + 2·y + 1 = (x·2|y| + y)1 = (x ? y)1 .

The following properties of dyadic concatenation will be needed below:

P̀A 0 ? y = y (5)

P̀A (x ? y) ? z = x ? (y ? z) (6)

P̀A 2|x?y| = 2|x|·2|y| (7)

P̀A x1 ? x2 = y1 ? y2 ∧ 2|x2| = 2|y2| → x1 = y1 ∧ x2 = y2 (8)

P̀A x1 ? x2 = y1 ? y2 ∧ 2|x1| = 2|y1| → x1 = y1 ∧ x2 = y2 (9)

P̀A 2|x|·2|y| = 2|z| → ∃a∃b(a ? b = z ∧ 2|x| = 2|a| ∧ 2|y| = 2|b|) . (10)

20

(5): By straightforward dyadic induction on y.
(6): By straightforward dyadic induction on z.
(7): By straightforward dyadic induction on y.
(8): By dyadic induction on x2 with the formula ∀y2(8). In the base case and

in both inductive cases we do a dyadic case analysis on y2. The only interesting
subcases are in the inductive cases when we have to instantiate the inductive
hypotheses. For instance, in the first inductive case the interesting subcase is
when y2 = w1 for some w and we have assumptions x1 ? x21 = y1 ? w1 and
2|x21| = 2|w1|. Then x1 ? x2 = y1 ? w and 2|x2| = 2|w| so IH applies for y2 := w.
We then get:

x1 ? x21 = (x1 ? x2)1
IH= (y1 ? w)1 = y1 ? w1 = y1 ? y2 .

(9): Assume x1 ? x2 = y1 ? y2 and 2|x1| = 2|y1|. We then get

2|x1|·2|x2| (7)
= 2|x1?x2| = 2|y1?y2| (7)

= 2|y1|·2|y2| .

By 4.7(1) we have 2|x1| = 2|y1| > 0 and so 2|x2| = 2|y2|. We now use (8).
(10): By dyadic induction on z with the formula ∀y(10). In the base case

when z := 0 we instantiate the goal with a := 0 and b := 0. In the first inductive
case with z := z1 we have as assumption 2|x|·2|y| = 2·2|z| and we wish to prove
∃a∃b(a ? b = z1 ∧ 2|x| = 2|a| ∧ 2|y| = 2|b|). We do a dyadic case analysis on y.
When y = 0 we instantiate the goal with a := z1 and b := 0. When y = y11 for
some y1 the assumption simplifies to 2|x|·2|y1| = 2|z| and we obtain a and b from
IH such that a ? b = z, 2|x| = 2|a|, and 2|y1| = 2|b|. We then instantiate the goal
with a := a and b := b1. The subcase when y = y12 for some y1 is identical to
the subcase y = y11

The second inductive case when z := z2 is similar to the first inductive case.

4.9 Dyadic sequences containing powers of two. Dyadic sequences con-
taining powers of two will play crucial role in our encoding of finite sequences

into natural numbers. We first observe that 2|0| = 1 and 2|x+1| = (

|x+1| .− 1︷ ︸︸ ︷
1 ? · · · ? 1)2.

Thus 2|x| .− 1 =

|x|︷ ︸︸ ︷
1 ? · · · ? 1. We have:

P̀A 2·2|x| = (2|x| .− 1)2 (1)

P̀A 2·2|x+1| = 1 ? 2|x+1| . (2)

(1): We have 2|x| > 0 by 4.7(1). Hence 2·2|x| = 2·(2|x| .− 1 + 1) = (2|x| .− 1)2.
(2): We have

2·2|x+1| = 1·2|x+1| + 2|x+1| 4.7(2)
= 1·2|2

|x+1|| + 2|x+1| 4.8(1)
= 1 ? 2|x+1| .

We will show that to every natural number m we can be uniquely find num-
bers n, b ≥ 0 such that there are n positive numbers a1, a1, . . . , an > 0 for which

21

we have:

m =

n︷ ︸︸ ︷
2|a1| ? 2|a2| ? · · · ? 2|an| ?(2|b| − 1) . (3)

The same put differently is:

m =

n︷ ︸︸ ︷
|a1|−1︷ ︸︸ ︷

1 ? · · · ? 1 ?2 ?

|a2|−1︷ ︸︸ ︷
1 · · · 1 ?2 ? · · · ?

|an|−1︷ ︸︸ ︷
1 ? · · · ? 1 ?2 ?

|b|︷ ︸︸ ︷
1 ? · · · ? 1 .

The existence and uniqueness of trailing and leading powers is asserted by fol-
lowing theorems:

P̀A ∃n∃xm = n0 ? (2|x| .− 1) (4)

P̀A n10 ? (2|x1| .− 1) = n20 ? (2|x2| .− 1)→ n1 = n2 ∧ 2|x1| = 2|x2| (5)

P̀A ∃n∃xm2 = 2|x+1| ? n (6)

P̀A 2|x1+1| ? n1 = 2|x2+1| ? n2 → 2|x1+1| = 2|x2+1| ∧ n1 = n2 . (7)

(4): By dyadic induction on m. When m = 0 then we witness the goal with
n := x := 0. In the first inductive case when going from m to m1 we obtain
n0 ? (2|x| .− 1) for some n and x from IH and derive

m1 = (n0 ? (2|x| .− 1))1 = n0 ? (2|x| .− 1)1
(1)
= n0 ? (2·2|x| .− 1) = n0 ? (2|x1| .− 1) .

Thus n := n and x := x1 witness the goal.
In the second inductive case when going from m to m2 we observe that

m2 = (m+ 1)0 = (m+ 1)0 ? (2|0| .− 1) and so it sufficess to witness the goal
with n := m+ 1 and x := 0.

(5): By dyadic induction on x1 with the induction formula ∀x2(5). When
x1 = 0 then we assume n10 = n20 ? (2|x2| .− 1) and consider three dyadic cases
for x2. The case x2 = 0 is straightforward. The two other cases x2 = Si(y) with
i = 1, 2 for some y lead to contradictions because we have

2|Si(y)| .− 1 = 2·2|y| .− 1
(1)
= (2|y| .− 1)2 .− 1 = (2|y| .− 1)1 (8)

and so the two sides of the following identity are of different parities:

n10 = n20 ? (2|Si(y)| .− 1)
(8)
= n20 ? (2|y| .− 1)1 = (n20 ? (2|y| .− 1))1 . (9)

In the first inductive case when going from x1 to x11 we assume n10 ?
(2|x11| .− 1) = n20 ? (2|x2| .− 1). Similarly as above we have n10 ? (2|x11| .− 1) =
(n10 ? (2|x1| .− 1))1. We now consider three dyadic cases for x2. The case when
x2 = 0 leads to a parity contradiction because n20 ? (2|0| .− 1) = n10. The two
other cases when x2 = Si(y) with i = 1, 2 are similar because then

(n10 ? (2|x1| .− 1))1 = n10? (2|x11| .− 1) = n20? (2|Siy| .− 1)
(9)
= (n20 ? (2|y| .− 1))1 .

22

After cancelling the dyadic successor S1 on both sides we can instantiate IH with
x2 := y and obtain n1 = n2, 2|x1| = 2|y| and hence 2|x11| = 2·2|x1| = 2·2|y| =
2|Si(y)| = 2|x2|.

The second inductive case when going from x1 to x12 is almost identical to
the first one.

(6): By dyadic induction on m. When m = 0 then 02 = 2 = 2|0+1| ? 0 and
so we witness the goal with x := n := 0. In the first inductive case when going
from m to m1 we obtain m2 = 2|x+1| ? n for some n and x from IH and we
observe that m12 = 4·m + 4 = m20 = (2|x+1| ? n)0. We now consider three
dyadic cases. When n = 0 then, since 2|x+1|0 = 2|(x+1)1| = 2|x2+1|, it suffices
to witness the goal with x := x2 and n := 0. The case n = k1 for some k
leads to a contradiction: 4·m + 4 = m20 = (2|x+1| ? k1)0 = (2|x+1| ? k)10 =
4 ∗ (2|x+1| ? k) + 2. Finally, when n = k2 for some k then

(2|x+1| ? k2)0 = (2|x+1| ? k)20 = (2|x+1| ? k)12 = 2|x+1| ? k12

and so it suffices to instantiate the goal with x := x and n := k12.
In the second inductive case when going from m to m2 then for some x and

n we have m22
IH= (2|x+1| ? n)2 = 2|x+1| ? n2 and so we witness the goal with

x := x and n := n2.
(7): We have seen in the proof of (5) how the dyadic induction on x1 followed

by a dyadic case analysis on x2 has led to the duplication of almost identical
cases. We could use the same kind of proof with this property also. However, in
order to prevent the duplication of cases we prove (7) by complete induction on
x1 with the induction formula ∀x2(7). Incidentally, measure induction with the
measure term (x1 + 1) + (x2 + 1) and the induction formula (7) works just as
fine.

Instead of dyadic case analysis we will perform the following case analysis
on dyadic concatenation

P̀A m = 0 ∨ ∃u∃i(m = u ? i ∧ u < m ∧ 2|i| = 2) (10)

which is proved by a straightforward dyadic case analysis on m. The case m = 0
is trivial. The other two cases when m = Si(n) for some n and i = 1, 2 are
similar where we witness the goal with u := n and i := i.

Returning to the proof of ∀x2(7) by complete induction on x1, we take any
x2 and assume 2|x1+1|?n1 = 2|x2+1|?n2. We apply the case analysis formula (10)
to m := x1 +1 and m := x2 +1. We thus get x1 +1 = u1 ? i1 and x2 +1 = u2 ? i2
for some u1, u2 and i1, i2 such that u1 ≤ x1, u2 ≤ x2, and 2|i1| = 2|i2| = 2. We
then get

2·2|u1| ? n1 = 2|u1|·2|i1| ? n1
4.8(7)
= 2|x1+1| ? n1 = 2|x2+1| ? n2

4.8(7)
=

2|u2|·2|i2| ? n2 = 2·2|u2| ? n2 . (11)

We now consider two cases on u1, u2 each whereby we get four cases.

23

If u1 = u2 = 0 then we trivially have 2|u1| = 2|u2| = 1 from which 2|x1+1| =

2|x2+1| follows. We get n1 = n2 by cancelling the two leading twos in 2 ? n1
(11)
=

2 ? n1 with 4.8(9).
If u1 = 0 and u2 = v2 + 1 for some v2 then

2 ? n1
(11)
= 2·2|v2+1| ? n2

(2)
= (1 ? 2|v2+1|) ? n2

4.8(6)
= 1 ? (2|v2+1| ? n2)

leads to a contradiction after applying 4.8(9).
The case if u1 = v1+1 for some v1 and u2 = 0 leads to a similar contradiction

as the preceding case.
Finally, when u1 = v1 +1, u2 = v2 +1 for some v1 and v2 then (11) simplifies

similarly as above to 1 ? (2|v1+1| ? n1) = 1 ? (2|v2+1| ? n2). After the cancellation
of the two leading ones with 4.8(9), we apply induction hypothesis with x2 := v2
because we have v1 < u1 ≤ x1. We thus get n1 = n2 and 2|v1+1| = 2|v2+1| from
which 2|x1+1| = 2|x2+1| follows.

4.10 The splitting predicate. We will now define a three-place predicate

t
.=

[
v
m

]
holding if t = v ?m and t and v have almost the same dyadic size. The

predicate will be crucial to the introduction of dyadic pairing in the following
section.

P̀Ax t
.=

[
v
m

]
↔ t = v ? m ∧ ∃w∃i(v = w ? i ∧ 2|m| = 2|w| ∧ 2|i| ≤ 2) (1)

We can vizualize the definition as follows: t =

w i
v
?
m

.

The following are some consequences of the definition:

P̀A 2|v| = 2|m| → v ? m
.=

[
v
m

]
(2)

P̀A t
.=

[
v
m

]
→ t = v ? m (3)

P̀A t1
.=

[
v
m

]
∧ t2

.=
[
v
m

]
→ t1 = t2 (4)

P̀A 2|v1| = 2|m1| → v2 ? m2
.=

[
v2
m2

]
↔ (v1 ? v2) ? (m1 ? m2)

.=
[
v1 ? v2
m1 ? m2

]
(5)

P̀A t
.=

[
v

m1 ? m2

]
→ ∃v1∃v2(v = v1 ? v2 ∧ 2|v1| = 2|m1| ∧ v2 ? m2

.=
[
v2
m2

]
) .

(6)

(2): Directly from the definition instantiating t := v ? m, w := v, and i := 0.
(3): Directly from the definition.

24

(4): By two applications of (3).

(5): We assume 2|v1| = 2|m1| and in the direction (→) also v2 ? m2
.=

[
v2
m2

]
.

We get v2 = w ? i, 2|w| = 2|m2| and 2|i| ≤ 2 for some w and i from (1). Since

2|v1?w| 4.8(7)
= 2|v1|·2|w| = 2|m1|·2|m2| 4.8(7)

= 2|m1?m2|

and v1 ? v2
4.8(6)
= (v1 ? w) ? i, the use of (1) with w := v1 ? w, i := i yields

(v1 ? v2) ? (m1 ? m2)
.=

[
v1 ? v2
m1 ? m2

]
.

In the direction (←) we assume (v1 ? v2) ? (m1 ?m2)
.=

[
v1 ? v2
m1 ? m2

]
and from

(1) we get v1 ?v2 = w?i, 2|m1?m2| = 2|w|, and 2|i| ≤ 2 for some w and i. We then
get 2|m1|·2|m2| = 2|w| by 4.8(7) and w = w1 ? w2, 2|w1| = 2|m1|, 2|w2| = 2|m2| for
some w1, w2 from 4.8(10). The situation can be visualized as follows:

(v1 ? v2) ? (m1 ? m2) =

w1 w2 i
w i

v1 v2
?

m1 m2

.

By 4.8(6) we then get v1 ? v2 = w1 ? (w2 ? i) and 4.8(9) yields v2 = w2 ? i. We

now use (1) with w := w2 and i := i to derive the desired v2 ? m2
.=

[
v2
m2

]
.

(6): Using the assumption with (1) yields t = v ? (m1 ? m2), v = w ? i and
2|m1?m2| = 2|w| for some w and i. By a threefold use of 4.8(7) we get

2|v| = 2|w?i| 4.8(7)
= 2|w|·2|i| = 2|m1?m2|·2|i| 4.8(7)

= 2|m1|·2|m2|·2|i| 4.8(7)
= 2|m1|·2|m2?i| .

Thus by 4.8(10) we get v1 ? v2 = v and 2|m1| = 2|v1| for some v1 and v2. We now

use (5) in the direction (←) to obtain v2 ? m2
.=

[
v2
m2

]
. The conclusion of the

property is now witnessed by v1 and v2.

4.11 The existence of splits. We wish to prove that every natural number
can be split as follows:

P̀A ∃v∃mt
.=

[
v
m

]
. (1)

(1) is proved by obtaining w, i, and m from (2) and then by witnessing v := w?i
and m := m.

P̀A ∃w∃i∃m(t = w ? i ? m ∧ 2|w| = 2|m| ∧ 2|i| ≤ 2) (2)

(2) is proved by complete induction on t where we consider two cases by 4.9(10).
When t = 0, we witness the property with w := i := m := 0.

25

When t = u ? i, u < t, and 2|i| = 2 for some u and i we obtain by IH w, j,
and m such that u = w ? j ? m, 2|w| = 2|m|, and 2|j| ≤ 2.

We now consider two cases. If 2|j| = 2 then we wish to continue as follows:

u =
w j
?
m

j=1,2⇒ t = u ? i =
w j 0
?
m i

Namely, we have 2|w?j| = 2|m?i| by 4.8(7), and

t = u ? i = (w ? j ? m) ? i
4.8(6)
= w ? j ? (m ? i) = w ? j ? 0 ? (m ? i) .

Hence it suffices to witness (1) with w := w ? j, i := 0, and m := m ? i.
If 2|j| < 2 then 2|j| = 1 by 4.7(1). It cannot be the case that j = Sk(l) with

k = 1, 2 because then 2|Sk(l)| = 2·2|l| 4.9(1)
= 2·2|l| +2 ≥ 2. Thus j = 0 and we wish

to continue as follows:

u =
w 0
?
m

∧m ? i =
m i
k | m1

⇒ t = u ? i =
w k
?

m1

Namely, we have

t = u ? i = (w ? 0 ? m) ? i
4.8(6)
= w ? (m ? i) ∗= w ? (k ? m1)

4.8(6)
= (w ? k) ? m1

where in the step marked by ∗ we obtain k ?m1 = m? i, 2|k| = 2|i|, and 2|m1| =

2|m| for some k and m1 from by 4.8(10) because 2|i|·2|m| = 2|m|·2|i| 4.8(7)
= 2|m?i|.

Hence w := w, i := k, and m := m1 witness (1).

4.12 Some properties of squares. In order to be able to prove the theorem
4.13(1) asserting the uniqueness of splits we need two properties of the squar-
ing function. Property (1) asserts that the function is injective. Property (2) is
equivalent to the famous theorem already known to the ancient Greeks asserting
the irrationality of

√
2. Property (3) is a simple consequence of the two.

P̀A x2 = y2 → x = y (1)

P̀A x2 = 2·y2 → x = 0 ∧ y = 0 (2)

P̀A x2·i = y2·j ∧ x > 0 ∧ 1 ≤ i ≤ 2 ∧ 1 ≤ j ≤ 2→ x = y ∧ i = j (3)

(1): Assume to the contrary that x 6= y. If x < y then x+ d+ 1 = y for some d.
We get a contradiction x2 = (x + d + 1)2 ≥ x2 + (d + 1)2 ≥ x2 + 1 > x2. The
case y < x is similar.

(2): By measure induction with the measure x+ y. We consider three binary
cases on x. The case x = 0 is straightforward. When x = z0 for some z > 0 then
2·z2 = y2 and, since z + y < x + y, we get x = 2·z IH= 0 and y

IH= 0. The case

26

x = z1 for some z leads to a contradiction because the two sides of the identity
are of different parities.

(3): We consider four cases. In two cases i = j = 1 or i = j = 2 we apply (1)
and in the remaining cases i = 1, j = 2 or i = 2, j = 1 we apply (2).

4.13 The uniqueness of splits.

P̀A t
.=

[
v1
m1

]
∧ t .=

[
v2
m2

]
→ v1 = v2 ∧m1 = m2 (1)

(1) directly follows from 4.10(1) and from the following auxiliary property:

P̀A w1 ? i1 ? m1 = w2 ? i2 ? m2 ∧ 2|i1| ≤ 2 ∧ 2|w1| = 2|m1| ∧
2|i2| ≤ 2 ∧ 2|w2| = 2|m2| → w1 = w2 ∧ i1 = i2 ∧m1 = m2 . (2)

(2): We assume the antecedent and derive:

(2|m1|)2·2|i1| = 2|w1|·2|i1|·2|m1| 4.8(7)
= 2|w1?i1|·2|m1| 4.8(7)

=

2|w1?i1?m1| = 2|w2?i2?m2| 4.8(7)
= 2|w2?i2|·2|m2| 4.8(7)

=

2|w2|·2|i2|·2|m2| = (2|m2|)2·2|i2|

and 2|i1| > 0, 2|21| > 0, 2|m1| > 0 by 4.7(1). Property 4.12(3) applies and we
obtain 2|m1| = 2|m2| and 2|i1| = 2|i2| from it. We now apply 4.8(8) to w1?i1?m1 =
w2 ? i2 ? m2 and get m1 = m2 as well as w1 ? i1 = w2 ? i2. Another application
of the same property to the last formula yields i1 = i2 and w1 = w2.

5 Dyadic Pairing and List Concatenation Functions in
PA

5.1 Dyadic numbers as sequences. The importance of splits can be seen
in their relation to finite sequences. Every number t can be uniquely split into

a value sequence v and a marker sequence m such that t .=
[
v
m

]
, and there are

unique numbers n, x1, . . . , xn, y, and i ≤ 2 such that

v = (x1+1) ? (x2+1) ? · · · ? (xn+1) ? y ? i

m = 2|x1+1| ? 2|x2+1| ? · · · ? 2|xn+1| ? (2|y| .− 1) ,

The numbers x1, . . . , xn are said to be the elements of the sequence t whereas
the number y?i?(2|y| .− 1) is the atom at its end. The atom is 0 = y?i?(2|y| .− 1)
iff y = 0 and j = 0.

27

5.2 Adjustment of atoms. By the discussion in the preceding paragraph
every sequence, i.e. every number, ends with an atom at the end. We will define
by (2) a function Adj (t) which replaces the atom with the atom 0. The existence
condition for the definition is:

P̀A ∃s∃v1∃v2∃m∃y(t
.=

[
v1 ? v2

m0 ? (2|y| .− 1)

]
∧ 2|v1| = 2|m0| ∧ s .=

[
v1
m0

]
) . (1)

(1): We have t .=
[
v
n

]
for some v and n by 4.11(1) and n = m0 ? (2|y| .− 1) for

some m and y by 4.9(4). We use 4.10(6) to obtain v1 and v2 such that v = v1 ?v2
and 2|v1| = 2|m0|. We now witness (1) with v1, v2, m, and y.

P̀Ax Adj (t) = µs[∃v1∃v2∃m∃y(t
.=

[
v1 ? v2

m0 ? (2|y| .− 1)

]
∧ 2|v1| = 2|m0| ∧ s .=

[
v1
m0

]
)] .

(2)

A moment of reflection reveals that t is an atom iff Adj (t) = 0.
We will find need the following properties of adjustments:

P̀A t
.=

[
v1 ? v2

m0 ? (2|y| .− 1)

]
∧ 2|v1| = 2|m0| → Adj (t) .=

[
v1
m0

]
(3)

P̀A Adj (0) = 0 (4)

P̀A Adj ((x+ 1) ? 2|x+1|) = (x+ 1) ? 2|x+1| (5)

P̀A Adj (t) .=
[
v
m

]
→ 2|v| = 2|m| (6)

P̀A Adj (t) > 0→ ∃x∃v∃mt
.=

[
(x+ 1) ? v
2|x+1| ? m

]
. (7)

(3): Assume t .=
[

v1 ? v2
m0 ? (2|y| .− 1)

]
and use (2) to obtain t

.=
[

w1 ? w2

n0 ? (2|z| .− 1)

]
,

2|w1| = 2|n0|, and Adj (t) .=
[
w1

n0

]
for some w1, w2, n, and z. By 4.13(1) we get

v1 ? v2 = w1 ? w2 and m0 ? (2|y| .− 1) = n0 ? (2|z| .− 1). Using the latter identity
with 4.9(5) we get m = n. Since now 2|v1| = 2|m0| = 2|n0| = 2|w1|, we use the
former identity with 4.8(9) to get v1 = w1 and v2 = w2.

(4): Obtain 0 .=
[

v1 ? v2
m0 ? (2|y| .− 1)

]
, 2|v1| = 2|m0|, and Adj (0) .=

[
v1
m0

]
for

some v1, v2, m, and y by (2). We have 0 = (v1 ? v2) ? (m0 ? (2|y| .− 1)) by 4.10(3)
and then v1 = m0 = 0 by two dyadic cases on m0 ? (2|y| .− 1) and v1 ? v2. Thus

Adj (0)
4.10(3)

= v1 ? m0 = 0.
(5): We need a small lemma which can be also inserted as a cut into the proof

of (5):

P̀A ∃m 2|x+1| = m0 . (8)

28

(8): We use a binary case analysis on x. When x = 0 take m := 1. When x = y0
for a y > 0 then 2|x+1| = 2|y1| = 2·2|y| and we can take m := 2|y|. When x = y1
then 2|x+1| = 2|y2| = 2·2|y| and we can take m := 2|y| again.

Back to the proof of (5), we have 2|x+1| 4.7(2)
= 2|2

|x+1||, and hence (x + 1) ?

2|x+1| .=
[
x+ 1
2|x+1|

]
by 4.10(2). From (8) we get 2|x+1| = m0 for some m. Since

2|0| .− 1 = 0, we can use (3) with v2 := y := 0 to obtain Adj ((x + 1) ? 2|x+1|) .=[
x+ 1
2|x+1|

]
. We now use 4.10(4).

(6): Assume Adj (t) .=
[
v
m

]
and obtain Adj (t) .=

[
w
n0

]
, 2|w| = 2|n0| for some

w, n from (2). We now use 4.13(1).

(7): Assume Adj (t) > 0 and obtain t
.=

[
v1 ? v2

m0 ? (2|y| .− 1)

]
, 2|v1| = 2|m0|, and

Adj (t) .=
[
v1
m0

]
for some v1, v2, m, and y by (2). We now consider two monadic

cases for m. If m = 0 then 2|v1| = 1 implies v1 = 0 and we get a contradiction

0 < Adj (t)
4.10(3)

= v1 ? m0 = 0.

If m = n+1 for some n then m0 = n2
4.9(6)
= 2|a+1| ?k for some a and k. From

4.10(6) we now get, w1, w2 such that v1 = w1 ? w2 and 2|w1| = 2|2
|a+1|| 4.7(2)

=
2|a+1|. It cannot be the case that w1 = 0 because we would then have 1 =
2|w1| = 2|a+1| = 2|2

|a+1|| = 2|1| = 2. Thus w1 = x + 1 for some x and, since

(x+ 1) ? (w2 ? v2)
4.8(6)
= (w1 ? w2) ? v2 = v1 ? v2 and also

2|x+1| ? (k ? (2|y| .− 1))
4.8(6)
= (2|a+1| ? k) ? (2|y| .− 1) = m0 ? (2|y| .− 1) ,

we can witness the conclusion of (7) with x := x, v := w2 ? v2, and m :=
k ? (2|y| .− 1).

5.3 Introduction of a dyadic list concatenation function into PA. We
wish to introduce an infix two-place dyadic list concatenation function � by a
minimisation (2). Its existence condition is:

P̀A ∃u∀v1∀v2∀m1∀m2(Adj (s) .=
[
v1
m1

]
∧ t .=

[
v2
m2

]
→ u

.=
[
v1 ? v2
m1 ? m2

]
) (1)

(1): We use 4.11(1) twice to obtain Adj (s) .=
[
v1
m1

]
and t

.=
[
v2
m2

]
for some v1,

v2, m1, and m2. We witness the property with u = (v1 ? v2) ? (m1 ? m2) and in

order to prove it we take any w1, w2, n1, and n2 such that Adj (s) .=
[
w1

n1

]
and

t
.=

[
w2

n2

]
. By a twofold use of 4.13(1) we get w1 = v1, w2 = v2, n1 = m1, and

29

n2 = m2. We get Adj (s) = w2 ? n2 from 4.10(3) and 2|w2| = 2|n2| from 5.2(6).

4.10(5) now applies in the direction (→) and we get u .=
[
w1 ? w2

n1 ? n2

]
.

P̀Ax s� t = µu[∀v1∀v2∀m1∀m2(Adj (s) .=
[
v1
m1

]
∧ t .=

[
v2
m2

]
→ u

.=
[
v1 ? v2
m1 ? m2

]
)]

(2)

The concatenation function has following properties:

P̀A s� Adj (t) = Adj (s� t) (3)

P̀A s� (t� u) = (s� t) � u (4)

P̀A Adj (s� t) = 0→ Adj (s) = 0 . (5)

(3): By 5.2(2) we have s .=
[

v1 ? w1

m10 ? (2|y1| .− 1)

]
, and Adj (s) .=

[
v1
m10

]
for some

v1, w1, m1, and y1. We similarly obtain t
.=

[
v2 ? w2

m20 ? (2|y2| .− 1)

]
, 2|v2| = 2|m20|,

and Adj (t) .=
[
v2
m20

]
for some v2, w2, m2, and y2. By a twofold use of (2) we get

s� Adj (t) .=
[

v1 ? v2
m10 ? m20

]
and s� t

.=
[

v1 ? (v2 ? w2)
m10 ? (m20 ? (2|x2| .− 1))

]
. We then get

s� t
.=

[
(v1 ? v2) ? w2

(m10 ? m20) ? (2|x2| .− 1)

]
by two applications of 4.8(6). Since we have

2|v1?v2| 4.8(7)
= 2|v1|·2|v2| = 2|m10|·2|m20| 4.8(7)

= 2|m10?m20|

and a simple dyadic case on m2 proves m10?m20 = k0 for some k, we can apply

5.2(3) to obtain Adj (s� t) .=
[

v1 ? v2
m10 ? m20

]
. We now get the desired Adj (s� t) =

s� Adj (t) by 4.10(4).

(4): We have Adj (s) .=
[
v1
m1

]
, Adj (t) .=

[
v2
m2

]
, and u

.=
[
v3
m3

]
for some v1,

v2, v3, m1, m2, and m3 by a triple use of 4.11(1). Three uses of (2) then yield

t�u
.=

[
v2 ? v3
m2 ? m3

]
, s�(t�u) .=

[
v1 ? (v2 ? v3)
m1 ? (m2 ? m3)

]
, and s�Adj (t) .=

[
v1 ? v2
m1 ? m2

]
.

(3) applied to the last formula yields Adj (s� t) .=
[
v1 ? v2
m1 ? m2

]
and another use of

(2) gives (s� t)�u
.=

[
(v1 ? v2) ? v3

(m1 ? m2) ? m3

]
. Two uses of 4.8(6) yield v1 ? (v2 ?v3) =

(v1?v2)?v3 andm1?(m2?m3) = (m1?m2)?m3. We now get s�(t�u) = (s�t)�u
by 4.10(4).

(5): Assume Adj (s � t) = 0. By a two-fold use of 4.11(1) we have Adj (s) .=[
v1
m1

]
and Adj (t) .=

[
v2
m2

]
for some v1, v2, m1, and m2. Thus s � Adj (t) .=

30

[
v1 ? v2
m1 ? m2

]
by (2) and we have:

0 = Adj (s� t)
(3)
= s� Adj (t)

4.10(3)
= (v1 ? v2) ? (m1 ? m2) .

Some dyadic case analyses now yield v1 = v2 = m1 = m2 = 0 and so Adj (t)
4.10(3)

=
v2 ? m2 = 0.

5.4 Introduction of a dyadic pairing function into PA. We define a
binary infix function ; by minimisation:

P̀Ax x; t = µs[s = ((x+ 1) ? 2|x+1|) � t] (1)

whose existence condition is trivially satisfied. The reader will note that we
could have defined the function explicitly by x; t = ((x + 1) ? 2|x+1|) � t but
then CL would ‘open’ the definition automatically by replacing terms x; t by the
right-hand-side. This would result in decreased readability.

We let ; associate to the right, i.e. a; b; c stands for a; (b; c). We have the
following auxiliary property:

P̀A t
.=

[
v
m

]
→ x; t .=

[
(x+ 1) ? v
2|x+1| ? m

]
. (2)

Assume t .=
[
v
m

]
, Since 2|x+1| = 2|2

|x+1|| by 4.7(2), we have (x + 1) ? 2|x+1| .=[
x+ 1
2|x+1|

]
by 4.10(2), and hence Adj ((x+ 1) ? 2|x+1|) .=

[
x+ 1
2|x+1|

]
by 5.2(5). Since

x; t = ((x+ 1) ? 2|x+1|) � t, we get x; t .=
[
(x+ 1) ? v
2|x+1| ? m

]
by 5.3(2).

The function ; is a suitable pairing function because it satisfies the pairing
property (3), the case analysis on dyadic lists (4) asserting that every non-atomic
number is a pair, and the property (5) which conversely asserts that the numbers
of the form x; t are not atoms.

P̀A x1; t1 = x2; t2 → x1 = x2 ∧ t1 = t2 (3)

P̀A Adj (t) = 0 ∨ ∃x∃s t = x; s (4)

P̀A Adj (x; t) > 0 (5)

(3): We have t1
.=

[
v1
m1

]
for some v1, m1 by 4.11(1) and x1; t1

.=
[
(x1 + 1) ? v1
2|x1+1| ? m1

]
by (2). We similarly get x2; t2

.=
[
(x2 + 1) ? v2
2|x2+1| ? m2

]
for some v2 and m2. A use of

4.13(1) with the assumption x1; t1 = x2; t2 yields (x1 + 1) ? v1 = (x2 + 1) ? v2
and 2|x1+1| ?m1 = 2|x2+1| ?m2. We get 2|x1+1| = 2|x2+1| and m1 = m2 from the
latter formula by 4.9(7). A use of 4.8(9) with the former formula yields x1 = x2

and v1 = v2. We now obtain t1 = t2 by 4.10(4).

31

(4): When Adj (t) = 0 there is nothing to prove so assume Adj (t) > 0 and

use 5.2(7) to obtain x, v, and m such that t .=
[
(x+ 1) ? v
2|x+1| ? m

]
. Since t

4.10(3)
=

((x + 1) ? v) ? (2|x+1| ? m) and 2|x+1| 4.7(2)
= 2|2

|x+1||, we get v ? m .=
[
v
m

]
by

the direction (←) of 4.10(5). Thus x; v ? m .=
[
(x+ 1) ? v
2|x+1| ? m

]
by (2). We now use

4.10(4) to get t = x; v ? m from which we get ∃x∃s t = x; s.
(5): By way of contradiction assume that Adj (x; t) = 0 then, since ((x+ 1) ?

2|x+1|) � t = x; t from the definition, we get a contradiction as follows:

0
5.3(5)
= Adj ((x+1)?2|x+1|)

5.2(5)
= (x+1)?2|x+1| 4.8(1)

= (x+1)·2|2
|x+1||+2|x+1| 4.7(1)

> 0 .

5.5 Towards the admissibility of pair induction. A very important prop-
erty of dyadic lists is

P̀A x < x; t ∧ t < x; t . (1)

Its proof requires the following monotone properties of dyadic concatenation:

P̀A x < y → x ? z < y ? z (2)

P̀A x ≤ x ? y . (3)

(2): Assume x < y and obtain x ? z
4.8(1)
= x·2|z| + z

4.7(1)
< y·2|z| + z

4.8(1)
= y ? z.

(3): x
4.7(1)

≤ x·2|y| ≤ x·2|y| + y
4.8(1)
= x ? y.

(1): By 4.11(1) we have t
.=

[
v
m

]
for some v and m and by 5.4(2) we get

x; t .=
[
(x+ 1) ? v
2|x+1| ? m

]
. Thus t

4.10(3)
= v ? m and x; t

4.10(3)
= (x+ 1) ? v ? (2|x+1| ? m).

In order to prove x < x; t we observe that x; t
4.8(6)
= (x + 1) ? a where we

abbreviate by a = v ? (2|x+1| ? m). We now get x
(3)

≤ x ? a
(2)
< (x+ 1) ? a = x; t.

In order to prove t < x; t we obtain

v
4.8(5)
= 0 ? v

(2)
< (x+ 1) ? v

(3)

≤ (x+ 1) ? v ? 2|x+1| .

Hence t = v ? m
(2)
< (x+ 1) ? v ? 2|x+1| ? m

4.8(6)
= x; t.

We could now prove that the principle of dyadic pair induction is admissible:

∀t(Adj (t) = 0→ φ[t]) ∧ ∀x∀s(φ[x] ∧ φ[s]→ φ[x; s]))→ φ[t] .

We will not do this as we will instead use below complete induction together
with the case analysis on dyadic lists 5.4(4).

32

5.6 Recurrences for dyadic list concatenation. We are now ready to prove
the following recurrences for the dyadic list concatenation function:

P̀A Adj (s) = 0→ s� t = t (1)

P̀A (x; s) � t = x; (s� t) . (2)

(1): Assume Adj (s) = 0. We have Adj (s) .=
[
v1
m1

]
and t .=

[
v2
m2

]
for some v1, v2,

m1, and m2 by 4.11(1). Thus s� t
.=

[
v1 ? v2
m1 ? m2

]
by 5.3(2). By 4.10(3) we have

0 = Adj (s) = v1 ?m1 and a simple dyadic case analysis on m1 gets v1 = m1 = 0.

Hence s� t
.=

[
v2
m2

]
by 4.8(5) and t = s� t by 4.10(4).

(2): We have

(x; s)� t
def ;
= ((x+1)?2|x+1|)�s� t

5.3(4)
= ((x+1)?2|x+1|)�(s� t)

def ;
= x; (s� t) .

5.7 Tails of dyadic lists. We now introduce into PA the two-place predicate
s v t holding when s is the tail of a dyadic list t. The predicate has the following
explicit definition:

P̀Ax s v t↔ ∃uu� s = t . (1)

with the properties:

P̀A s v s (2)

P̀A t v s ∧ s v r → t v r (3)

P̀A Adj (s) = 0→ t v s↔ t = s (4)

P̀A t v x; s↔ t = x; s ∨ t v s . (5)

(2): We have 0 � s by properties 5.2(4) and 5.6(1). Hence 0 witnesses s v s.
(3): From the assumptions we have u � t = s and w � s = r for some u, w

by the definition. Thus (w � u) � t
5.3(4)
= w � (u� t) = w � s = r and so w � u

witnesses t v r.
(4): Assume Adj (s) = 0 and in the direction (→) also t v s, i.e. u� t = s for

some u. We get Adj (u) = 0 from 5.3(5) and t = s from 5.6(1). In the direction
(←) we use (2).

(5): In the direction (→) assume t v x; s, i.e. u � t = x; s for some u and
consider two cases by 5.4(4). If Adj (u) = 0 then t = x; s by 5.6(1). If u = y;w
for some y and w then we get y; (w � t) = x; s by 5.6(2), w � t = s by 5.4(3),
and hence t v s from the definition.

In the direction (←) we first assume t = x; s and get t v x; s by (2). We then

assume t v s, i.e. u� t = s for some u. We have (x;u) � t
5.6(2)
= x; (u� t) = x; s

and so x;u witnesses t v x; s.

33

5.8 Membership in dyadic lists. We now introduce into PA the two-place
predicate x ε t of membership in dyadic lists:

P̀Ax x ε t↔ ∃s x; s v t (1)

with the properties:

P̀A x ε x; s (2)

P̀A x ε s→ x ε s� t ∧ x ∈ t� s . (3)

(2): We have x; s v x; s by 5.7(2). We now use the definition of membership.
(3): From x ε s we get x;u v s for some u by the definition of membership

and w � (x;u) = s for some w by the definition of tails. We have

w � (x; (u� t))
5.6(2)
= w � ((x;u) � t)

5.3(4)
= (w � (x;u)) � t = s� t .

Hence x; (u � t) v s � t and then x ε s � t by the definitions of tails and

membership. We also have (t� w) � (x;u)
5.3(4)
= t� (w � (x;u)) = t� s and so

x ε t� s similarly as above.

6 Closure of PA under a Schema of Nested Iteration

We will see in Sect. 7 that we can introduce into PA functions and predicates
satisfying recursive clauses of CL provided that we can show PA to be closed
under a schema of nested iteration presented in Par. 6.1.

6.1 Schema of nested iteration. Suppose that a three-place function g,
unary measure function µ, and a constant C giving a recursion count have
been introduced into PA such that

P̀A g(x, n, a) = v1→ µ(v) < µ(x) (1)

P̀A ∃v g(x, 0, a) = v0 . (2)

We then wish to introduce into PA a three-place nested iteration function g∗

such that:

P̀A g∗(x, n, a) = v ← g(x, n, a) = v0 (3)

P̀A g∗(x, n, a) = y ← g(x, n, a) = v1 ∧ n = m+ 1 ∧
g∗(v, C, 0) = w ∧ g∗(x,m, a� (w; 0)) = y . (4)

Note that the measure of this recursion is µ(x)·C +n because we have µ(x)·C +

n > µ(x)·C + m for the second (outer) recursive call and µ(x)·C + n
(1),(2)
>

(µ(v) + 1)·C = µ(v)·C + C for the first (inner) recursive call.
The remainder of this section will be devoted to extensions by definitions of

PA culminating in the introduction of the function g∗ and in the proofs of recur-
rences (3) and (4) in Par. 6.5. The development will be under the assumption
that g, µ, and C have been introduced into PA such that (1) and (2) hold.

34

6.2 Example: Fibonacci sequence. UNFINISHED: (this was explained
in the class).

F0 = F1 = 1 and Fx+2 = Fx + Fx+1. For this explicitly define C = 2,
µ(x) = x, and

g(x, n, a) =

(x .− 2)1 if x ≥ 2 ∧ n = 2
(x .− 1)1 if x ≥ 2 ∧ n = 1 ∧ a = v; b
(v + w)0 if x ≥ 2 ∧ a = v;w; b
10 otherwise

Since PA proves 2 | g(x, 0, a) and g(x, n, a) = v1 → v < x we can use the
schema of iteration and explicitly define Fx = g∗(x,C, 0) and prove in PA the
recurrences for F .

6.3 Arithmetization of computation trees. The example from the preced-
ing paragraph shows that computation trees for the nested iteration function g∗

consist of two kinds of nodes:

g∗(x, n, a) = y

0 | 0
if g(x, n, a) = y0

g∗(x, n+ 1, a) = y

g∗(v, C, 0) = w | g∗(x, n, a� (w; 0)) = y
if g(x, n+ 1, a) = v1 .

The two ‘rules’ for the construction of computation trees give local conditions
which must be satisfied at every node of a computation tree.

We will arithmetize (encode into natural numbers) the symbolic identities
g∗(x, n, a) = y as Lb(x, n, a, y) where the four-place function Lb(x, n, a, y) =
x;n; a; y yields the code of the identity as the label in a node of a computation
tree We will abbreviate Lb(x, n, a, y) to (g∗(x, n, a)=•y). We will flatten the
computation trees into lists containing the labels (g∗(x, n, a)=•y) as elements
in such a way that if the list s codes a computation tree then for every its tail
(g∗(x, n, a)=•y); t v s either g(n, x, a) = y0 or g(n, x, a) is odd and the list t
contains the labels of sons of the node (g∗(x, n, a)=•y).

We are thus led to the introduction of a five-place predicate Lcond arithme-
tizing the local conditions and of a unary predicate Ct holding of computation
trees:

P̀Ax Lcond(x, n, a, y, t)↔ ∃v(g(x, n, a) = v0 ∧ v = y ∨
∃m∃w(g(x, n, a) = v1 ∧ n = m+ 1 ∧

(g∗(v, C, 0)=•w) ε t ∧ (g∗(x,m, a� (w; 0))=•y) ε t)) (1)

P̀Ax Ct(s)↔ ∀x∀n∀a∀y∀t((g∗(x, n, a)=•y); t v s→ Lcond(x, n, a, y, t)) . (2)

The predicate Lcond satisfies the following:

P̀A Lcond(x, n, a, y, s)→ Lcond(x, n, a, y, s� t) (3)

35

(3): Assume Lcond(x, n, a, y, s) and for some v we consider two cases by (1). If
g(x, n, a) = v0 and v = y then Lcond(x, n, a, y, s� t) by (1) again.

If g(x, n, a) = v1, n = m + 1, (g∗(v, C, 0)=•w) ε s, and (g∗(x,m, a �
(w; 0))=•y) ε s for some m and w then we get (g∗(v, C, 0)=•w) ε s � t, and
(g∗(x,m, a � (w; 0))=•y) ε s � t by two applications of 5.8(3). We now get
Lcond(x, n, a, y, s� t) by (1).

Tails of computation trees are computation trees again:

P̀A Ct(s) ∧ t v s→ Ct(t) . (4)

(4): Assume Ct(s) and t v s. We wish to prove Ct(s) so we take any x, n, a, y,
and u such that (g∗(x, n, a)=•y);u v t. By 5.7(3) we have (g∗(x, n, a)=•y);u v s
and from the definition of Ct(s) we get the desired Lcond(x, n, a, y, u).

The following properties give recurrent clauses for Ct :

P̀A Adj (s) = 0→ Ct(s) (5)

P̀A ∀x∀n∀a∀y b 6= (g∗(x, n, a)=•y)→ Ct(b; s)↔ Ct(s) (6)

P̀A Ct((g∗(x, n, a)=•y); s)↔ Lcond((x, n, a, y, s) ∧ Ct(s) . (7)

(5): Assume Adj (s) = 0 and take any take any x, n, a, y, and t such that
(g∗(x, n, a)=•y); t v s. By 5.7(4) we have (g∗(x, n, a)=•y); t = s contradicting
5.4(5). Hence Lcond(x, n, a, y, t) holds trivially.

(6): Assume not ∀x∀n∀a∀y b 6= (g∗(x, n, a)=•y) and in the direction (→) also
Ct(b; s). We have s v s by 5.7(2) and s v b; s by 5.7(5). Hence Ct(s) by (4).

In the direction (←) assume Ct(s) and for the proof of Ct(b; s) take any
x, n, a, y, and t such that (g∗(x, n, a)=•y); t v b; s. By 5.7(5) we consider
two cases. If (g∗(x, n, a)=•y); t = b; s then (g∗(x, n, a)=•y) = b by 5.4(3) con-
tradicting the assumption about b and so Lcond(x, n, a, y, t) holds trivially. If
(g∗(x, n, a)=•y); t v s we get Lcond(x, n, a, y, t) from the definition of Ct(s).

(7): In the direction (→) assume Ct((g∗(x, n, a)=•y); s). By 5.7(2) we have
(g∗(x, n, a)=•y); s v (g∗(x, n, a)=•y); s and we get Lcond(x, n, a, y, s) from (2).
We also have s v s by 5.7(2) and s v (g∗(x, n, a)=•y); s by 5.7(5). Hence Ct(s)
by (4).

In the direction (←) assume Lcond((x, n, a, y, s) and Ct(s). For the proof
of Ct((g∗(x, n, a)=•y); s) take any take any x1, n1, a1, y1, and t such that
(g∗(x1, n1, a1)=•y1); t v (g∗(x, n, a)=•y); s. By 5.7(5) we consider two cases. If
(g∗(x1, n1, a1)=•y1); t = (g∗(x, n, a)=•y); s then x1 = x, n1 = n, a1 = a, y1 = y,
and t = s by several applications of 5.4(3) and so Lcond(x1, n1, a1, y1, t1) holds
trivially. If (g∗(x1, n1, a1)=•y1); t v s we get Lcond(x1, n1, a1, y1, t) from the
definition of Ct(s).

We will also need the following property:

P̀A Ct(s) ∧ Ct(t)→ Ct(s� t) . (8)

(8): By complete induction on s. We assume Ct(s) and by 5.4(4) we consider
two cases. If Adj (s) = 0 then Ct(s� t) holds by 5.6(1).

36

If s = b;u from some b and u then, since u < s by 5.5(1), we get Ct(u �

t) from IH. We also have s � t
5.6(2)
= b; (u � t) and we consider two cases. If

b 6= (g∗(x, n, a)=•y) for all x, n, a, and y we get Ct(b; (u � t)) from (6). If

b = (g∗(x, n, a)=•y) for some x, n, a, and y then, since b;u
5.7(2)

v s, we have
Lcond(x, n, a, y, u) from the definition of Ct(s) and Lcond(x, n, a, y, u � t) by
(3). We now get Ct(b; (u� t)) from (7).

6.4 Introduction of graph of the nested iteration function into PA. We
can now introduce into PA a four-place predicate G gnit(x, n, a, y), abbreviated
as g∗(x, n, a) .= y, about which we will prove in Par. 6.5 that it is the graph of
the nested iteration function g∗. The predicate is introduced as follows:

P̀Ax g∗(x, n, a) .= y ↔ ∃tCt((g∗(x, n, a)=•y); t) . (1)

We will need the following auxiliary property:

P̀A Ct(s) ∧ (g∗(x, n, a)=•y) ε s→ g∗(x, n, a) .= y (2)

which is proved by assumming Ct(s) and (g∗(x, n, a)=•y) ε s. From 5.8(1) we
get (g∗(x, n, a)=•y);u v s for some u and then Ct((g∗(x, n, a)=•y);u) from
6.3(4). We now use (1).

The predicate G gnit satisfies following recurrences:

P̀A g(x, n, a) = v0→ g∗(x, n, a) .= y ↔ y = v (3)

P̀A g(x, n+ 1, a) = v1→ g∗(x, n+ 1, a) .= y ↔
∃w(g∗(v, C, 0) .= w ∧ g∗(x, n, a�(w; 0)) .= y) . (4)

(3): Assume g(x, n, a) = v0 and in the direction (→) also g∗(x, n, a) .= y. Hence
Ct((g∗(x, n, a)=•y); t) for some t by (1) and Lcond(x, n, a, y, t) by 6.3(7). We
now obtain y = v from 6.3(1).

In the direction (←) we wish to get g∗(x, n, a) .= v. Towards that end we get
Lcond(x, n, a, v, 0) from 6.3(1). Since Adj (0) by 5.2(4) and Ct(0) by 6.3(5), we
get Ct((g∗(x, n, a)=•v); 0) from 6.3(7) and g∗(x, n, a) .= v by (1).

(4): Assume g(x, n+1, a) = v1 and in the direction (→) also g∗(x, n+ 1, a) .=
y. Thus Ct((g∗(x, n + 1, a)=•y); s) for some s by (1). We use 6.3(7) to get
Lcond(x, n + 1, a, y, s) and Ct(s). By 6.3(1) we get (g∗(v, C, 0)=•w) ε s and
(g∗(x, n, a�(w; 0))=•y) ε s for some w. We now use (2) twice to get the desired
conclusion.

In the direction (←) take any y and for some w assume g∗(v, C, 0) .= w and
g∗(x, n, a�(w; 0)) .= y. By a two-fold use of (1) we get Ct((g∗(v, C, 0)=•w); s)
and Ct((g∗(x, n, a�(w; 0))=•y); t) for some s, and t . By 6.3(8) we get Ct(u)
where we abbreviate ((g∗(v, C, 0)=•w); s)�((g∗(x, n, a�(w; 0))=•y); t) by u. Us-
ing both 5.8(2) and 5.8(3) yields (g∗(v, C, 0)=•w) ε u and (g∗(x, n, a�(w; 0))=•y) ε
u. Since now Lcond(x, n+1, a, y, u) by 6.3(1), we obtain Ct((g∗(x, n+1, a)=•y), u)
by 6.3(7) and then g∗(x, n+ 1, a) .= y by (1).

37

6.5 Introduction of the nested iteration function into PA. The predi-
cate G gnit defined in Par. 6.4 is the graph of a function because it satisfies the
following existence and uniqueness conditions:

P̀A ∃y g∗(x, n, a) .= y (1)

P̀A g∗(x, n, a) .= y1 ∧ g∗(x, n, a) .= y2 → y1 = y2 . (2)

(1): By measure induction with the measure µ(x)·C + n and with the induction
formula ∀a(1). We take any a and consider two cases by 4.3(3). If g(x, n, a) = v0
for some v we get g∗(x, n, a) .= v from 6.4(3). The goal is thus witnessed by
v. If g(x, n, a) = v1 for some v then µ(v) < µ(x) by 6.1(1) and n 6= 0 by
6.1(2). Thus n = m+ 1 and µ(v) + d+ 1 = µ(x) for some m and d. Since then
µ(v)·C+C = (µ(v)+1)·C < µ(x)·C+m+1 and µ(x)·C+m < µ(x)·C+m+1, we
apply IH twice to get g∗(v, C, 0) .= y for some w and then g∗(x,m, a� (w; 0)) .= y
for some y. Applying 6.4(4) now yields g∗(x, n, a) .= y. The goal is thus witnessed
by y.

(2): By measure induction with the measure µ(x)·C + n and with the in-
duction formula ∀a∀y1∀y2(1). We take any a, y1, y2, assume g∗(x, n, a) .= y1,
g∗(x, n, a) .= y2 and consider two cases by 4.3(3). If g(x, n, a) = v0 for some v

then y1
6.4(3)
= v

6.4(3)
= y2. If g(x, n, a) = v1 for some v then µ(v) < µ(x) by 6.1(1)

and n 6= 0 by 6.1(2). Thus n = m+1 and µ(v)+d+1 = µ(x) for some m and d.
We obtain g∗(v, C, 0) .= w1 and g∗(x,m, a� (w1; 0)) .= y1 for some w1 by 6.4(4).
We similarly get g∗(v, C, 0) .= w2 and g∗(x,m, a� (w2; 0)) .= y2 for some w2.
Since then µ(v)·C + C = (µ(v) + 1)·C < µ(x)·C +m+ 1, we get w1 = w2 from
IH. Since also and µ(x)·C +m < µ(x)·C +m + 1 we get y1 = y2 from another
IH.

The property (1) is the existence condition for the introduction by minimiza-
tion of the function g∗:

P̀Ax g
∗(x, n, a) = µy[g∗(x, n, a) .= y] (3)

We are now ready to prove the recurrences for g∗ from Par. 6.1:

P̀A g∗(x, n, a) = v ← g(x, n, a) = v0 (4)

P̀A g∗(x, n, a) = y ← g(x, n, a) = v1 ∧ n = m+ 1 ∧
g∗(v, C, 0) = w ∧ g∗(x,m, a� (w; 0)) = y . (5)

(4): Assume g(x, n, a) = v0. Since g∗(x, n, a) .= g∗(x, n, a) by (3) and g∗(x, n, a) .=
v by 6.4(3), we obtain g∗(x, n, a) = v by (2).

(5): Assume g(x, n, a) = v1, n = m + 1, g∗(v, C, 0) = w, and g∗(x,m, a �
(w; 0)) = y. We have g∗(v, C, 0) .= g∗(v, C, 0) by (3), g∗(x,m, a� (w; 0)) .=
g∗(x,m, a� (w; 0)) is obtained similarly. Using 6.4(4) then yields g∗(x, n, a) .= y
and, since g∗(x, n, a) .= g∗(x, n, a) by (3), we have g∗(x, n, a) = y by (2).

7 Clausal Definitions

UNFINISHED: (see the slides).

38

	Peano Arithmetic and Clausal Language
	Basic Bootstrapping of PA
	Extensions of PA by Predicate Symbols
	Extensions of PA by Function Symbols
	Dyadic Concatenation Function in PA
	Dyadic Pairing and List Concatenation Functions in PA
	Closure of PA under a Schema of Nested Iteration
	Clausal Definitions

