Compilation of Terms to Programs for a Stack Machine

Stack Machine

Instructions:

push(n): the number n goes to stack s $\operatorname{load}(n)$: the element $(s)_{n}$ is pushed on the stack
incr $_{i}:(s)_{0}:=(s)_{0}+1$
decr $_{i}:(s)_{0}:=(s)_{0} \doteq 1$
pair: $(s)_{1}:=(s)_{1},(s)_{0}$ and pop.
head $_{i}:(s)_{0}:=H(s)_{0}$
tail $_{i}:(s)_{0}:=T(s)_{0}$
call $(q) ; p$: stack is r, v, s_{1}; new stack is p, r, v, s_{1} and r is executed; Note p is return address. q should end with ret(2)
if $_{i}\left(q_{1}, q_{2}\right) ; p$: stack is v, s_{1}; new stack p, s_{1}. q_{1} or q_{2} is executed according to whether $v>0$ or not. Both programs should end with ret(0). $\operatorname{ret}(n)$: stack is $\left(w, q, s_{1}\right) \oplus s_{2}$ where $L\left(s_{1}\right)=n$; new stack is w, s_{2}, saved return address q is executed.

Interpreter for the Stack Machine

$\operatorname{Run}(p, s)=v$ is a (partial) function interpreting the program p - which is a list of instructions for the stack machine on the stack s. At then end: $\operatorname{Run}(0, v, s)=v$ it yield the value v at the top of the stack.

We wish to write a compiler $\operatorname{Comp}(i, b)=p$ taking a functional term b and yielding a program p evaluating b.
Suppose that $f(v)=a, \operatorname{Comp}(0, a)=q$ and b is a part of a then the situation during the execution will be $\operatorname{Run}(p, s \oplus(c, q, v, t)$
where i is the offset on the stack: $L(s)=i$ containing already computed intermediate results of the body a.

Compilation versus Interpretation

For a function $f(v)=a$ we wish that the compiled program $q=\operatorname{Comp}(0, a)$ satisfies the following:

$$
\operatorname{Run}(q,(c, q, v, 0))=[r]_{a}^{v}
$$

Note the initial offset 0 when the execution of q starts.

The general situation for a subterm b of a is:

$$
\begin{gathered}
\operatorname{Run}(\operatorname{Comp}(L(s), b) \oplus p, s \oplus(c, q, v, t))= \\
\operatorname{Run}\left(p,\left([b]_{r}^{v}, s\right) \oplus(c, q, v, t)\right)
\end{gathered}
$$

Finite Sets

Coding of Finite Sets

There are many ways of coding of finite sets of natural numbers as natural numbers.

Probably the simplest one is as powersets: The empty set \emptyset is coded by 0 and for $n>0$ we code by bits:

$$
\left\{s_{1}, \ldots, s_{n}\right\} \text { as } \sum_{i=1}^{n} 2^{s_{i}}
$$

Note that s_{i} can again code a set.

However, the numbers coding relatively small sparse sets, say $\left\{2,10^{6}, 3 \cdot 10^{9}\right\}$, are very large.

Coding of finite sets by ordered lists

The problem of sparse sets is solved by coding the sets as lists x without repetition:

$$
\forall y \forall z \forall v \forall a \forall b(x=y \oplus(a, z \oplus(b, v)) \rightarrow a \neq b)
$$

For instance, increasing lists x are without repetition:

$$
\operatorname{Set}(x) \leftrightarrow \forall y \forall z \forall a \forall b(x=y \oplus(a, b, z) \rightarrow a<b)
$$

For list membership predicate $a \in x$ such that

$$
a \varepsilon x \leftrightarrow \exists y \exists z x=y \oplus(a, z)
$$

we have for sets x :

$$
x=y \oplus(a, z) \wedge b \varepsilon y \wedge c \varepsilon z \rightarrow b<a<c
$$

If $\operatorname{Set}(x)$ and $a \& x$ then the insertion satisfies

$$
\begin{aligned}
x \cup\{a\}=y \leftrightarrow & \exists v \exists w(x=v \oplus w \wedge y=v \oplus(a, w) \wedge \\
& \forall b \varepsilon v(b<a) \wedge \forall b \varepsilon w(a<b))
\end{aligned}
$$

