
Simulation of Turing machines in CL

35

Computing Numeric Functions with

Turing machines

Coding of Data

We treat the tape as a stack containing num-

bers in monadic notation:

1sn21sn−12 · · ·1s121s02

The numbers on the stack are sn, sn−1, · · · , s1, s0;

s0 is the top.

The call of the n-ary function f(x1, . . . , xn) can

be computed by starting the computation with

the arguments pushed onto stack s:

s1x121x22 · · ·1xn−121xn2

The result replaces the arguments:

s1f(x1,...,xn)2

36

Coding of Turing Instructions

Turing machines are composed from six in-
structions. Together with a Nop they can be
coded by triples of dyadic numbers: Nop = 7,
R = 8, L = 9, W1 = 10, W2 = 11, Whi = 12,
If i = 13
The last two need to encode additional argu-
ments Wh1(p) and If 1(p, q). For that we need
padding Pad(n) = 21n−1:

Wh1(p) = p ?

pad︷ ︸︸ ︷
21n−1 ?Whi where |p|d = n

If 1(p, q) = Nopi ? p ? Nopj ? q ? 21n−1 ? If i

where
max(|p|d, |q|d) = n = 3·i + |p|d = 3·j + |q|d

Instructions are concatenated in reverse or-
der: left a block macro Lb1 ≡ LWh1(L) is
coded as

Wh1(L) ? L =
L︷ ︸︸ ︷

121 ?

pad︷ ︸︸ ︷
211 ?

Whi︷ ︸︸ ︷
212 ?

L︷ ︸︸ ︷
121 = 5417

37

Decoding of instructions

The function Instr(p) = Take(3, p) with a single

clause

Instr(8·q + i) = i ← 7 ≤ i ∧ i ≤ 14 yields the

first instruction (which is stored in reverse) of

the program p.

The function Next i(p) = Drop(3, p) with a sin-

gle clause

Next i(8∗q+i) = q ← 7 ≤ i∧i ≤ 14 yields the re-

mainder of the program (if non-empty). Thus

p = Next i(p) ? Instr(p)

Ifs and whiles are decoded by

Next if 1(r ? If 1(p, q)) = r ? p

Next if 2(r ? If 1(p, q)) = r ? q

Next wh1(r ? Wh1(p)) = r ? Wh1(p) ? p

Next wh2(r ? Wh1(p)) = r

38

