Simulation of Turing machines in CL

Computing Numeric Functions with Turing machines Coding of Data

We treat the tape as a stack containing numbers in monadic notation:

$$
1^{s_{n}} 21^{s_{n-1}} 2 \cdots 1^{s_{1}} 21^{s_{0}} \underline{2}
$$

The numbers on the stack are $s_{n}, s_{n-1}, \cdots, s_{1}, s_{0}$; s_{0} is the top.

The call of the n-ary function $f\left(x_{1}, \ldots, x_{n}\right)$ can be computed by starting the computation with the arguments pushed onto stack s :

$$
s 1^{x_{1}} 21^{x_{2}} 2 \cdots 1^{x_{n-1}} 21^{x_{n}} \underline{2}
$$

The result replaces the arguments:

$$
s 1^{f\left(x_{1}, \ldots, x_{n}\right)} \underline{2}
$$

Coding of Turing Instructions

Turing machines are composed from six instructions. Together with a Nop they can be coded by triples of dyadic numbers: $N o p=7$, $R=8, L=9, W_{1}=10, W_{2}=11, W h_{i}=12$, $I f_{i}=13$
The last two need to encode additional arguments $W h_{1}(p)$ and $I f_{1}(p, q)$. For that we need padding $\operatorname{Pad}(n)=21^{n-1}$:

$$
\begin{aligned}
& W h_{1}(p)=p \star \overbrace{21^{n-1}}^{\text {pad }} \star W h_{i} \quad \text { where }|p|_{d}=n \\
& I f_{1}(p, q)=N o p^{i} \star p \star N o p^{j} \star q \star 21^{n-1} \star I f_{i}
\end{aligned}
$$

where
$\max \left(|p|_{d},|q|_{d}\right)=n=3 \cdot i+|p|_{d}=3 \cdot j+|q|_{d}$

Instructions are concatenated in reverse order: left a block macro $L b_{1} \equiv L W h_{1}(L)$ is coded as

$$
W h_{1}(L) \star L=\overbrace{121}^{L} \star \overbrace{211}^{\text {pad }} * \overbrace{212}^{W h_{i}} \star \overbrace{121}^{L}=5417
$$

Decoding of instructions

The function $\operatorname{Instr}(p)=\operatorname{Take}(3, p)$ with a single clause
$\operatorname{Instr}(8 \cdot q+i)=i \leftarrow 7 \leq i \wedge i \leq 14$ yields the first instruction (which is stored in reverse) of the program p.
The function $\operatorname{Next}_{i}(p)=\operatorname{Drop}(3, p)$ with a single clause
$\operatorname{Next}_{i}(8 * q+i)=q \leftarrow 7 \leq i \wedge i \leq 14$ yields the remainder of the program (if non-empty). Thus $p=\operatorname{Next}_{i}(p) \star \operatorname{Instr}(p)$
Ifs and whiles are decoded by

$$
\begin{aligned}
& \operatorname{Next_ if~}_{1}\left(r \star I f_{1}(p, q)\right)=r \star p \\
& N e x t _i f_{2}\left(r \star I f_{1}(p, q)\right)=r \star q \\
& N e x t _w h_{1}\left(r \star W h_{1}(p)\right)=r \star W h_{1}(p) \star p \\
& \operatorname{Next}\left(p h_{2}\left(r \star W h_{1}(p)\right)=r\right.
\end{aligned}
$$

