Symbolic programming with dyadic concatenation

Dyadic concatenation

Recall that for every $x \in \mathbb{N}$ exactly one holds:
0

$$
x=y \mathbf{1}=2 \cdot y+1
$$

$$
x=y 2=2 \cdot y+2
$$

Two strings of dyadic digits, say 1211 and 2122 can be concatenated to
$12112122=1211 \star 2122$ with the function:
$x \star 0=y \quad x \star y \mathbf{1}=(x \star y) 1 \quad x \star y 2=(x \star y) 2$
Dyadic concatenation is associative and

$$
x \star y=x \cdot 2^{|y|_{d}}+y
$$

where the dyadic size function $|x|_{d}$ is:

$$
|0|_{d}=0 \quad|x \mathbf{1}|_{d}=|x \mathbf{2}|_{d}=|x|_{d}+1
$$

We can also define $\operatorname{Drop}(n, x)$ and $\operatorname{Take}(n, x)$ s.t.:

$$
n \leq|x|_{d} \rightarrow x=\operatorname{Drop}(n, x) \star \operatorname{Take}(n, x)
$$

Dyadic Coding of Turing Machines

Turing has invented his machines to investigate computability. Such a machine M can be seen as working on a tape consisting of symbols 1 and 2 . M starts with the tape containing input and it terminates with the tape containing output. For instance:

$$
111121112 \underline{\sim} \stackrel{M}{\mapsto} 1111111 \underline{2}
$$

M can be viewed as performing addition $1^{4}+1^{3}=1^{7}$ in monadic where the symbol 2 separates the numbers. And _ designates the current position of its reading-writing head.

The machine executes a program with instructions: l (move the head one position left), extending the tape with the symbol 2 if the head is at the left end,
r (move one position right), extending with 2 if needed,
w_{1} (overwrites the currently read symbol with 1);
w_{2} (overwrites with 2),
If ${ }_{1}\left(p_{1}, p_{2}\right)$ executes the program p_{1} if the currently read symbol is 1 and the program p_{2} if the symbol is 2
$W h_{1}(p)$ executes the program $p W h_{1}(p)$ if the currently read symbol is 1 and does nothing if the symbol is 2 .

Program $R b \equiv r W h_{1}(r)$ moves one block right:

$$
\ldots 1^{m} \underline{2} 1^{n} 2 \ldots \mapsto \ldots 1^{m} 21^{n} \underline{2} \ldots
$$

Program $L b \equiv l W h_{1}(l)$ moves one block left:

$$
\ldots 1^{m} 21^{n} \underline{2} \ldots \mapsto \ldots 1^{m} \underline{\underline{1}} 1^{n} 2 \ldots
$$

