Computing with the Binary and Dyadic representation of numbers

General monadic discrimination

We write $n \equiv \overbrace{S \cdots S}^{n}(0)$. For any number $n>0$ exactly one formula holds:

$$
x=0 \vee x=\underline{1} \vee \cdots \vee x=\underline{n-1} \vee \exists!y x=y+\underline{n}
$$

This can be used in clausal definitions. The sequence F_{n} of Fibonacci is defined:

$$
\begin{aligned}
& F_{0}=1 \\
& F_{1}=1 \\
& F_{n+2}=F_{n+1}+F_{n}
\end{aligned}
$$

F_{n} gives the number of pairs of rabbits at the beginning of the year $n=0,1, \ldots$ when we start with one pair of young rabbits. A pair of at least one year old rabbits breeds each year a new pair of rabbits.

year	young	old	total
0	$1=F_{1}$	0	$1=F_{0}$
1	0	$1=F_{1}$	$1=F_{1}$
2	$1=F_{1}$	$1=F_{1}$	$2=F_{2}$
3	$1=F_{1}$	$2=F_{2}$	$3=F_{3}$
4	$2=F_{2}$	$3=F_{3}$	$5=F_{4}$
5	$3=F_{3}$	$5=F_{4}$	$8=F_{5}$
\cdots	\cdots	\cdots	\cdots
$n+2$	F_{n}	F_{n+1}	F_{n+2}

F_{n} grows as fast as the exponential function 2^{n}. But the computation of F_{n} requires on the order of $2^{F_{n}}$ successor operations.
Consider the clausal definition of $F a(n, y, o)$:

$$
\begin{aligned}
& F a(0, y, d)=y \\
& F a(n+1, y, d)=F a(n, d, y+d) \\
& \quad F a\left(n, F_{k}, F_{k+1}\right)=F a\left(n-1, F_{k+1}, F_{k+2}\right)= \\
& \quad \cdots=F a\left(0, F_{k+n}, F_{k+n+1}\right)=F_{k+n}
\end{aligned}
$$

Hence $F_{n}=F a\left(n, F_{0}, F_{1}\right)=F a(n, 1,1)$

Binary representation of numbers

Every number $x>0$ can be uniquely written as $x=\sum_{i=0}^{n} d_{i} \cdot 2^{i}$ where $d_{i} \leq 1$ for $i=0, \ldots, n-1$ and $d_{n}=1$ are its binary digits. We also have $0=\sum_{i=0}^{1} 0 \cdot 2^{0}$. The binary length $|x|_{b}$ of x is the number of its binary digits $(n+1$ in the first case and 0 when $x=0$).

Note: The number x in the monadic representation \underline{n} takes x succesor operations which is its monadic length. The binary length of x is on the length of $\log (x)$.

Arithmetic operations on binary numbers are done similarly as the corresponding operations on the decimal notation as we know them from the elementary school.

Using the primitive recursion $0+y=y$ and $S(x)+y=S(x+y)$ we need n recursions to compute $\underline{n}+\underline{m}$. We know that $\max \left(|n|_{b},|m|_{b}\right)$ suffices for the binary addition.

Binary successor functions

Consider the functions $S_{0}(x)=2 \cdot x+0$ and $S_{1}(x)=2 \cdot(x)+1$. We have $0=S_{0}(0)$ and $1=S_{1}(0)$. For any $x \geq 2$ We have

$$
\begin{aligned}
& x=\sum_{i=0}^{n+1} d_{i} \cdot 2^{i}=\left(\sum_{i=1}^{n+1} d_{i} \cdot 2^{i}\right)+d_{0}= \\
& \left(\sum_{i=0}^{n} d_{i+1} \cdot 2^{i+1}\right)+d_{0}=2 \cdot\left(\sum_{i=0}^{n} d_{i+1} \cdot 2^{i}\right)+d_{0}
\end{aligned}
$$

Hence for the unique $y=\sum_{i=0}^{n} d_{i+1} \cdot 2^{i}$ we have $x=2 \cdot y+0$ or $x=2 \cdot y+1$, i.e. $x=S_{d_{0}}(y)$. Thus every number x is uniquely formed from its binary predecessor y by a binary successor function $S_{d_{0}}$. Note that if $x>0$ then $y<x$.

We can repeat this as in the Horner's scheme for the evaluation of polynomials: Thus

$$
\begin{array}{r}
\sum_{i=0}^{n} d_{i} \cdot 2^{i}=S_{d_{0}} S_{d_{1}} \ldots S_{d_{n}}(0) \\
6=S_{0}(3)=S_{0} S_{1}(1)=S_{0} S_{1} S_{1}(0)
\end{array}
$$

The indices 110 read from the end constitute the binary representation of 6 .
For better visualization we write the binary successors in the postfix notation:
$S_{0}(x) \equiv x \mathbf{0} \quad S_{1}(x) \equiv x \mathbf{1}$.
Thus $6=0110$. note that $S_{0} S_{1} S_{1}(a) \equiv a 110$ For every x exactly one of the following holds:

$$
\exists!y x=y \mathbf{0} \vee \exists!y x=y \mathbf{1}
$$

This can be used in CL in the binary discrimination to compute binary predecessors:

$$
\begin{aligned}
& \operatorname{Div}_{2}(x)=y \leftarrow x=y \mathbf{0} \\
& \operatorname{Div}_{2}(x)=y \leftarrow x=y \mathbf{1}
\end{aligned}
$$

We have $\operatorname{Div}_{2}(x)=x \div 2$ and we can also write:
$\operatorname{Div}_{2}(x \mathbf{0})=x$
$\operatorname{Div}_{2}(x \mathbf{1})=x$

Arithmetic operations in binary

The successor function S can be clausally defined as $x+_{b} 1$ such that $S(x)=x+{ }_{b} 1$ as follows:

$$
\begin{aligned}
& x \mathbf{0}+_{b} 1=x \mathbf{1} \\
& x \mathbf{1}+{ }_{b} 1=\left(x+{ }_{b} 1\right) \mathbf{0}
\end{aligned}
$$

For the second clause note
$x \mathbf{1}+1=(2 \cdot x+1)+1=2 \cdot x+2=(x+1) 0$ Also note:

$$
\begin{array}{ccc}
x 0 & x \mathbf{1} \\
\frac{01}{01} & \frac{01}{x 1} & \\
\hline & \\
\hline(x+1) \mathbf{1} \text { is the carry }
\end{array}
$$

Addition in binary (I)

$$
\begin{aligned}
& x 0 \\
& \frac{y}{y} \quad \text { if } x=0 \\
& x 0 \\
& \frac{y 0}{(x+y) 0} \text { if } x>0 \text {; note then }(0 x)>x \\
& x 0 \\
& \frac{y \mathbf{1}}{(x+y) \mathbf{1}} \quad \text { if } x>0 \text {; note then }(0 x)>x \\
& x 1 \\
& \frac{y \mathbf{0}}{(x+y) \mathbf{1}} \text { note that } x \mathbf{1}>x \\
& x 1 \\
& \frac{y \mathbf{1}}{(x+y+1) \mathbf{0}} \text { note the carry and } x \mathbf{1}>x
\end{aligned}
$$

The recursion descends in the first argument.

Addition in binary (II)

Using binary discrimination we program $x+{ }_{b} y=x+y$ in the term notation:

$$
\left.\begin{array}{rl}
x+{ }_{b} y= & \text { if } x= \\
x_{1} \mathbf{0} \rightarrow & \text { if } \\
& x=0 \rightarrow y \\
& x>0 \rightarrow \text { if } y= \\
& y_{1} \mathbf{0} \rightarrow\left(x_{1}+{ }_{b} y_{1}\right) \mathbf{0} \\
y_{1} \mathbf{1} \rightarrow\left(x_{1}+{ }_{b} y_{1}\right) \mathbf{1}
\end{array}\right\}
$$

and in CL

$$
\begin{array}{ll}
x \mathbf{0}+{ }_{b} y=y & \leftarrow x=0 \\
x \mathbf{0}+_{b} y=\left(x+{ }_{b} y_{1}\right) \mathbf{0} & \leftarrow x>0 \wedge y=y_{1} \mathbf{0} \\
x \mathbf{0}+_{b} y=\left(x+{ }_{b} y_{1}\right) \mathbf{1} & \leftarrow x>0 \wedge y=y_{1} \mathbf{1} \\
x \mathbf{1}+{ }_{b} y \mathbf{0}=\left(x+{ }_{b} y_{1}\right) \mathbf{1} & \\
x \mathbf{1}+{ }_{b} y \mathbf{1}=\left(\left(x+{ }_{b} y\right)+_{b} \mathbf{1}\right) \mathbf{0} &
\end{array}
$$

Dyadic representation of numbers

Take any $x>0$ and express $x+1$ in binary as $x+1=\sum_{i=0}^{n} d_{i} \cdot 2^{i}$. We have $n>0$ and $d_{n}=1$. Hence
$x+1=2^{n}+\sum_{i=0}^{n-1} d_{i} \cdot 2^{i}=1+\sum_{i=0}^{n-1} 1 \cdot 2^{i}+\sum_{i=0}^{n-1} d_{i} \cdot 2^{i}$
Thus

$$
x=\sum_{i=0}^{n-1}\left(d_{i}+1\right) \cdot 2^{i}
$$

Every positive number x can be thus uniquely written in dyadic notation as $x=\sum_{i=0}^{n} d_{i} \cdot 2^{i}$ with the dyadic digits $d_{i}=1,2$. Dyadic length $|x|_{d}$ is the number of dyadic digits of x where we set $|0|_{d}=0$.
We have

$$
\begin{aligned}
& 1=(1)_{d} \quad 2=(2)_{d} \quad 3=(11)_{d} \quad 4=(12)_{d} \\
& 5=(21)_{d} 6=(22)_{d} 7=(111)_{d} \quad 8=(112)_{d}
\end{aligned}
$$

Dyadic discrimination

Similarly as with binary representation we can use the dyadic successors
$S 1(x) \equiv x \mathbf{1}=2 \cdot x+1 \quad S 2(x) \equiv x 2=2 \cdot x+2$ in the scheme of Horner and write every positive number $x=\sum_{i=0}^{n} d_{i} \cdot 2^{i}$ as $x=S_{d_{0}} S_{d_{1}} \ldots S_{d_{n-1}} S_{d_{n}}(0)$.
Thus $8=S_{2} S_{1} S_{1}(0) \equiv 0112$.

Dyadic discrimination in CL is based on the fact that exactly one of the following holds:

$$
x=0 \vee \exists!y x=y \mathbf{1} \vee \exists!y x=y 2
$$

The troublesome leading zeroes problem of binary numbers does not exist.

We compute with dyadic numbers similarly as with binary. For instance, for the the dyadic successor $x+{ }_{d} 1=S(x)$ we have:

$0+{ }_{d} 1=S 1(0)$
$x 1+{ }_{d} 1=x 2$
$x 2+{ }_{d} 1=\left(x+{ }_{d} 1\right) 1$
Dyadic multiplication $x \times_{d} y$ is

$$
\begin{aligned}
& 0 \times_{d} y=0 \\
& x \mathbf{1} \times_{d} y=z+_{d} z+{ }_{d} y \leftarrow x \times_{d} y=z \\
& x \mathbf{2} \times_{d} y=z+_{d} z \quad \leftarrow x \times_{d} y+_{d} y=z
\end{aligned}
$$

Note that

$$
\begin{gathered}
x \mathbf{1} \cdot y=(2 \cdot x+1) \cdot y=2 \cdot x \cdot y+y \\
x 2 \cdot y=(2 \cdot x+2) \cdot y=2 \cdot x \cdot y+2 \cdot y=2 \cdot(x \cdot y+y)
\end{gathered}
$$

