Computing with the Binary and Dyadic representation of numbers

General monadic discrimination

We write $\underline{n} \equiv \overbrace{S \cdots S}^{n}(0)$. For any number n > 0 exactly **one** formula holds:

$$x = 0 \lor x = \underline{1} \lor \cdots \lor x = \underline{n-1} \lor \exists ! y x = y + \underline{n}$$

This can be used in clausal definitions. The sequence F_n of **Fibonacci** is defined:

$$F_0 = 1$$

$$F_1 = 1$$

$$F_{n+2} = F_{n+1} + F_n$$

 F_n gives the number of **pairs** of rabbits at the beginning of the year n = 0, 1, ... when we start with one pair of young rabbits. A pair of at least one year old rabbits breeds each year a new pair of rabbits.

year	young	old	total
0	$ 1 = F_1$	0	$1 = F_0$
1	0	$ 1 = F_1 $	$1 = F_1$
2	$ 1 = F_1$	$ 1 = F_1 $	$2 = F_2$
3	$ 1 = F_1$	$ 2 = F_2 $	$3 = F_3$
4	$ 2 = F_2$	$ 3 = F_3 $	$5 = F_4$
5	$ 3 = F_3$	$ 5 = F_4 $	$8 = F_5$
• • •	•••	•••	• • •
n + 2	$\mid F_n$	$\mid F_{n+1} \mid$	F_{n+2}

 F_n grows as **fast** as the exponential function 2^n . But the **computation** of F_n requires on the order of 2^{F_n} successor operations. Consider the clausal definition of Fa(n, y, o):

$$Fa(0, y, d) = y$$

$$Fa(n + 1, y, d) = Fa(n, d, y + d)$$

$$Fa(n, F_k, F_{k+1}) = Fa(n - 1, F_{k+1}, F_{k+2}) = \dots = Fa(0, F_{k+n}, F_{k+n+1}) = F_{k+n}$$

Hence $F_n = Fa(n, F_0, F_1) = Fa(n, 1, 1)$

Binary representation of numbers

Every number x > 0 can be **uniquely** written as $x = \sum_{i=0}^{n} d_i \cdot 2^i$ where $d_i \leq 1$ for i = 0, ..., n-1 and $d_n = 1$ are its **binary digits**. We also have $0 = \sum_{i=0}^{1} 0 \cdot 2^0$. The **binary length** $|x|_b$ of x is the number of its binary digits (n + 1) in the first case and 0 when x = 0.

Note: The number x in the monadic representation \underline{n} takes x successor operations which is its **monadic length**. The binary length of x is on the length of $\log(x)$.

Arithmetic operations on binary numbers are done similarly as the corresponding operations on the decimal notation as we know them from the elementary school.

Using the **primitive** recursion 0 + y = y and S(x) + y = S(x + y) we need n recursions to compute $\underline{n} + \underline{m}$. We know that $\max(|n|_b, |m|_b)$ suffices for the binary addition.

Binary successor functions

Consider the functions $S_0(x) = 2 \cdot x + 0$ and $S_1(x) = 2 \cdot (x) + 1$. We have $0 = S_0(0)$ and $1 = S_1(0)$. For any $x \ge 2$ We have

$$x = \sum_{i=0}^{n+1} d_i \cdot 2^i = \left(\sum_{i=1}^{n+1} d_i \cdot 2^i\right) + d_0 =$$
$$\left(\sum_{i=0}^n d_{i+1} \cdot 2^{i+1}\right) + d_0 = 2 \cdot \left(\sum_{i=0}^n d_{i+1} \cdot 2^i\right) + d_0$$

Hence for the unique $y = \sum_{i=0}^{n} d_{i+1} \cdot 2^{i}$ we have $x = 2 \cdot y + 0$ or $x = 2 \cdot y + 1$, i.e. $x = S_{d_0}(y)$. Thus every number x is uniquely formed from its *binary predecessor* y by a **binary successor** function S_{d_0} . Note that if x > 0 then y < x. We can repeat this as in the **Horner's** scheme for the evaluation of polynomials: Thus

$$\sum_{i=0}^{n} d_i \cdot 2^i = S_{d_0} S_{d_1} \dots S_{d_n}(0)$$

$$6 = S_0(3) = S_0 S_1(1) = S_0 S_1 S_1(0)$$

The indices 110 read from the end constitute the **binary representation** of 6.

For better **visualization** we write the binary successors in the **postfix** notation:

 $S_0(x) \equiv x\mathbf{0} \qquad S_1(x) \equiv x\mathbf{1}.$

Thus 6 = 0110. note that $S_0S_1S_1(a) \equiv a110$ For every x exactly one of the following holds:

$$\exists ! y \, x = y \mathbf{0} \lor \exists ! y \, x = y \mathbf{1}$$

This can be used in CL in the **binary discrim**ination to compute **binary predecessors**:

 $Div_2(x) = y \leftarrow x = y\mathbf{0}$ $Div_2(x) = y \leftarrow x = y\mathbf{1}$ We have $Div_2(x) = x \div 2$ and we can also write: $Div_2(x\mathbf{0}) = x$

$$Div_2(x\mathbf{1}) = x$$

Arithmetic operations in binary

The **successor** function *S* can be clausally defined as $x +_b 1$ such that $S(x) = x +_b 1$ as follows:

 $x\mathbf{0} +_b \mathbf{1} = x\mathbf{1}$

$$x\mathbf{1} +_b \mathbf{1} = (x +_b \mathbf{1})\mathbf{0}$$

For the second clause **note** $x1 + 1 = (2 \cdot x + 1) + 1 = 2 \cdot x + 2 = (x + 1)0$ Also note:

x 0	x 1	
01	01	
$\overline{x1}$	(x+1)0	+1 is the carry

Addition in binary (I)

x 0
$\frac{y}{y}$ if $x = 0$
x 0
$\frac{y0}{(x+y)0} \text{if } x > 0; \text{ note then } (0x) > x$
x 0
$\frac{y1}{(x+y)1} \text{if } x > 0; \text{ note then } (0x) > x$
x1
$\frac{y0}{(x+y)1} \text{note that } x1 > x$
x 1
$\frac{y1}{(x+y+1)0}$ note the carry and $x1 > x$
The recursion descends in the first argument.

Addition in binary (II)

Using **binary discrimination** we program $x +_b y = x + y$ in the **term** notation:

$$x +_{b} y = \text{ if } x =$$

$$x_{1}\mathbf{0} \rightarrow \text{ if}$$

$$x = \mathbf{0} \rightarrow y$$

$$x > \mathbf{0} \rightarrow \text{ if } y =$$

$$y_{1}\mathbf{0} \rightarrow (x_{1} +_{b} y_{1})\mathbf{0}$$

$$y_{1}\mathbf{1} \rightarrow (x_{1} +_{b} y_{1})\mathbf{1}$$

$$x_{1}\mathbf{1} \rightarrow \text{ if } y =$$

$$y_{1}\mathbf{0} \rightarrow (x_{1} +_{b} y_{1})\mathbf{1}$$

$$y_{1}\mathbf{1} \rightarrow ((x_{1} +_{b} y_{1}) +_{b} \mathbf{1})\mathbf{0}$$

and in CL

$$x\mathbf{0} +_b y = y \qquad \leftarrow x = 0$$

$$x\mathbf{0} +_b y = (x +_b y_1)\mathbf{0} \qquad \leftarrow x > 0 \land y = y_1\mathbf{0}$$

$$x\mathbf{0} +_b y = (x +_b y_1)\mathbf{1} \qquad \leftarrow x > 0 \land y = y_1\mathbf{1}$$

$$x\mathbf{1} +_b y\mathbf{0} = (x +_b y_1)\mathbf{1}$$

$$x\mathbf{1} +_b y\mathbf{1} = ((x +_b y) +_b\mathbf{1})\mathbf{0}$$

Dyadic representation of numbers

Take any x > 0 and express x + 1 in **binary** as $x + 1 = \sum_{i=0}^{n} d_i \cdot 2^i$. We have n > 0 and $d_n = 1$. Hence

$$x + 1 = 2^{n} + \sum_{i=0}^{n-1} d_i \cdot 2^{i} = 1 + \sum_{i=0}^{n-1} 1 \cdot 2^{i} + \sum_{i=0}^{n-1} d_i \cdot 2^{i}$$

Thus

$$x = \sum_{i=0}^{n-1} (d_i + 1) \cdot 2^i$$

Every *positive* number x can be thus uniquely written in **dyadic notation** as $x = \sum_{i=0}^{n} d_i \cdot 2^i$ with the **dyadic digits** $d_i = 1, 2$. **Dyadic length** $|x|_d$ is the number of dyadic digits of x where we set $|0|_d = 0$.

We have

$$1 = (1)_d \quad 2 = (2)_d \quad 3 = (11)_d \quad 4 = (12)_d$$

$$5 = (21)_d \quad 6 = (22)_d \quad 7 = (111)_d \quad 8 = (112)_d$$

Dyadic discrimination

Similarly as with binary representation we can use the **dyadic successors**

 $S1(x) \equiv x\mathbf{1} = 2 \cdot x + 1$ $S2(x) \equiv x\mathbf{2} = 2 \cdot x + 2$

in the scheme of **Horner** and write every positive number $x = \sum_{i=0}^{n} d_i \cdot 2^i$ as $x = S_{d_0}S_{d_1} \dots S_{d_{n-1}}S_{d_n}(0)$. Thus $8 = S_2S_1S_1(0) \equiv 0112$.

Dyadic discrimination in CL is based on the fact that exactly one of the following holds:

$$x = \mathbf{0} \lor \exists ! y \, x = y \mathbf{1} \lor \exists ! y \, x = y \mathbf{2}$$

The troublesome **leading zeroes** problem of binary numbers does not exist.

We compute with dyadic numbers similarly as with binary. For instance, for the the dyadic successor $x +_d 1 = S(x)$ we have:

x 1	x2	
01	01	
$\overline{x2}$	(x+1)1	+1 is the carry

$$0 +_{d} 1 = S1(0)$$

x1+_{d} 1 = x2
x2+_{d} 1 = (x+_{d} 1)1

Dyadic multiplication $x \times_d y$ is

$$\begin{array}{l} 0\times_d y=0\\ x\mathbf{1}\times_d y=z+_d z+_d y\leftarrow x\times_d y=z\\ x\mathbf{2}\times_d y=z+_d z\qquad \leftarrow x\times_d y+_d y=z\\ \end{array}$$
 Note that

$$x\mathbf{1} \cdot y = (2 \cdot x + 1) \cdot y = 2 \cdot x \cdot y + y$$
$$x\mathbf{2} \cdot y = (2 \cdot x + 2) \cdot y = 2 \cdot x \cdot y + 2 \cdot y = 2 \cdot (x \cdot y + y)$$