
Computing with the Binary and Dyadic

representation of numbers
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General monadic discrimination

We write n ≡
n︷ ︸︸ ︷

S · · ·S(0). For any number n > 0

exactly one formula holds:

x = 0 ∨ x = 1 ∨ · · · ∨ x = n− 1 ∨ ∃!y x = y + n

This can be used in clausal definitions. The

sequence Fn of Fibonacci is defined:

F0 = 1

F1 = 1

Fn+2 = Fn+1 + Fn

Fn gives the number of pairs of rabbits at the

beginning of the year n = 0,1, . . . when we start

with one pair of young rabbits. A pair of at

least one year old rabbits breeds each year a

new pair of rabbits.
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year | young | old | total

0 | 1 = F1 | 0 | 1 = F0

1 | 0 | 1 = F1 | 1 = F1

2 | 1 = F1 | 1 = F1 | 2 = F2

3 | 1 = F1 | 2 = F2 | 3 = F3

4 | 2 = F2 | 3 = F3 | 5 = F4

5 | 3 = F3 | 5 = F4 | 8 = F5

· · · | · · · | · · · | · · ·
n + 2 | Fn | Fn+1 | Fn+2

Fn grows as fast as the exponential function
2n. But the computation of Fn requires on
the order of 2Fn successor operations.
Consider the clausal definition of Fa(n, y, o):

Fa(0, y, d) = y

Fa(n + 1, y, d) = Fa(n, d, y + d)

Fa(n, Fk, Fk+1) = Fa(n− 1, Fk+1, Fk+2) =

· · · = Fa(0, Fk+n, Fk+n+1) = Fk+n

Hence Fn = Fa(n, F0, F1) = Fa(n,1,1)
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Binary representation of numbers

Every number x > 0 can be uniquely written as
x =

∑n
i=0 di·2i where di ≤ 1 for i = 0, . . . , n− 1

and dn = 1 are its binary digits. We also have
0 =

∑1
i=0 0·20. The binary length |x|b of x is

the number of its binary digits (n + 1 in the
first case and 0 when x = 0).

Note: The number x in the monadic represen-
tation n takes x succesor operations which is
its monadic length. The binary length of x is
on the length of log(x).

Arithmetic operations on binary numbers are
done similarly as the corresponding operations
on the decimal notation as we know them from
the elementary school.

Using the primitive recursion 0 + y = y and
S(x) + y = S(x + y) we need n recursions to
compute n + m. We know that max(|n|b, |m|b)
suffices for the binary addition.
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Binary successor functions

Consider the functions S0(x) = 2·x + 0 and

S1(x) = 2·(x) + 1. We have 0 = S0(0) and

1 = S1(0). For any x ≥ 2 We have

x =
n+1∑
i=0

di·2i = (
n+1∑
i=1

di·2i) + d0 =

(
n∑

i=0

di+1·2i+1) + d0 = 2·(
n∑

i=0

di+1·2i) + d0

Hence for the unique y =
∑n

i=0 di+1·2i we have

x = 2·y + 0 or x = 2·y + 1, i.e. x = Sd0
(y).

Thus every number x is uniquely formed from

its binary predecessor y by a binary successor

function Sd0
. Note that if x > 0 then y < x.
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We can repeat this as in the Horner’s scheme
for the evaluation of polynomials: Thus

n∑
i=0

di·2i = Sd0
Sd1

. . . Sdn(0)

6 = S0(3) = S0S1(1) = S0S1S1(0)

The indices 110 read from the end constitute
the binary representation of 6.
For better visualization we write the binary
successors in the postfix notation:
S0(x) ≡ x0 S1(x) ≡ x1.
Thus 6 = 0110. note that S0S1S1(a) ≡ a110

For every x exactly one of the following holds:

∃!y x = y0 ∨ ∃!y x = y1

This can be used in CL in the binary discrim-
ination to compute binary predecessors:

Div2(x) = y ← x = y0

Div2(x) = y ← x = y1

We have Div2(x) = x÷2 and we can also write:

Div2(x0) = x

Div2(x1) = x

24



Arithmetic operations in binary

The successor function S can be clausally de-

fined as x +b 1 such that S(x) = x +b 1 as

follows:

x0 +b 1 = x1

x1 +b 1 = (x +b 1)0

For the second clause note

x1 + 1 = (2·x + 1) + 1 = 2·x + 2 = (x + 1)0

Also note:

x0

01

x1

x1

01

(x + 1)0 +1 is the carry
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Addition in binary (I)

x0

y

y
if x = 0

x0

y0

(x+y)0
if x > 0; note then (0x) > x

x0

y1

(x+y)1
if x > 0; note then (0x) > x

x1

y0

(x+y)1
note that x1 > x

x1

y1

(x+y+1)0
note the carry and x1 > x

The recursion descends in the first argument.
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Addition in binary (II)

Using binary discrimination we program
x +b y = x + y in the term notation:

x +b y= if x=

x10 → if

x=0→ y

x>0→ if y=

y10→(x1 +b y1)0

y11→(x1 +b y1)1

x11 → if y=

y10→(x1 +b y1)1

y11→((x1 +b y1) +b 1)0

and in CL

x0 +b y = y ← x = 0

x0 +b y = (x +b y1)0 ← x > 0 ∧ y = y10

x0 +b y = (x +b y1)1 ← x > 0 ∧ y = y11

x1 +b y0 = (x +b y1)1

x1 +b y1 = ((x+by)+b1)0
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Dyadic representation of numbers

Take any x > 0 and express x + 1 in binary as

x+1 =
∑n

i=0 di·2i. We have n > 0 and dn = 1.

Hence

x +1 = 2n +
n−1∑
i=0

di·2i = 1+
n−1∑
i=0

1·2i +
n−1∑
i=0

di·2i

Thus

x =
n−1∑
i=0

(di + 1)·2i

Every positive number x can be thus uniquely

written in dyadic notation as x =
∑n

i=0 di·2i

with the dyadic digits di = 1,2. Dyadic length

|x|d is the number of dyadic digits of x where

we set |0|d = 0.

We have

1 = (1)d 2 = (2)d 3 = (11)d 4 = (12)d

5 = (21)d 6 = (22)d 7 = (111)d 8 = (112)d
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Dyadic discrimination

Similarly as with binary representation we can

use the dyadic successors

S1(x) ≡ x1 = 2·x+1 S2(x) ≡ x2 = 2·x+2

in the scheme of Horner and write every pos-

itive number x =
∑n

i=0 di·2i as

x = Sd0
Sd1

. . . Sdn−1
Sdn(0).

Thus 8 = S2S1S1(0) ≡ 0112.

Dyadic discrimination in CL is based on the

fact that exactly one of the following holds:

x = 0 ∨ ∃!y x = y1 ∨ ∃!y x = y2

The troublesome leading zeroes problem of

binary numbers does not exist.
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We compute with dyadic numbers similarly as

with binary. For instance, for the the dyadic

successor x +d 1 = S(x) we have:

x1

01

x2

x2

01

(x + 1)1 +1 is the carry

0 +d 1 = S1(0)

x1 +d 1 = x2

x2 +d 1 = (x +d 1)1

Dyadic multiplication x×d y is

0×d y = 0

x1×d y = z +d z +d y ← x×d y = z

x2×d y = z +d z ← x×d y +d y = z

Note that

x1·y = (2·x + 1)·y = 2·x·y + y

x2·y = (2·x + 2)·y = 2·x·y + 2·y = 2·(x·y + y)
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