Recursively defined functions

Monadic discrimination

For the successor function
$S(x)=x+1 \equiv x^{\prime}$ we have:

$$
x=0 \vee \exists!y x=S(y)
$$

Note that y is the uniquely determined predecessor of x :

$$
\begin{aligned}
& \operatorname{Pr}(x)=\text { if } x= \\
& 0 \rightarrow 0 \\
& S(y) \rightarrow y
\end{aligned}
$$

As clauses:

$$
\begin{aligned}
& \operatorname{Pr}(x)=0 \leftarrow x=0 \\
& \operatorname{Pr}(x)=y \leftarrow x=S(y)
\end{aligned}
$$

or even simpler (writing $x+1$ instead of $S(x)$):

$$
\begin{aligned}
& \operatorname{Pr}(0)=0 \\
& \operatorname{Pr}(x+1)=x
\end{aligned}
$$

Recursive definition of addition

$$
\begin{aligned}
\operatorname{Plus}(x, y)=\text { if } & x= \\
& 0 \rightarrow y \\
& z+1 \rightarrow \operatorname{Plus}(z, y)+1
\end{aligned}
$$

As clauses

$$
\begin{aligned}
& \operatorname{Plus}(x, y)=0 \quad \leftarrow x=0 \\
& \operatorname{Plus}(x, y)=\operatorname{Plus}(z, y)+1 \leftarrow x=z+1
\end{aligned}
$$

or even simpler:

$$
\begin{aligned}
& \operatorname{Plus}(0, y)=0 \\
& \operatorname{Plus}(x+1, y)=\operatorname{Plus}(x, y)+1
\end{aligned}
$$

Recursive definition of multiplication

$$
\begin{aligned}
\operatorname{Mul}(x, y)=\text { if } & x= \\
0 & \rightarrow 0 \\
& z+1 \rightarrow \operatorname{Plus}(\operatorname{Mul}(z, y), y)
\end{aligned}
$$

As clauses

$$
\begin{array}{ll}
\operatorname{Mul}(x, y)=0 & \leftarrow x=0 \\
\operatorname{Mul}(x, y)=\operatorname{Plus}(\operatorname{Mul}(z, y), y) \leftarrow x=z+1
\end{array}
$$ or even simpler:

$\operatorname{Mul}(0, y)=0$
$\operatorname{Mul}(x+1, y)=\operatorname{Plus}(\operatorname{Mul}(x, y), y)$

Recursive definition of modified subtraction

We wish $\operatorname{Sub}(x, y) \equiv x-y$ such that

$$
x \geq y \rightarrow y+(x \doteq y)=x
$$

and 0 otherwise.

$$
\begin{aligned}
& x \doteq y=\text { if } y= \\
& \qquad \begin{array}{ll}
0 \quad & x \\
z+1 \rightarrow \text { if } x= \\
& 0 \rightarrow 0 \\
& w+1 \rightarrow w \doteq z
\end{array}
\end{aligned}
$$

As clauses

$$
\begin{aligned}
& x \doteq y=x \quad \leftarrow y=0 \\
& x \doteq y=0 \quad \leftarrow y=z+1 \wedge x=0 \\
& x \doteq y=w \doteq z \leftarrow y=z+1 \wedge x=w+1
\end{aligned}
$$

or simpler (note the left to right discrimination order)

$$
\begin{aligned}
& x \doteq 0=x \\
& x \doteq(y+1)=0 \quad \leftarrow x=0 \\
& x \doteq(y+1)=w \sqcup y \leftarrow x=w+1
\end{aligned}
$$

Recursive definition of division by repeated subtraction

We wish $\operatorname{Div}(x, y) \equiv x \div y$ such that

$$
\begin{aligned}
& \quad y>0 \rightarrow \exists r(r<y \wedge x=(x \div y) \cdot y+r) \\
& x \div y=\text { if } \\
& \qquad \begin{aligned}
& y=0 \rightarrow 0 \\
& y>0 \rightarrow \text { if } \\
& \quad x<y \rightarrow 0 \\
& x \geq y \rightarrow(x \div y) \div y+1
\end{aligned}
\end{aligned}
$$

where $x<y=$ if $y \dot{-}=0 \rightarrow 0 ; z+1 \rightarrow 1$

$$
x<y \leftarrow y \doteq x=z+1
$$

In clauses:

$$
\begin{array}{ll}
x \div y=0 & \leftarrow y=0 \\
x \div y=0 & \leftarrow y>0 \wedge x<y \\
x \div y=(x \doteq y) \div y+1 \leftarrow y>0 \wedge x \geq y
\end{array}
$$

Greatest common divisor according to

 Euclid$$
\operatorname{gcd}(x, y) \mid x, y \wedge \forall z(z \mid x, y \rightarrow z \leq \operatorname{gcd}(x, y))
$$

where $x \mid y \leftrightarrow \exists z x \cdot z=y$.

$$
\operatorname{gcd}(x, y)=\text { if }
$$

$$
\begin{aligned}
& y=0 \rightarrow x \\
& y>0 \rightarrow \operatorname{gcd}(x, x \bmod y)
\end{aligned}
$$

In clauses

$$
\begin{array}{lr}
\operatorname{gcd}(x, y)=x & \leftarrow y=0 \\
\operatorname{gcd}(x, y)=\operatorname{gcd}(y, x \bmod y) \leftarrow y>0
\end{array}
$$

Measures for recursion

Not every recursive 'definition' defines a function. There is no f satisfying:

$$
f(x)=f(x+1)+1
$$

If for an n-ary recursively defined $f(\vec{x})$ there is an n-ary measure function $\mu(\vec{y})$ such that for every recursive call $f(\vec{s})$ in the definition we have $\mu(\vec{s})<\mu(\vec{x})$, i.e. the recursion descends in μ, then there is a unique f satisfying the recursive equation.

Measures for the previous recursive definitions

$\operatorname{Plus}(x, y)$ has the measure $\mu(x, y)=x$.
$\operatorname{Mul}(x, y)$ has the measure $\mu(x, y)=y$
$\operatorname{Sub}(x, y)$ has the measure $\mu(x, y)=x$ but also $\mu(x, y)=y$.
$\operatorname{Div}(x, y)$ has the measure $\mu(x, y)=x$.
$\operatorname{gcd}(x, y)$ has the measure $\mu(x, y)=y$.

With measures $\mu(x, y)=x$ we say that the recursion descends in x.

With measures $\mu(x, y)=y$ we say that the recursion descends in y.

