Recursively defined functions

Monadic discrimination

For the **successor** function $S(x) = x + 1 \equiv x'$ we have:

$$x = 0 \lor \exists ! y x = S(y)$$

Note that y is the **uniquely** determined **pre**decessor of x:

$$Pr(x) = \text{ if } x = 0 \rightarrow 0$$
$$S(y) \rightarrow y$$

As clauses:

$$Pr(x) = 0 \leftarrow x = 0$$
$$Pr(x) = y \leftarrow x = S(y)$$

or even simpler (writing x+1 instead of S(x)):

$$Pr(0) = 0$$
$$Pr(x+1) = x$$

11

Recursive definition of addition

$$Plus(x,y) = \text{ if } x =$$

 $0 \rightarrow y$
 $z + 1 \rightarrow Plus(z,y) + 1$

As clauses

$$Plus(x,y) = 0 \qquad \leftarrow x = 0$$

$$Plus(x,y) = Plus(z,y) + 1 \leftarrow x = z + 1$$

or even simpler:

$$Plus(0, y) = 0$$

$$Plus(x + 1, y) = Plus(x, y) + 1$$

Recursive definition of multiplication

$$Mul(x,y) = \text{ if } x =$$

 $0 \rightarrow 0$
 $z + 1 \rightarrow Plus(Mul(z,y),y)$

As clauses

$$Mul(x,y) = 0 \qquad \leftarrow x = 0$$
$$Mul(x,y) = Plus(Mul(z,y),y) \leftarrow x = z + 1$$

or even simpler:

$$Mul(0, y) = 0$$

$$Mul(x + 1, y) = Plus(Mul(x, y), y)$$

Recursive definition of modified subtraction

We wish $Sub(x, y) \equiv x - y$ such that $x \ge y \rightarrow y + (x - y) = x$ and 0 otherwise.

$$x \div y = \text{ if } y = 0 \qquad \rightarrow x$$
$$z + 1 \rightarrow \text{ if } x = 0 \rightarrow 0$$
$$w + 1 \rightarrow w \div z$$

As clauses

 $\begin{array}{ll} x \div y = x & \leftarrow y = 0 \\ x \div y = 0 & \leftarrow y = z + 1 \land x = 0 \\ x \div y = w \div z \leftarrow y = z + 1 \land x = w + 1 \end{array}$ or simpler (**note** the left to right discrimin

or simpler (**note** the left to right discrimination order)

$$x \div 0 = x$$

$$x \div (y+1) = 0 \quad \leftarrow x = 0$$

$$x \div (y+1) = w \div y \leftarrow x = w + 1$$

14

Recursive definition of division by repeated subtraction

We wish $Div(x,y) \equiv x \div y$ such that $y > 0 \rightarrow \exists r (r < y \land x = (x \div y) \cdot y + r)$ $x \div y = \text{if}$ $y = 0 \rightarrow 0$ $y > 0 \rightarrow if$ $x < y \rightarrow 0$ $x \ge y \to (x \div y) \div y + 1$ where x < y = if $y \div x = 0 \rightarrow 0; z + 1 \rightarrow 1$ $x < y \leftarrow y \cdot x = z + 1$ In clauses: $x \div y = 0$ $\leftarrow y = 0$ $\leftarrow y > 0 \land x < y$ $x \div y = 0$

 $x \div y = (x \div y) \div y + 1 \leftarrow y > 0 \land x \ge y$

15

Greatest common divisor according to Euclid

 $gcd(x,y) \mid x, y \land \forall z(z \mid x, y \to z \leq gcd(x,y))$ where $x \mid y \leftrightarrow \exists z \ x \cdot z = y$.

gcd(x,y) =if $y = 0 \rightarrow x$ $y > 0 \rightarrow gcd(x, x \mod y)$

In clauses

 $gcd(x,y) = x \qquad \leftarrow y = 0$ $gcd(x,y) = gcd(y, x \mod y) \leftarrow y > 0$

Measures for recursion

Not every recursive 'definition' defines a function. There is no f satisfying:

$$f(x) = f(x+1) + 1$$

If for an *n*-ary recursively defined $f(\vec{x})$ there is an *n*-ary **measure** function $\mu(\vec{y})$ such that for every recursive call $f(\vec{s})$ in the definition we have $\mu(\vec{s}) < \mu(\vec{x})$, i.e. the recursion **descends** in μ , then there is a **unique** f satisfying the recursive equation.

Measures for the previous recursive definitions

Plus(x, y) has the measure $\mu(x, y) = x$.

Mul(x,y) has the measure $\mu(x,y) = y$

Sub(x,y) has the measure $\mu(x,y) = x$ but also $\mu(x,y) = y$.

Div(x,y) has the measure $\mu(x,y) = x$.

gcd(x,y) has the measure $\mu(x,y) = y$.

With measures $\mu(x, y) = x$ we say that the recursion **descends** in x.

With measures $\mu(x, y) = y$ we say that the recursion **descends** in y.