Propositional Logic II (syntax)

Objective: to find a better method for testing tautologies than truth table method

Solution: to generalize the problem to sets (possibly infinite) of formulas.

Satisfaction relations for sets of propositional formulas

For T a set of formulas and v a valuation (both possibly infinite), we say that v **satisfies** T, in writing $\vDash_p^v T$, iff for all $A \in T$ we have $\vDash_p^v A$.

We define $\neg T = \{\neg A \mid A \in T\}$. If not $\vDash_p^v \neg T$ then v does not refute T. This means $\vDash_p^v A$ for some $A \in T$

We say that S is a propositional (tautological) consequence of T, in writing $T \vDash_p S$, iff for all v such that $\vDash_p^v T$ we do not have $\vDash_p^v \neg S$, i.e. **no** v satisfying T refutes S

The special case when $T \vDash_p \{A\}$ is the most important relation in mathematical logic. We write $T \vDash_p A$ instead of $T \vDash_p \{A\}$ and say that A **tautologically follows from** T

Compactness theorem for propositional consequence

 $T \vDash_p S$ iff there are finite $T' \subset T$ and $S' \subset S$ s.t. $T' \vDash_p S'$.

If $T' = \{A_1, \ldots, A_n\}$ and $S' = \{B_1, \ldots, B_m\}$ we have $T' \vDash_p S'$ iff

$$\vDash_p A_1 \land \cdots \land A_n \to B_1 \lor \cdots \lor B_m$$

Note that $T \vDash_p \emptyset$ iff T is **unsatisfiable**, i.e. for all v there is $A \in T$ s.t. $\vDash_p^v \neg A$.

Also, $\emptyset \vDash_p S$ iff S is **non-refutable**, i.e. for all v there is $A \in S$ s.t. $\vDash_p^v A$. Also, not $\emptyset \vDash_p \emptyset$ Also, $\emptyset \vDash_p \{A\}$ iff A is tautology.

We will study this in more detail in Logic II.

Observations leading to better tests for tautological consequence

If T and S consist only of propositional variables then $T\vDash_p S$ iff $T\cap S\neq \emptyset$

If $\bot \in S$ then $T \vDash_p S$ iff $T \vDash_p S \setminus \{\bot\}$

If
$$\bot \in T$$
 then $T \vDash_p S$

If
$$(A \to B) \in S$$
 then
 $T \vDash_p S$ iff $T \cup \{A\} \vDash_p S \cup \{B\}$ iff
 $T \cup \{A\} \vDash_p S \setminus \{A \to B\} \cup \{B\}$

If
$$(A \to B) \in T$$
 then
 $T \vDash_p S$ iff $T \cup \{B\} \vDash_p S$ and $T \vDash_p S \cup \{A\}$ iff
 $T \setminus \{A \to B\} \cup \{B\} \vDash_p S$ and
 $T \setminus \{A \to B\} \vDash_p S \cup \{A\}$

Arithmetization

For finite sets T and S we can arithmetize the predicate $T \vDash_p S$ by defining in CL:

$$t \vDash_{p}^{\bullet} s \leftrightarrow \forall v ($$

$$\forall a (a \varepsilon t \rightarrow \vDash_{p}^{v} a) \rightarrow \exists a (a \varepsilon s \rightarrow \vDash_{p}^{v} a))$$

The properties from the previous slide can be then used to define by a **clausal definition** a fourplace predicate Seq(t, v, s, w) taking lists of formulas t, s and lists of numbers v, w such that

$$Seq(t, v, s, w) \leftrightarrow t \oplus Map_{P^{\bullet}}(v) \vDash_{p}^{\bullet} s \oplus Map_{P^{\bullet}}(w)$$

Note that the lists v and w store the **indices** i of propositional variables P_i^{\bullet} encountered in t and s respectively.

We then define

 $Taut(a) \leftarrow Seq(0, 0, (a, 0), 0)$

92

$$Seq(0, v, 0, w) \leftarrow v \cap w > 0$$

$$Seq(0, v, (P_i^{\bullet}, s), w) \leftarrow Seq(0, v, s, (i, w))$$

$$Seq(0, v, (\bot^{\bullet}, s), w) \leftarrow Seq(0, v, s, w)$$

$$Seq(0, v, (a \rightarrow^{\bullet} b, s), w) \leftarrow Seq((a, 0), v, (b, s), w)$$

$$Seq((P_i^{\bullet}, t), v, s, w) \leftarrow Seq(t, (i, v), s, w)$$

$$Seq((\bot^{\bullet}, t), v, s, w) \leftarrow Seq((b, t), v, s, w) \wedge$$

$$Seq((a \rightarrow^{\bullet} b, t), v, s, w) \leftarrow Seq((b, t), v, s, w) \wedge$$

$$Seq(t, v, (a, s), w)$$

How to derive clauses for other **connectives**? By using them on both sides of *Seq* and simplifying. We note that when we replace in the first four clauses the first 0 by *s* we have more general properties of *Seq* then the four clauses. For instance, for $\neg^{\bullet}a$ in the consequent we have: $Seq(t, v, (\neg^{\bullet}a, s), w)$ iff $Seq((a, t), v, (\bot^{\bullet}, s), w)$ iff Seq((a, s), v, s, w)For $\neg^{\bullet}a$ in the antecedent we have: $Seq((\neg^{\bullet}a, t), v, s, w)$ iff $Seq((a \rightarrow \bullet \bot^{\bullet}, t), v, s, w)$ iff $Seq((\bot^{\bullet}, t), v, s, w)$ iff $Seq((\bot^{\bullet}, t), v, s, w)$ iff Seq(t, v, (a, s), w) iff Seq(t, v, (a, s), w)

93