
Propositional Logic II

(syntax)

Objective: to find a better method for testing

tautologies than truth table method

Solution: to generalize the problem to sets

(possibly infinite) of formulas.

88



Satisfaction relations for sets of

propositional formulas

For T a set of formulas and v a valuation (both

possibly infinite), we say that v satisfies T , in

writing �v
p T , iff for all A ∈ T we have �v

p A.

We define ¬T = {¬A | A ∈ T}. If not �v
p ¬T

then v does not refute T . This means �v
p A

for some A ∈ T

We say that S is a propositional (tautologi-

cal) consequence of T , in writing T �p S, iff

for all v such that �v
p T we do not have �v

p ¬S,

i.e. no v satisfying T refutes S

The special case when T �p {A} is the most

important relation in mathematical logic. We

write T �p A instead of T �p {A} and say that

A tautologically follows from T

89



Compactness theorem for propositional

consequence

T �p S iff there are finite T ′ ⊂ T and S′ ⊂ S s.t.

T ′ �p S′.

If T ′ = {A1, . . . , An} and S′ = {B1, . . . , Bm} we

have T ′ �p S′ iff

�p A1 ∧ · · · ∧An → B1 ∨ · · · ∨Bm

Note that T �p ∅ iff T is unsatisfiable, i.e. for

all v there is A ∈ T s.t. �v
p ¬A.

Also, ∅ �p S iff S is non-refutable, i.e. for all

v there is A ∈ S s.t. �v
p A.

Also, not ∅ �p ∅
Also, ∅ �p {A} iff A is tautology.

We will study this in more detail in Logic II.

90



Observations leading to better tests for

tautological consequence

If T and S consist only of propositional vari-

ables then T �p S iff T ∩ S 6= ∅

If ⊥ ∈ S then T �p S iff T �p S \ {⊥}

If ⊥ ∈ T then T �p S

If (A→ B) ∈ S then
T �p S iff T ∪ {A} �p S ∪ {B} iff

T ∪ {A} �p S \ {A→ B} ∪ {B}

If (A→ B) ∈ T then
T �p S iff T ∪ {B} �p S and T �p S ∪ {A} iff

T \ {A→ B} ∪ {B} �p S and
T \ {A→ B} �p S ∪ {A}

91



Arithmetization

For finite sets T and S we can arithmetize the

predicate T �p S by defining in CL:

t �•p s↔ ∀v(
∀a(a ε t→�v

p a)→ ∃a(a ε s→�v
p a))

The properties from the previous slide can be

then used to define by a clausal definition a

fourplace predicate Seq(t, v, s, w) taking lists of

formulas t, s and lists of numbers v, w such

that

Seq(t, v, s, w)↔ t⊕MapP •· (v) �•p s⊕MapP •· (w)

Note that the lists v and w store the indices i

of propositional variables P •i encountered in t

and s respectively.

We then define

Taut(a)← Seq(0,0, (a,0),0)

92



Seq(0, v,0, w) ← v ∩ w > 0

Seq(0, v, (P •i , s), w) ← Seq(0, v, s, (i, w))

Seq(0, v, (⊥•, s), w) ← Seq(0, v, s, w)

Seq(0, v, (a→• b, s), w)← Seq((a,0), v, (b, s), w)

Seq((P •i , t), v, s, w) ← Seq(t, (i, v), s, w)

Seq((⊥•, t), v, s, w)

Seq((a→• b, t), v, s, w) ← Seq((b, t), v, s, w) ∧
Seq(t, v, (a, s), w)

How to derive clauses for other connectives?
By using them on both sides of Seq and sim-
plifying. We note that when we replace in the
first four clauses the first 0 by s we have more
general properties of Seq then the four clauses.
For instance, for ¬•a in the consequent we
have: Seq(t, v, (¬•a, s), w) iff
Seq(t, v, (a→• ⊥•, s), w) iff Seq((a, t), v, (⊥•, s), w)
iff Seq((a, s), v, s, w)
For ¬•a in the antecedent we have:
Seq((¬•a, t), v, s, w) iff Seq((a→• ⊥•, t), v, s, w)
iff Seq((⊥•, t), v, s, w) and Seq(t, v, (a, s), w) iff
Seq(t, v, (a, s), w)

93


