## Propositional Logic II (syntax)

Objective: to find a better method for testing tautologies than truth table method

Solution: to generalize the problem to sets (possibly infinite) of formulas.

## Satisfaction relations for sets of propositional formulas

For $T$ a set of formulas and $v$ a valuation (both possibly infinite), we say that $v$ satisfies $T$, in writing $\vDash_{p}^{v} T$, iff for all $A \in T$ we have $\vDash_{p}^{v} A$.

We define $\neg T=\{\neg A \mid A \in T\}$. If not $\vDash_{p}^{v} \neg T$ then $v$ does not refute $T$. This means $\vDash_{p}^{v} A$ for some $A \in T$

We say that $S$ is a propositional (tautological) consequence of $T$, in writing $T \vDash_{p} S$, iff for all $v$ such that $\vDash_{p}^{v} T$ we do not have $\vDash_{p}^{v} \neg S$, i.e. no $v$ satisfying $T$ refutes $S$

The special case when $T \vDash_{p}\{A\}$ is the most important relation in mathematical logic. We write $T \vDash_{p} A$ instead of $T \vDash_{p}\{A\}$ and say that $A$ tautologically follows from $T$

## Compactness theorem for propositional consequence

$T \vDash_{p} S$ iff there are finite $T^{\prime} \subset T$ and $S^{\prime} \subset S$ s.t. $T^{\prime} \vDash_{p} S^{\prime}$.

If $T^{\prime}=\left\{A_{1}, \ldots, A_{n}\right\}$ and $S^{\prime}=\left\{B_{1}, \ldots, B_{m}\right\}$ we have $T^{\prime} \vDash_{p} S^{\prime}$ iff

$$
\vDash_{p} A_{1} \wedge \cdots \wedge A_{n} \rightarrow B_{1} \vee \cdots \vee B_{m}
$$

Note that $T \vDash_{p} \emptyset$ iff $T$ is unsatisfiable, i.e. for all $v$ there is $A \in T$ s.t. $\vDash_{p}^{v} \neg A$.

Also, $\emptyset \vDash_{p} S$ iff $S$ is non-refutable, i.e. for all $v$ there is $A \in S$ s.t. $\vDash_{p}^{v} A$.
Also, not $\emptyset \vDash_{p} \emptyset$
Also, $\emptyset \vDash_{p}\{A\}$ iff $A$ is tautology.

We will study this in more detail in Logic II.

## Observations leading to better tests for tautological consequence

If $T$ and $S$ consist only of propositional variables then $T \vDash_{p} S$ iff $T \cap S \neq \emptyset$

If $\perp \in S$ then $T \vDash_{p} S$ iff $T \vDash_{p} S \backslash\{\perp\}$
If $\perp \in T$ then $T \vDash_{p} S$

If $(A \rightarrow B) \in S$ then
$T \vDash_{p} S$ iff $T \cup\{A\} \vDash_{p} S \cup\{B\}$ iff
$T \cup\{A\} \vDash_{p} S \backslash\{A \rightarrow B\} \cup\{B\}$
If $(A \rightarrow B) \in T$ then
$T \vDash_{p} S$ iff $T \cup\{B\} \vDash_{p} S$ and $T \vDash_{p} S \cup\{A\}$ iff $T \backslash\{A \rightarrow B\} \cup\{B\} \vDash_{p} S$ and $T \backslash\{A \rightarrow B\} \vDash_{p} S \cup\{A\}$

## Arithmetization

For finite sets $T$ and $S$ we can arithmetize the predicate $T \vDash_{p} S$ by defining in CL:

$$
\begin{aligned}
& t \vDash_{p}^{\bullet} s \leftrightarrow \forall v( \\
& \left.\quad \forall a\left(a \varepsilon t \rightarrow \models_{p}^{v} a\right) \rightarrow \exists a\left(a \varepsilon s \rightarrow \models_{p}^{v} a\right)\right)
\end{aligned}
$$

The properties from the previous slide can be then used to define by a clausal definition a fourplace predicate $\operatorname{Seq}(t, v, s, w)$ taking lists of formulas $t, s$ and lists of numbers $v, w$ such that

$$
\operatorname{Seq}(t, v, s, w) \leftrightarrow t \oplus \operatorname{Map}_{P_{\cdot}}(v) \vDash_{p}^{\bullet} s \oplus \operatorname{Map}_{P_{\cdot}}(w)
$$

Note that the lists $v$ and $w$ store the indices $i$ of propositional variables $P_{i}^{\bullet}$ encountered in $t$ and $s$ respectively.
We then define

$$
\operatorname{Taut}(a) \leftarrow \operatorname{Seq}(0,0,(a, 0), 0)
$$

$$
\begin{array}{ll}
\operatorname{Seq}(0, v, 0, w) & \leftarrow v \cap w>0 \\
\operatorname{Seq}\left(0, v,\left(P_{i}^{\bullet}, s\right), w\right) & \leftarrow \operatorname{Seq}(0, v, s,(i, w)) \\
\operatorname{Seq}\left(0, v,\left(\perp^{\bullet}, s\right), w\right) & \leftarrow \operatorname{Seq}(0, v, s, w) \\
\operatorname{Seq}(0, v,(a \rightarrow \bullet b, s), w) & \leftarrow \operatorname{Seq}((a, 0), v,(b, s), w) \\
\operatorname{Seq}\left(\left(P_{i}^{\bullet}, t\right), v, s, w\right) & \leftarrow \operatorname{Seq}(t,(i, v), s, w) \\
\operatorname{Seq}\left(\left(\perp^{\bullet}, t\right), v, s, w\right) & \\
\operatorname{Seq}((a \rightarrow \bullet b, t), v, s, w) & \leftarrow \operatorname{Seq}((b, t), v, s, w) \wedge \\
& \operatorname{Seq}(t, v,(a, s), w)
\end{array}
$$

How to derive clauses for other connectives?
By using them on both sides of Seq and simplifying. We note that when we replace in the first four clauses the first 0 by $s$ we have more general properties of $S e q$ then the four clauses. For instance, for $\neg^{\bullet} a$ in the consequent we have: $S e q\left(t, v,\left(\neg^{\bullet} a, s\right), w\right)$ iff
$\operatorname{Seq}\left(t, v,\left(a \longrightarrow^{\bullet} \perp^{\bullet}, s\right), w\right)$ iff $\operatorname{Seq}\left((a, t), v,\left(\perp^{\bullet}, s\right), w\right)$ iff $\operatorname{Seq}((a, s), v, s, w)$
For $\neg^{\bullet} a$ in the antecedent we have: $\operatorname{Seq}\left(\left(\neg^{\bullet} a, t\right), v, s, w\right)$ iff $\operatorname{Seq}\left(\left(a \rightarrow^{\bullet} \perp^{\bullet}, t\right), v, s, w\right)$ iff $S e q\left(\left(\perp^{\bullet}, t\right), v, s, w\right)$ and $S e q(t, v,(a, s), w)$ iff $\operatorname{Seq}(t, v,(a, s), w)$

