Propositional Logic I (semantics)

The language of propositional logic

Propositional formulas are formed from

- propositional variables $\left(P_{0}, P_{1}, \ldots\right)$ by
- propositional connectives which are -nullary: truth (T), falsehood (\perp)
-unary: negation (\neg)
-binary: disjunction (\vee), conjunction (\wedge) implication (\rightarrow), equivalence (\leftrightarrow)

Binary are infix ($\rightarrow, \leftrightarrow$ groups to the right, the rest to the left)
Precedence from highest is $\neg, \wedge, \vee,(\rightarrow, \leftrightarrow)$.
Thus
$P_{1} \rightarrow P_{2} \leftrightarrow P_{3} \vee \neg P_{4} \wedge P_{5}$ abbreviates
$P_{1} \rightarrow\left(P_{2} \leftrightarrow\left(P_{3} \vee\left(\neg\left(P_{4}\right) \wedge P_{5}\right)\right)\right)$

Truth functions

We identify the truth values true and false with the nullary symbols T and \perp respectively. The remaining connectives are interpreted as functions over truth values satisfying:

P_{1}	P_{2}	$\neg P_{1}$	$P_{1} \wedge P_{2}$	$P_{1} \vee P_{2}$	$P_{1} \rightarrow P_{2}$	$P_{1} \leftrightarrow P_{2}$
\perp	\perp	\top	\perp	\perp	\top	\top
\perp	\top	\top	\perp	\top	\top	\perp
\top	\perp	\perp	\perp	\top	\perp	\perp
\top	\top	\perp	\top	\top	\top	\top

We have

$$
\begin{aligned}
A \leftrightarrow B & \equiv A \rightarrow B \wedge B \rightarrow A \\
\neg A & \equiv A \rightarrow \perp \\
A \rightarrow B & \equiv \neg A \vee B \\
A \wedge B & \equiv \neg(\neg A \vee \neg B)
\end{aligned}
$$

Complete sets of connectives

We can define all propositional connectives either from \neg and \rightarrow, or from \neg and \vee, or from \neg and \wedge, or from \perp and \rightarrow.

Actually, we can define all connectives from the single connective Sheffer's stroke: not both A and B

$$
A \mid B \equiv \neg(A \wedge B)
$$

because

$$
\begin{aligned}
\neg A & \equiv A \mid A \\
A & \wedge B
\end{aligned}
$$

Tautologies

Of special interest are those propositional formulas A which are true (T) for all possible truth values of its propositional variables, in writing $\vDash_{p} A$.
Every such formula is a tautology.
Tautologies are the cornerstones of mathematical logic.
Some examples of (schemas of) tautologies:

$$
\begin{gathered}
\vDash_{p}(A \rightarrow B \rightarrow C) \leftrightarrow A \wedge B \rightarrow C \\
\vDash_{p}(A \rightarrow B \rightarrow C) \leftrightarrow(A \rightarrow B) \rightarrow A \rightarrow C \\
\vDash_{p}(A \rightarrow B) \leftrightarrow \neg B \rightarrow \neg A
\end{gathered}
$$

for any propositional formulas A, B, and C

Propositional satisfaction relation

A propositional valuation, or an propositional assignment v is a (possibly infinite) set $v \subset \mathbb{N}$ The idea is that the $P_{i} \equiv \mathrm{~T}$ iff $i \in v$.

We say that a formula A is satisfied in v, in writing $v \vDash_{p} A$, if A is true for the assignment v.
We thus have: $v \vDash P_{i}$ iff $i \in v$
$v \vDash_{p} \neg A$ iff not $v \vDash_{p} A$ iff $v \nexists_{p} A$
$v \vDash_{p} A \wedge B$ iff $v \vDash_{p} A$ and $v \vDash_{p} B$
$v \vDash_{p} A \vee B$ iff $v \vDash_{p} A$ or $v \vDash_{p} B$
$v \vDash_{p} A \rightarrow B$ iff whenever $v \vDash_{p} A$ also $v \vDash_{p} B$
Thus A is a tautology iff $v \vDash A$ for all valuations v.

Coincidence property if two valuations v and w are such that $i \in v$ iff $i \in w$ for all P_{i} occurring in A then $v \vDash A$ iff $w \vDash A$

Arithmetization of propositional logic

We wish to show that the property of A being a tautology is decidable, i.e. that the predicate $\vDash_{p} A$ is computable. For that we have to encode (arithmetize) propositional logic into natural numbers.

