Propositional Logic I (semantics)

The language of propositional logic

Propositional formulas are formed from

- propositional variables (P_0, P_1, \ldots) by
- propositional connectives which are
 nullary: truth (⊤), falsehood (⊥)

•**unary**: negation
$$(\neg)$$

•**binary**: disjunction (\lor), conjunction (\land) implication (\rightarrow), equivalence (\leftrightarrow)

Binary are **infix** (\rightarrow , \leftrightarrow groups to the right, the rest to the left)

Precedence from highest is \neg , \land , \lor , $(\rightarrow, \leftrightarrow)$. Thus

 $P_1 \to P_2 \leftrightarrow P_3 \lor \neg P_4 \land P_5 \text{ abbreviates}$ $P_1 \to (P_2 \leftrightarrow (P_3 \lor (\neg (P_4) \land P_5)))$

Truth functions

We identify the **truth values** *true* and *false* with the nullary symbols \top and \bot respectively. The remaining connectives are **interpreted** as functions over truth values satisfying:

P_1	P_2	$\neg P_1$	$P_1 \wedge P_2$	$P_1 \lor P_2$	$P_1 \rightarrow P_2$	$P_1 \leftrightarrow P_2$
					Т	Т
		T		T	T	\perp
				Т		\perp
			T	T	T	Т

We have

$$A \leftrightarrow B \equiv A \rightarrow B \wedge B \rightarrow A$$
$$\neg A \equiv A \rightarrow \bot$$
$$A \rightarrow B \equiv \neg A \lor B$$
$$A \wedge B \equiv \neg (\neg A \lor \neg B)$$

83

Complete sets of connectives

We can define all propositional connectives either from \neg and \rightarrow , or from \neg and \lor , or from \neg and \lor , or from \bot and \rightarrow .

Actually, we can define all connectives from the single connective **Sheffer's stroke**: *not both A and B*

$$A \mid B \equiv \neg (A \land B)$$

because

$$\neg A \equiv A \mid A$$
$$A \land B \equiv (A \mid B) \mid (A \mid B)$$

Tautologies

Of special interest are those propositional formulas A which are true (\top) for all possible truth values of its propositional variables, in writing $\vDash_p A$.

Every such formula is a **tautology**.

Tautologies are the cornerstones of mathematical logic.

Some examples of (schemas of) tautologies:

$$\models_{p} (A \to B \to C) \leftrightarrow A \land B \to C$$
$$\models_{p} (A \to B \to C) \leftrightarrow (A \to B) \to A \to C$$
$$\models_{p} (A \to B) \leftrightarrow \neg B \to \neg A$$

for any propositional formulas A, B, and C

Propositional satisfaction relation

A propositional valuation, or an propositional assignment v is a (possibly infinite) set $v \subset \mathbb{N}$ The idea is that the $P_i \equiv \top$ iff $i \in v$.

We say that a formula A is satisfied in v, in writing $v \vDash_p A$, if A is true for the assignment v.

We thus have:
$$v \vDash P_i$$
 iff $i \in v$
 $v \vDash_p \neg A$ iff not $v \vDash_p A$ iff $v \nvDash_p A$
 $v \vDash_p A \land B$ iff $v \vDash_p A$ and $v \nvDash_p B$
 $v \vDash_p A \lor B$ iff $v \vDash_p A$ or $v \nvDash_p B$
 $v \vDash_p A \rightarrow B$ iff whenever $v \nvDash_p A$ also $v \nvDash_p B$

Thus A is a tautology iff $v \vDash A$ for all valuations v.

Coincidence property if two valuations v and w are such that $i \in v$ iff $i \in w$ for all P_i occurring in A then $v \models A$ iff $w \models A$

86

Arithmetization of propositional logic

We wish to show that the property of A being a tautology is decidable, i.e. that the predicate $\vDash_p A$ is computable. For that we have to encode (arithmetize) propositional logic into natural numbers.