
Binary Search Trees

75

Binary trees

A labelled binary tree is either empty: • or a

triple
n

l | r
where n ∈ N and l, r are binary trees.

We code binary trees by constructors

• ≡ E = 0,0
n

l | r
≡ Nd(n, l, r) = 1, n, l, r.

The following format holds of (codes of) bi-

nary trees:

Bt(•)

Bt

(
n

l | r

)
← N(n) ∧ Bt(l) ∧ Bt(r)

76

Basic operations on binary trees

|t|b yields the number of nodes in a binary tree:

|•|b = 0∣∣∣∣∣ n

l | r

∣∣∣∣∣
b

← |l|b + |r|b + 1

For t a binary tree x ε t holds iff x is a label in

t:

Bt(t)→ x ε t↔ ∃n∃l∃r(t =
n

l | r
∧

(x = n ∨ x ε l ∨ x ε r))

Note that any clausal definition of the predi-

cate will have to search the whole tree.

77

Traversals of binary trees

A traversal of a binary tree t is a function

which forms a list out of the nodes of t.

Preorder, Inorder, and Postorder are func-

tions which traverse first left and then right

subtrees. Labels are written out in that order

before, in the middle, after the traversals.

For instance

Inorder (•) = 0

Inorder

(
n

l | r

)
= Inorder(l)⊕ (n, Inorder(r))

78

Subtree predicate

For binary trees s, t we say s is a subtree of

t and write s vb t, when

s vb • ↔ s = •

s vb
n

l | r
↔ s =

n

l | r
∨ s vb l ∨ s vb r

79

Binary Search Trees

We define the predicate Bst(t) to hold of binary

search trees as follows:

Bst(t)↔ Bt(t) ∧ ∀n∀l∀r(
n

l | r
vb t→

∀m(m εb l→ m < n) ∧
∀m(m εb r → m > n))

We could use also the equivalent definition:

Bst(t)↔ Bt(t) ∧ SetInorder(t)

Binary search trees can be used to implement

finite sets in a more optimal way than lists.

80

