Combinatorial functions

Mapping functional

For an unary function f we designate by Map_{f} the unary function taking a list x and mapping $f(a)$ to every element of $a \varepsilon x$, i.e:

$$
\operatorname{Map}_{f}\left(x_{1}, \ldots, x_{n}, 0\right)=f\left(x_{1}\right), \ldots, f\left(x_{n}\right), 0
$$

Formally:

$$
\operatorname{Map}_{f}(x \oplus(a, y))=\operatorname{Map}_{f}(x) \oplus\left(f(a), \operatorname{Map}_{f}(y)\right)
$$

Note that $a \in \operatorname{Map}_{f}(x) \leftrightarrow \exists b \varepsilon x a=f(b)$.
We will often use the dot notation to construct functions f. For instance $M a p_{6+}$. is $M a p_{f}$ where $f(x)=6+x$

Interleave

For a list x and element a we wish to construct the list $\operatorname{Inter}(a, x)$, interleaving a into the list x at all possible positions. We wish

$$
\begin{aligned}
& s \oplus(y, t)=\operatorname{Inter}(a, x) \leftrightarrow \exists x_{1} \exists x_{2}(\\
& \left.\quad x=x_{1} \oplus x_{2} \wedge L\left(x_{1}\right)=L(s) \wedge y=x_{1} \oplus\left(a, x_{2}\right)\right)
\end{aligned}
$$

This can be achieved by

$$
\begin{aligned}
& \operatorname{Inter}(a, 0)=(a, 0), 0 \\
& \operatorname{Inter}(a, b, x)=(a, b, x), \operatorname{Map}_{(b, \cdot)} \operatorname{Inter}(a, x)
\end{aligned}
$$

Typing notation

We designate by a, b, c, \ldots elements of lists x, y, z, \ldots Combinatorial functions such as Inter yield lists of lists which we will designate by s, t, r, \ldots

We can display such lists by formats. For instance, $\operatorname{Ln}(x)$ displays the number x as a list of of decimal numbers, no matter how x is internally represented. $\operatorname{Str}(x)$ displays the list x as a string (list of ascii characters) if possible.

The format $L s$ displaying a list of strings can be defined as:
$L s(0)$
$L s(x, t) \leftarrow S t r(x) \wedge L s(t)$

Permutations

We call the list x a permutation of the list y, in writing $x \sim y$, when

$$
x \sim y \leftrightarrow \forall a \#(a, x)=\#(a, y)
$$

where $\#(a, x)$ counts the number of occurrences of a in x. We have

$$
x \sim 0 \leftrightarrow x=0
$$

$x \sim a, y \leftrightarrow \exists x_{1} \exists x_{2}\left(x=x_{1} \oplus\left(a, x_{2}\right) \wedge x_{1} \oplus x_{2} \sim y\right)$

List of all permutations

We wish to write a function $\operatorname{Perms}(x)=t$ where for all y we have $y \varepsilon t$ iff $y \sim x$. We have

$$
\begin{aligned}
& \operatorname{Perms}(0)=0,0 \\
& \operatorname{Perms}(a, x)=\bigoplus \operatorname{Map}_{\text {Inter }(a, \cdot)} \operatorname{Perms}(x)
\end{aligned}
$$

and $\oplus t$ concatenates all lists $x \varepsilon t$.

Sorting

We call a list x increasingly sorted if $\operatorname{Ord}(x)$, i.e. x is non-decreasing where
$\operatorname{Ord}(x) \leftrightarrow \forall x_{1} \forall x_{2} \forall a \forall b\left(x=x_{1} \oplus\left(a, b, x_{2}\right) \rightarrow a \leq b\right)$ We call a unary function f a sort if

$$
\forall x(f(x) \sim x \wedge \operatorname{Ordf}(x))
$$

Insertion sort

$$
\begin{aligned}
& I s(0)=0 \\
& I s(a, x)=\operatorname{Ins}(a, I s(x))
\end{aligned}
$$

where

$$
\begin{aligned}
& \operatorname{Ins}(a, 0)=a, 0 \\
& \operatorname{Ins}(a, b, x)=b, \operatorname{Ins}(a, x) \leftarrow a>b \\
& \operatorname{Ins}(a, b, x)=a, b, x \quad \leftarrow a \leq b
\end{aligned}
$$

Not a very good sort, because it is $\mathcal{O} L(x)^{2}$

Merge sort

Merge sort is optimal $\mathcal{O}(L(x) \cdot \log (x))$. Its strategy is divide et impera: split the task in two and recur.

$$
\begin{aligned}
M s(x)=x & \leftarrow L(x) \leq 1 \\
M s(x)=\operatorname{Merge}(M s(y), M s(z)) & \leftarrow L(x)>1 \wedge \\
& \leftarrow \operatorname{Split}(x)=y, z
\end{aligned}
$$

Where $\operatorname{Split}(x)=y, z$ with $y \oplus z \sim x$ (say, put the elements of x alternatively in the two output lists) and Merge merges two nondecreasing lists such that $\operatorname{Merge}(x, y) \sim x \oplus y$ and the list is nondecreasing.

