Combinatorial functions

66

Mapping functional

For an unary function f we designhate by Mapf
the unary function taking a list x and mapping
f(a) to every element of a ez, i.e:

Mapf(:cl,...,a:n,O) — f(:cl)a?f(xn)ao
Formally:
Map ¢(z @ (a,y)) = Map ¢(z) © (f(a), Map ¢(y))
Note that a € Map¢(x) <> Fbe xza = f(b).

We will often use the dot notation to con-

struct functions f. For instance Mapgy. is
Map ; where f(z) =6+ =z

o7

Interleave

For a list x and element a we wish to construct
the list Inter(a,z), interleaving a into the list
x at all possible positions. We wish

s® (y,t) = Inter(a,x) < Jxr13zo(
r=x1DaxoNL(x1) =L(s) Ny =21 D (a,z2))

This can be achieved by

Inter(a,0) = (a,0),0
Inter(a,b,z) = (a, b, x), Map(b,.)[ntefr(a, x)

63

Typing notation

We designate by a, b, ¢, ...elements of lists
x, vy, 2, Combinatorial functions such as
Inter yield lists of lists which we will designate
by s, t, r, ...

We can display such lists by formats. For in-
stance, Ln(x) displays the number z as a list
of of decimal numbers, no matter how z is in-
ternally represented. Str(x) displays the list x
as a string (list of ascii characters) if possible.

The format Ls displaying a list of strings can
be defined as:

Ls(0)
Ls(x,t) < Str(x) A Ls(t)

69

Permutations
We call the list x a permutation of the list y,
in writing x ~ y, when

x~y < Va#(a,x) = #(a,y)

where #(a,x) counts the number of occur-
rences of a in x. We have

r~0Q0—x=0

x~a,y < dridro(x =21 ® (a,x0) ANx1 Do ~ 1Y)

70

List of all permutations

We wish to write a function Perms(x) = t where
for all y we have yet iff y ~ x. We have

Perms(0) = 0,0
Perms(a,z) = P Map ppter(a,) Perms(x)

and @t concatenates all lists x ¢ t.

71

Sorting
We call a list z increasingly sorted if Ord(x),
l.e. x is non-decreasing where

Ord(x) < Vx1VroVaVb(x = x1P(a,b,x5) — a < b)

We call a unary function f a sort if

Ve(f(x) ~x A Ordf(xz))

72

Insertion sort

Is(0) =0
Is(a,xz) = Ins(a, Is(x))

where
Ins(a,0) = a,0
Ins(a,b,z) = b, Ins(a,x) «<— a > b

Ins(a,b,z) = a,b, x —a<b

Not a very good sort, because it is OL(z)?

73

Merge sort

Merge sort is optimal O(L(x)-log(x)). Its strat-
egy is divide et impera: split the task in two
and recur.

Ms(x) == — L(x) <1
Ms(x) = Merge(Ms(y), Ms(z)) «— L(x) > 1A
— Split(x) = vy, 2
Where Split(x) = y,z with y @ z ~ x (say, put
the elements of z alternatively in the two out-
put lists) and Merge merges two nondecreasing

lists such that Merge(x,y) ~ x @y and the list
IS nondecreasing.

74

