
Combinatorial functions

66

Mapping functional

For an unary function f we designate by Mapf

the unary function taking a list x and mapping

f(a) to every element of a ε x, i.e:

Mapf(x1, . . . , xn,0) = f(x1), . . . , f(xn),0

Formally:

Mapf(x⊕ (a, y)) = Mapf(x)⊕ (f(a), Mapf(y))

Note that a ∈ Mapf(x)↔ ∃b ε x a = f(b).

We will often use the dot notation to con-

struct functions f . For instance Map6+· is

Mapf where f(x) = 6 + x

67

Interleave

For a list x and element a we wish to construct

the list Inter(a, x), interleaving a into the list

x at all possible positions. We wish

s⊕ (y, t) = Inter(a, x)↔ ∃x1∃x2(

x = x1 ⊕ x2 ∧ L(x1) = L(s) ∧ y = x1 ⊕ (a, x2))

This can be achieved by

Inter(a,0) = (a,0),0

Inter(a, b, x) = (a, b, x), Map(b,·)Inter(a, x)

68

Typing notation

We designate by a, b, c, . . . elements of lists

x, y, z, Combinatorial functions such as

Inter yield lists of lists which we will designate

by s, t, r, . . .

We can display such lists by formats. For in-

stance, Ln(x) displays the number x as a list

of of decimal numbers, no matter how x is in-

ternally represented. Str(x) displays the list x

as a string (list of ascii characters) if possible.

The format Ls displaying a list of strings can

be defined as:

Ls(0)

Ls(x, t)← Str(x) ∧ Ls(t)

69

Permutations

We call the list x a permutation of the list y,

in writing x ∼ y, when

x ∼ y ↔ ∀a#(a, x) = #(a, y)

where #(a, x) counts the number of occur-

rences of a in x. We have

x ∼ 0↔ x = 0

x ∼ a, y ↔ ∃x1∃x2(x = x1 ⊕ (a, x2) ∧ x1 ⊕ x2 ∼ y)

70

List of all permutations

We wish to write a function Perms(x) = t where

for all y we have y ε t iff y ∼ x. We have

Perms(0) = 0,0

Perms(a, x) =
⊕

MapInter(a,·)Perms(x)

and
⊕

t concatenates all lists x ε t.

71

Sorting

We call a list x increasingly sorted if Ord(x),

i.e. x is non-decreasing where

Ord(x)↔ ∀x1∀x2∀a∀b(x = x1⊕(a, b, x2)→ a ≤ b)

We call a unary function f a sort if

∀x(f(x) ∼ x ∧ Ordf(x))

72

Insertion sort

Is(0) = 0

Is(a, x) = Ins(a, Is(x))

where

Ins(a,0) = a,0

Ins(a, b, x) = b, Ins(a, x)← a > b

Ins(a, b, x) = a, b, x ← a ≤ b

Not a very good sort, because it is OL(x)2

73

Merge sort

Merge sort is optimal O(L(x)· log(x)). Its strat-

egy is divide et impera: split the task in two

and recur.

Ms(x) = x ← L(x) ≤ 1

Ms(x) = Merge(Ms(y), Ms(z))← L(x) > 1 ∧
← Split(x) = y, z

Where Split(x) = y, z with y ⊕ z ∼ x (say, put

the elements of x alternatively in the two out-

put lists) and Merge merges two nondecreasing

lists such that Merge(x, y) ∼ x ⊕ y and the list

is nondecreasing.

74

