
Logic for Informatics (I)

(Declarative Programming)

read by Paul J. Voda

Institute of Informatics,

University of Bratislava Slovakia

The first of four courses:

- Declarative programming (Spring 2003)

- First Order Logic (Fall 2004)

- Specification and Verification of Programs

(Spring 2005)

- Computability for programmers (Fall 2005)

We teach basics of recursion theory (com-

putability theory), first-order theories, and of

verification of programs.

The last means:

- definitions of programs in a ‘programming

language’

- formal proofs of their properties in Peano

Arithmetic
1

Clausal Language

We use CL as a tool for teaching. It is a

programming language and a formal proof

system.

Designed and developed: in 1996-2002 by:

- Paul J. Voda (language processor)

- Jan Komara (theorem prover)

- Jan Kluka (web version into MathML)

2

Course Materials

The main web page:

www.ii.fmph.uniba.sk/cl/courses/lpi1/

All announcements and pointers to course ma-

terials will be posted on this page.

Text by D. Guller

Poznámky k prednáškam z CL

can be downloaded from the main web page.

3

Course requirements

In order to pass with grade E you have to get

≥ 50% of marks.

(A ≥ 90, B ≥ 80, C ≥ 70, D ≥ 60)

There are two tests (midterm exams) each

carrying 30 marks.

The final exam carries 40 marks.

All tests and exams are done in CL in the com-

puter lab H6.

4

What can we do in CL?

-We can define functions over the domain of
natural numbers:

N = 0,1,2,3, . . .

which is generated from 0 by the successor

function S(x) = x + 1. For instance:

5 ≡
5︷ ︸︸ ︷

S . . . S(0) = 0+1+1+1+1+1 ≡ 0′′′′′

Example of a definition:

Sum(0, y) = y Sum(S(x), y) = SSum(x, y)

-We can evaluate such functions by supply-

ing them with arguments in a query:
Sum(4,5) = y

-We can prove properties of such functions in
PA (Peano Arithmetic):

x > 0 ∨ y > 0→ Sum(x, y) > 0

5

Some functions built into CL

Addition (+), multiplication (·).
modified subtraction:

x .− y =

x− y if x ≥ y

0 otherwise

integer division (÷) and remainder (mod)

operations satisfying:

x÷ 0 = 0 ∧ x mod 0 = 0

y > 0→ x mod y < y ∧
x = (x÷ y)·y + (x mod y)

6

Explicit definitions of functions

(presented in term form)

f(x1, . . . , xn) = s[x1, . . . , xn] where s is a term

(expression) referring to variables ~x.

Terms are either:

- simple terms built from variables and con-

stants by applications of functions

- composed terms built by case and let con-

structs:

case D1 → s1 | · · · | Dn → sn end

let s1 = v in s2

where D1,. . . Dn are discriminators and s1, s2,

. . . sn are terms.

7

Some discriminators (tests)

Zero discriminators:

s = 0 ∨ s > 0

Equality discriminators

s = t ∨ s 6= t

Dichotomy discriminators

s ≤ t ∨ s > t

Trichotomy discriminators

s < t ∨ s = t ∨ s > t

For each discriminator exactly one alternative

holds.

8

Explicit definitions of functions

(presented in formula form)

f(x1, . . . , xn) = z ← A[x1, . . . , xn, z]

where the formula A is

s = z which correspond to a simple term

D1 ∧B1 ∨ · · · ∨Dn ∧Bn which corresponds to a

case term s = v ∧ B which corresponds to a

let term

Explicit definitions of functions

(presented in clausal form)

as a collection of clauses

f(x1, . . . , xn) = z ← B1 ∧ · · · ∧Bn

unfolded from a formula form.

9

