Logic for Informatics (I)
 (Declarative Programming)
 read by Paul J. Voda
 Institute of Informatics, University of Bratislava Slovakia

The first of four courses:

- Declarative programming (Spring 2003)
- First Order Logic (Fall 2004)
- Specification and Verification of Programs
(Spring 2005)
- Computability for programmers (Fall 2005)

We teach basics of recursion theory (computability theory), first-order theories, and of verification of programs.
The last means:

- definitions of programs in a 'programming language'
- formal proofs of their properties in Peano Arithmetic

Clausal Language

We use CL as a tool for teaching. It is a programming language and a formal proof system.

Designed and developed: in 1996-2002 by:

- Paul J. Voda (language processor)
- Jan Komara (theorem prover)
- Jan Kluka (web version into MathML)

Course Materials

The main web page:
www.ii.fmph.uniba.sk/cl/courses/lpi1/

All announcements and pointers to course materials will be posted on this page.

Text by D. Guller

Poznámky k prednáškam z CL

can be downloaded from the main web page.

Course requirements

In order to pass with grade \mathbf{E} you have to get $\geq 50 \%$ of marks.
($\mathbf{A} \geq 90, \mathrm{~B} \geq 80, \mathrm{C} \geq 70, \mathrm{D} \geq 60$)

There are two tests (midterm exams) each carrying 30 marks.
The final exam carries 40 marks.

All tests and exams are done in CL in the computer lab H6.

What can we do in CL?

-We can define functions over the domain of natural numbers:

$$
\mathbb{N}=0,1,2,3, \ldots
$$

which is generated from 0 by the successor function $S(x)=x+1$. For instance:
$5 \equiv \overbrace{S \ldots S}^{5}(0)=0+1+1+1+1+1 \equiv 0^{\prime \prime \prime \prime \prime \prime}$
Example of a definition:
$\operatorname{Sum}(0, y)=y \quad \operatorname{Sum}(S(x), y)=\operatorname{SSum}(x, y)$
-We can evaluate such functions by supplying them with arguments in a query:
$\operatorname{Sum}(4,5)=y$
-We can prove properties of such functions in PA (Peano Arithmetic):

$$
x>0 \vee y>0 \rightarrow \operatorname{Sum}(x, y)>0
$$

Some functions built into CL

Addition (+), multiplication (•). modified subtraction:

$$
x \doteq y= \begin{cases}x-y & \text { if } x \geq y \\ 0 & \text { otherwise }\end{cases}
$$

integer division (\div) and remainder (mod) operations satisfying:

$$
\begin{aligned}
& x \div 0=0 \wedge x \bmod 0=0 \\
& y>0 \rightarrow x \bmod y<y \wedge \\
& x=(x \div y) \cdot y+(x \bmod y)
\end{aligned}
$$

Explicit definitions of functions (presented in term form)

$f\left(x_{1}, \ldots, x_{n}\right)=s\left[x_{1}, \ldots, x_{n}\right]$ where s is a term (expression) referring to variables \vec{x}.
Terms are either:

- simple terms built from variables and constants by applications of functions
- composed terms built by case and let constructs:
case $D_{1} \rightarrow s_{1}|\cdots| D_{n} \rightarrow s_{n}$ end let $s_{1}=v$ in s_{2}
where $D_{1}, \ldots D_{n}$ are discriminators and s_{1}, s_{2}, $\ldots s_{n}$ are terms.

Some discriminators (tests)

Zero discriminators:
$s=0 \vee s>0$
Equality discriminators
$s=t \vee s \neq t$
Dichotomy discriminators
$s \leq t \vee s>t$
Trichotomy discriminators
$s<t \vee s=t \vee s>t$

For each discriminator exactly one alternative holds.

Explicit definitions of functions

(presented in formula form)
$f\left(x_{1}, \ldots, x_{n}\right)=z \leftarrow A\left[x_{1}, \ldots, x_{n}, z\right]$
where the formula A is
$s=z$ which correspond to a simple term $D_{1} \wedge B_{1} \vee \cdots \vee D_{n} \wedge B_{n}$ which corresponds to a case term $s=v \wedge B$ which corresponds to a let term

Explicit definitions of functions
 (presented in clausal form)

as a collection of clauses
$f\left(x_{1}, \ldots, x_{n}\right)=z \leftarrow B_{1} \wedge \cdots \wedge B_{n}$
unfolded from a formula form.

