2.4 Primitive Recursion by Regular Minimalization

2.4.1 Alternative definition of μ-recursive functions. The class of μ recursive functions is generated from the identity functions $I_{i}^{n}(\vec{x})=x_{i}$, the multiplication function $x y$, and from the characteristic function $x<_{*} y$ of the comparision predicate $x<y$ by composition and regular minimalization of functions.
2.4.2 Lemma μ-Recursive functions are closed under explicit definitions of functions without constants.
2.4.3 Lemma μ-Recursive functions are closed under regular minimalization of the form $f(\vec{x})=\mu y[\tau[\vec{x}, y]=1]$, where the term τ is without constants.
2.4.4 Successor function is μ-recursive. We have $\forall x \exists y x<y$ and the number $x+1$ is the least such number y. Hence the successor function $S(x)=x+1$ is μ-recursive by the following regular minimalization:

$$
S(x)=\mu y\left[\left(x<_{*} y\right)=1\right]
$$

2.4.5 Unary constant functions are μ-recursive. Clearly $\forall x \exists y x<x+1$ and 0 is the least such number y. Hence the zero function $Z(x)=0$ is μ recursive function by the following regular minimalization:

$$
Z(x)=\mu y\left[\left(x<_{*} S(x)\right)=1\right] .
$$

We can now define all unary constant functions $C_{m}(x)=m$ as μ-recursive functions by a series of explicit definitions $\left(C_{0}=Z\right)$:

$$
C_{m+1}(x)=C_{m}(x)+1
$$

2.4.6 Lemma μ-Recursive functions are closed under explicit definitions of functions.
2.4.7 Lemma μ-Recursive functions are closed under regular minimalization of the form $f(\vec{x})=\mu y[\tau[\vec{x}, y]=1]$.
2.4.8 Boolean functions are μ-recursive. The boolean functions $\neg_{*} x$ and $x \wedge_{*} y$ are μ-recursive by explicit definitions:

$$
\begin{aligned}
\left(\neg_{*} x\right) & =\left(x<_{*} 1\right) \\
\left(x \wedge_{*} y\right) & =\left(\neg *^{\prime} x y\right) .
\end{aligned}
$$

The remaining boolean functions are derived similarly as μ-recursive.
2.4.9 Comparision predicates are μ-recursive. The binary predicates $x \leq y$ and $x=y$ are μ-recursive by explicit definitions of their characteristic functions:

$$
\begin{aligned}
& \left(x \leq_{*} y\right)=\left(\neg_{*} y<_{*} x\right) \\
& \left(x=_{*} y\right)=\left(x \leq_{*} y \wedge_{*} y \leq_{*} x\right) .
\end{aligned}
$$

2.4.10 Case discrimination function is μ-recursive. The graph of the case discrimination function D satisfies the following obvious property:

$$
D(x, y, z)=v \leftrightarrow x \neq 0 \wedge v=y \vee x=0 \wedge v=z .
$$

We define D as μ-recursive by regular minimalization:

$$
D(x, y, z)=\mu v\left[\left(\neg_{*} x=_{*} 0 \wedge_{*} v=_{*} y \vee_{*} x=_{*} 0 \wedge_{*} v=_{*} z\right)=1\right] .
$$

2.4.11 Lemma μ-Recursive functions are closed under the operator of bounded minimalization.

Proof. Let the $(n+1)$-ary function f be defined by bounded minimalization:

$$
f(x, \vec{y})=\mu z \leq x[g(z, \vec{y})=1]
$$

from a μ-recursive function g. We clearly have

$$
\forall x \forall \vec{y} \exists z(z \leq x \rightarrow g(z, \vec{y})=1)
$$

since $x+1$ is one of such numbers z. Hence the auxiliary ($n+1$)-ary function h is defined by regular minimalization as a μ-recursive function:

$$
h(x, \vec{y})=\mu z\left[\left(z \leq_{*} x \rightarrow_{*} g(z, \vec{y})=_{*} 1\right)=1\right] .
$$

Note that $h(x, \vec{y})$ yields the smallest number $z \leq x$ such that $g(z, \vec{y})=1$ holds or $x+1$ if there is no such number. We now define f by explicit definition as a μ-recursive function:

$$
f(x, \vec{y})=D\left(\left(h(x, \vec{y}) \leq_{*} x\right), h(x, \vec{y}), 0\right) .
$$

2.4.12 Lemma μ-Recursive functions are closed under explicit definitions of predicates with bounded formulas.
2.4.13 Lemma μ-Recursive functions are closed under definitions of functions with bounded minimalization.
2.4.14 Lemma μ-Recursive functions are closed under definitions of functions with regular minimalization of bounded formulas.

Proof. Consider a function f defined by regular minimalization

$$
f(\vec{x})=\mu y[\varphi[\vec{x}, y]]
$$

from μ-recursive functions and predicates. Here φ is a bounded formula. We can define f by the following series of definitions:

$$
\begin{aligned}
P(y, \vec{x}) & \leftrightarrow \varphi[\vec{x}, y] \\
f(\vec{x}) & =\mu y\left[P_{*}(y, \vec{x})=1\right] .
\end{aligned}
$$

By Thm. 2.4.12 the characteristic function P_{\star} of the predicate P is μ-recursive and so is the function f.
2.4.15 Addition is μ-recursive. First note that if $z \neq 0$ then we have

$$
\begin{aligned}
x+y=z & \Leftrightarrow(x+y) z=z^{2} \Leftrightarrow(x+y) z+x y z^{2}+1=z^{2}+x y z^{2}+1 \Leftrightarrow \\
& \Leftrightarrow(x z+1)(y z+1)=(x y+1) z^{2}+1 .
\end{aligned}
$$

Addition can be thus derived as a μ-recursive function by regular minimalization of its graph:

$$
x+y=\mu z[z=0 \wedge x=0 \wedge y=0 \vee z \neq 0 \wedge S(x z) S(y z)=S(S(x y) z z)] .
$$

2.4.16 Modified subtraction is μ-recursive. The binary modified subtraction function $x \dot{\dot{-}}$ is μ-recursive by bounded minimalization:

$$
x \dot{-} y=\mu z \leq x[x=y+z] .
$$

2.4.17 Integer division is μ-recursive. We define the integer division function $x \div y$ as μ-recursive by bounded minimalization:

$$
x \div y=\mu q \leq x[x<(q+1) y] .
$$

2.4.18 Pairing function is μ-recursive. The modified Cantor pairing function $\langle x, y\rangle$ is μ-recursive by explicit definition:

$$
\langle x, y\rangle=(x+y)(x+y+1) \div 2+x+1
$$

2.4.19 Projection functions are μ-recursive. Both projection functions of the pairing function are μ-recursive by bounded minimalization:

$$
\begin{aligned}
& \pi_{1}(x)=\mu y<x[\exists z<x x=\langle y, z\rangle] \\
& \pi_{2}(x)=\mu z<x[\exists y<x x=\langle y, z\rangle] .
\end{aligned}
$$

2.4.20 Lemma The unary iteration $\pi_{2}^{n}(x)$ of the second projection:

$$
\begin{aligned}
\pi_{2}^{0}(x) & =x \\
\pi_{2}^{n+1}(x) & =\pi_{2} \pi_{2}^{n}(x)
\end{aligned}
$$

is a μ-recursive function.
Proof. Very hard. It will be supplied later.
2.4.21 Sequence length is μ-recursive. We clearly have $\pi_{2}^{x}(x)=0$ and thus $\forall x \exists n \pi_{2}^{n}(x)=0$. Hence, the function $L(x)$ yielding the length of finite sequences is μ-recursive by regular minimalixzation:

$$
L(x)=\mu n\left[\pi_{2}^{n}(x)=0\right] .
$$

2.4.22 Indexing function is μ-recursive. The binary sequence indexing function $(x)_{i}$ yielding the $(i+1)$-st element of the sequence x is a μ-recursive function by explicit definition

$$
(x)_{i}=\pi_{1} \pi_{2}^{i}(x)
$$

2.4.23 Lemma μ-Recursive functions are closed under primitive recursion.

Proof. Let the $(n+1)$-ary function f be defined by primitive recursion from μ-recursive functions g and h :

$$
\begin{aligned}
f(0, \vec{y}) & =g(\vec{y}) \\
f(x+1, \vec{y}) & =h(x, f(x, \vec{y}), \vec{y}) .
\end{aligned}
$$

We will derive f as μ-recursive with the help of its course of values function:

$$
\bar{f}(x, \vec{y})=\langle f(x, \vec{y}), f(x-1, \vec{y}), \ldots, f(2, \vec{y}), f(1, \vec{y}), f(0, \vec{y}), 0\rangle .
$$

The graph of the course of values function is μ-recursive by explicit definition:

$$
\begin{aligned}
\bar{f}(x, \vec{y})=s \leftrightarrow & L(s)=x+1 \wedge(s)_{x-0}=g(\vec{y}) \wedge \\
& \forall u<x(s)_{x-(u+1)}=h\left(u,(s)_{x-u}, \vec{y}\right) .
\end{aligned}
$$

The function \bar{f} is μ-recursive by regular minimalization of its graph and thus the following explicit definition derives f as a μ-recursive function:

$$
f(x, \vec{y})=(\bar{f}(x, \vec{y}))_{0} .
$$

2.4.24 Theorem μ-Recursive functions are primitively recursively closed.

Proof. The class of μ-recursive functions contains the successor function $S(x)=x+1$ and the zero function $Z(x)=0$ by Par. 2.4.4 and Par. 2.4.5, respectively, and it is closed under primitive recursion by Thm. 2.4.23.

