
2.4 Primitive Recursion by Regular Minimalization

2.4.1 Alternative definition of µ-recursive functions. The class of µ-
recursive functions is generated from the identity functions In

i (x⃗) = xi, the
multiplication function xy, and from the characteristic function x <∗ y of the
comparision predicate x < y by composition and regular minimalization of
functions.

2.4.2 Lemma µ-Recursive functions are closed under explicit definitions of
functions without constants.

2.4.3 Lemma µ-Recursive functions are closed under regular minimaliza-
tion of the form f(x⃗) = µy[τ[x⃗, y] = 1], where the term τ is without constants.

2.4.4 Successor function is µ-recursive. We have ∀x∃y x < y and the
number x + 1 is the least such number y. Hence the successor function
S(x) = x + 1 is µ-recursive by the following regular minimalization:

S(x) = µy[(x <∗ y) = 1].

2.4.5 Unary constant functions are µ-recursive. Clearly ∀x∃y x < x + 1
and 0 is the least such number y. Hence the zero function Z(x) = 0 is µ-
recursive function by the following regular minimalization:

Z(x) = µy[(x <∗ S(x)) = 1].

We can now define all unary constant functions Cm(x) = m as µ-recursive
functions by a series of explicit definitions (C0 = Z):

Cm+1(x) = Cm(x) + 1.

2.4.6 Lemma µ-Recursive functions are closed under explicit definitions of
functions.

2.4.7 Lemma µ-Recursive functions are closed under regular minimaliza-
tion of the form f(x⃗) = µy[τ[x⃗, y] = 1].

2.4.8 Boolean functions are µ-recursive. The boolean functions ¬∗x
and x ∧∗ y are µ-recursive by explicit definitions:

(¬∗x) = (x <∗ 1)
(x ∧∗ y) = (¬∗¬∗xy).

The remaining boolean functions are derived similarly as µ-recursive.



2.4.9 Comparision predicates are µ-recursive. The binary predicates
x ≤ y and x = y are µ-recursive by explicit definitions of their characteristic
functions:

(x ≤∗ y) = (¬∗y <∗ x)
(x =∗ y) = (x ≤∗ y ∧∗ y ≤∗ x).

2.4.10 Case discrimination function is µ-recursive. The graph of the
case discrimination function D satisfies the following obvious property:

D(x, y, z) = v↔ x ≠ 0 ∧ v = y ∨ x = 0 ∧ v = z.

We define D as µ-recursive by regular minimalization:

D(x, y, z) = µv[(¬∗x =∗ 0 ∧∗ v =∗ y ∨∗ x =∗ 0 ∧∗ v =∗ z) = 1].

2.4.11 Lemma µ-Recursive functions are closed under the operator of bounded
minimalization.

Proof. Let the (n+1)-ary function f be defined by bounded minimalization:

f(x, y⃗) = µz ≤ x[g(z, y⃗) = 1]

from a µ-recursive function g. We clearly have

∀x∀y⃗∃z(z ≤ x→ g(z, y⃗) = 1)

since x + 1 is one of such numbers z. Hence the auxiliary (n+1)-ary function
h is defined by regular minimalization as a µ-recursive function:

h(x, y⃗) = µz[(z ≤∗ x→∗ g(z, y⃗) =∗ 1) = 1].

Note that h(x, y⃗) yields the smallest number z ≤ x such that g(z, y⃗) = 1 holds
or x+ 1 if there is no such number. We now define f by explicit definition as
a µ-recursive function:

f(x, y⃗) = D((h(x, y⃗) ≤∗ x), h(x, y⃗),0). ⊓⊔

2.4.12 Lemma µ-Recursive functions are closed under explicit definitions
of predicates with bounded formulas.

2.4.13 Lemma µ-Recursive functions are closed under definitions of func-
tions with bounded minimalization.

2.4.14 Lemma µ-Recursive functions are closed under definitions of func-
tions with regular minimalization of bounded formulas.



Proof. Consider a function f defined by regular minimalization

f(x⃗) = µy[ϕ[x⃗, y]]

from µ-recursive functions and predicates. Here ϕ is a bounded formula. We
can define f by the following series of definitions:

P (y, x⃗)↔ ϕ[x⃗, y]
f(x⃗) = µy[P∗(y, x⃗) = 1].

By Thm. 2.4.12 the characteristic function P∗ of the predicate P is µ-recursive
and so is the function f . ⊓⊔

2.4.15 Addition is µ-recursive. First note that if z ≠ 0 then we have

x + y = z⇔ (x + y)z = z2 ⇔ (x + y)z + xyz2 + 1 = z2 + xyz2 + 1⇔
⇔ (xz + 1)(yz + 1) = (xy + 1)z2 + 1.

Addition can be thus derived as a µ-recursive function by regular minimal-
ization of its graph:

x + y = µz[z = 0 ∧ x = 0 ∧ y = 0 ∨ z ≠ 0 ∧ S(xz)S(yz) = S(S(xy)zz)].

2.4.16 Modified subtraction is µ-recursive. The binary modified sub-
traction function x � y is µ-recursive by bounded minimalization:

x � y = µz ≤ x[x = y + z].

2.4.17 Integer division is µ-recursive. We define the integer division
function x ÷ y as µ-recursive by bounded minimalization:

x ÷ y = µq ≤ x[x < (q + 1)y].

2.4.18 Pairing function is µ-recursive. The modified Cantor pairing
function ⟨x, y⟩ is µ-recursive by explicit definition:

⟨x, y⟩ = (x + y)(x + y + 1) ÷ 2 + x + 1.

2.4.19 Projection functions are µ-recursive. Both projection functions
of the pairing function are µ-recursive by bounded minimalization:

π1(x) = µy < x[∃z < xx = ⟨y, z⟩]
π2(x) = µz < x[∃y < xx = ⟨y, z⟩].

2.4.20 Lemma The unary iteration πn
2 (x) of the second projection:



π0
2(x) = x

πn+1
2 (x) = π2 πn

2 (x)

is a µ-recursive function.

Proof. Very hard. It will be supplied later. ⊓⊔

2.4.21 Sequence length is µ-recursive. We clearly have πx
2(x) = 0 and

thus ∀x∃n πn
2 (x) = 0. Hence, the function L(x) yielding the length of finite

sequences is µ-recursive by regular minimalixzation:

L(x) = µn[πn
2 (x) = 0].

2.4.22 Indexing function is µ-recursive. The binary sequence indexing
function (x)i yielding the (i+1)-st element of the sequence x is a µ-recursive
function by explicit definition

(x)i = π1πi
2(x).

2.4.23 Lemma µ-Recursive functions are closed under primitive recursion.

Proof. Let the (n+1)-ary function f be defined by primitive recursion from
µ-recursive functions g and h:

f(0, y⃗) = g(y⃗)
f(x + 1, y⃗) = h(x, f(x, y⃗), y⃗).

We will derive f as µ-recursive with the help of its course of values function:

f(x, y⃗) = ⟨f(x, y⃗), f(x − 1, y⃗), . . . , f(2, y⃗), f(1, y⃗), f(0, y⃗),0⟩.

The graph of the course of values function is µ-recursive by explicit definition:

f(x, y⃗) = s↔ L(s) = x + 1 ∧ (s)x−0 = g(y⃗) ∧
∀u < x (s)x�(u+1) = h(u, (s)x�u , y⃗).

The function f is µ-recursive by regular minimalization of its graph and thus
the following explicit definition derives f as a µ-recursive function:

f(x, y⃗) = (f(x, y⃗))
0
. ⊓⊔

2.4.24 Theorem µ-Recursive functions are primitively recursively closed.

Proof. The class of µ-recursive functions contains the successor function
S(x) = x + 1 and the zero function Z(x) = 0 by Par. 2.4.4 and Par. 2.4.5,
respectively, and it is closed under primitive recursion by Thm. 2.4.23. ⊓⊔


