12 1 Primitive Recursive Functions

1.3 Primitive Recursive Predicates and Bounded
Minimalization

1.3.1 Case discrimination function is primitive recursive. The case
discrimination function D is defined by

D(z,y,z)=veox+0Av=yve=0Av=2z.

The function is primitive recursive by the following explicit definition which
uses monadic discrimination on the first argument:
D(0,y,2) =2
D(z+1,y,2) =y.
1.3.2 Equality predicate is primitive recursive. The characteristic

function x =, y of the equality predicate x = y is primitive recursive by the
following explicit definition:

(r:*y)=D(r;y+(y;x),0,1).

This is because we have r =y < x -y + (y+z) =0.

1.3.3 Boolean functions are primitive recursive. The boolean func-
tions are defined by
(msx)=yeox+0Ay=0ve=0Ay=1
(xArvy)=2ox2+0Ay+0Az=1v(z=0vy=0)Az=0
(zviy)=z2<(r£0vy+0)Az=1ve=0Ay=0A2z=0
(z—vy)=2<(r=0vy0)Az=1ve+0Ay=0Az=0
(xosy)=2o0£0Ay+0r2=1vz=0Ay=0Az=1vVv
z#0Ay=0A2=0ve=0Ay+0Az2=0.
Note that we identify non-zero values with truth and 0 with falsehood.
The functions are primitive recursive by the following explicit definitions:
(=+x) =D(z,0,1)
(z A y) = D(2,D(y, 1,0),0)
(Ve y) = (2e (e Ak =ey))
(x >4 y) = (m2xVay)
(20 y) = (x>0 y) A (Y= 1))

1.3.4 Bounded minimalization. For every n > 1, the operator of bounded
minimalization takes an (n+1)-ary function g and yields an (n+1)-ary func-
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tion f satisfying:

the least z < x s.t. g(z,9) =1 holds if 3z2<zg(z,79) = 1;

0 if there is no such number.

This is usually abbreviated to
f(x,9) = pz<zfg(z,9) = 1].

1.3.5 Theorem Primitive recursive functions are closed under the operator
of bounded minimalization.

Proof. Suppose that f is obtained by the bounded minimalization

f(,9) =nz<zlg(z,9) =1]

of a primitive recursive function g. Clearly we have

g(f(zvg)vg) =1 _)f(x+1ay) =f(xag)
g(f(z,5),5)#1agz+1,5)=1— f(z+1,§) =z +1
9(f(2,9),5) #1ag(z+1,5) 1> f(z+1,5) =0.

We derive f as a p.r. function by the following primitive recursive definition:

£(0,5) =0
f(@+1,5) = D((9(f(2,5),5) = 1), f(,5), D((9(z + 1,§) =, 1), 2+ 1,0)).

O

1.3.6 Formulas with bounded quantifiers. Bounded quantifiers are for-
mulas of the form Vz <7 and Jx < 7¢, where the variable x is not free
in 7. The bounded quantifiers abbreviate the formulas Vx(z < 7 - ¢) and
Jx(x < 7 A ), respectively. Strict bounded quantifiers Vo <7 and 3z <7
are defined similarly.

Bounded formulas are formulas which are built from atomic formulas by
propositional connectives and bounded quantifiers.

1.3.7 Explicit definitions of predicates with bounded formulas. FEz-
plicit definitions of predicates with bounded formulas are of a form

P(xy,...,2n) < @[x1, ..., 20],

where ¢ is a bounded formula with at most the indicated n-tuple of variables
free and without any application of the predicate symbol P.

Every such definition can be viewed as a function operator which takes
all functions occurring in the formula ¢ (this also includes the characteristic
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functions of every predicate occurring in ¢) and which yields as a result the
characteristic function P, of the predicate P.

1.3.8 Theorem Primitive recursive predicates are closed under explicit def-
initions of predicates with bounded formulas.

Proof. We show that the class of primitive recursive predicates is closed under
explicit definitions P(Z) < ¢[Z] of n-ary predicates by induction on the
structure of bounded formulas .

If ¢ = 7 = p then the characteristic function P, of P is primitive recursive
by the following explicit definition: P, (Z) = (7[Z] =« p[Z]).

If ¢ = R(7) then, since R, is primitive recursive, we define P, as primitive
recursive by explicit definition: P, (%) = R.(7[Z]).

If ¢ = =1 then we use IH and define an n-ary p.r. predicate R by explicit
definition: R(Z) < ¢[Z]. Now we define P, as primitive recursive by the
following explicit definition: Py (%) = (=, R+ (Z)).

If ¢ = 1 A x then we obtain as primitive recursive two auxiliary n-ary
predicates R(Z) < [Z] and Q(Z) < x[Z] by IH. We define P. as primitive
recursive by explicit definition: P (Z) = (R+(Z) Ax Q4 (Z)).

If ¢ = Iy <7¢Y[y,Z] then we use TH and define an auxiliary (n + 1)-ary
p.r. predicate R by explicit definition: R(y,Z) < [y, Z]. Then we define an
auxiliary witnessing p.r. function f by bounded minimalization:

f(2,2) =py <2z[R.(y,2) = 1].

The characteristic function P, of the predicate P has the following explicit
definition: P, (%) = R.(f(7[Z],%),%) as a p.r. function.
The remaining cases are treated similarly. ]

1.3.9 Comparison predicates are primitive recursive. The standard
comparison predicates are primitive recursive by explicit definitions:

r<y< Jz<yr==2 2y y<x

r<y<eytx x>y y<z.

1.3.10 Definitions by bounded minimalization. Definitions of func-
tions by bounded minimalization are of the form

. the least y < 7[Z] s.t. p[Z,y] holds if Jy <7[Z] ¢[Z,y];
f(@)= . .
0 if there is no such number.

Here 7[Z] is a term and ¢[Z, y] a bounded formula with at most the indicated
variables free, both without any application of the symbol f. Every such
definition can be viewed as a function operator taking all functions and the
characteristic functions of all predicates occurring in either the term 7 or
formula ¢ and yielding the function f.
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In the sequel we abbreviate the definition to
£(@) =y <7[2][0[Z,y]]-

We permit also strict bounds in definitions by bounded minimalization; i.e.
we allow definitions of the form

(&) =y <7[2][0[2,y]]
as abbreviation for f(2) = py <[y < 7[Z] A ¢[Z,y]]-

1.3.11 Theorem Primitive recursive functions are closed under definitions
of functions with bounded minimalization.

Proof. Consider an n-ary function f defined by the bounded minimalization
(@) =y < 73)[ e[z, y]]

from primitive recursive functions and predicates. We can define f by the
following series of definitions:

P(y,2) < ¢[Z,y]
9(2,%) = ny < 2[Pu(y,2) = 1]
f(@) = g(r[7], 7).

By Thm. 1.3.8 and Thm. 1.3.5, the characteristic function P, of P and the
auxiliary function g are primitive recursive, and so is the function f. ]

1.3.12 Integer division is primitive recursive. The integer division
function = + y is a p.r. function by the following bounded minimalization:

r+y=pug<zfz<(g+1)y].

1.3.13 Remainder is primitive recursive. The binary remainder func-
tion z mod y is a p.r. function by the following explicit definition:

zmody =D(y,z = (z+y)y,0).

FExercises

1.3.14 Exercise. Show that the predicate of divisibility
x|y Jzy=1xz

is primitive recursive.
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Solution.
x|y Jz<yy=xz.

1.3.15 Exercise. Show that the predicate Prime(x) holding of prime num-
bers is primitive recursive.

1.3.16 Exercise. Show that the integer square root function
[ﬂjzyey2gx<(y+1)2

is primitive recursive.



