...
Clausal Language (ver. 5.81.21, by P.J. Voda, J. Komara, J. Kluka)
Module  Ex04b

Included module  Standard

Included module  Mtex

Included module  Mtexrc

Included module  Maux

Remark 

Literature.

  • [1] J. Komara. Recursive Functions. Downloadable lecture notes available through the web page of the course.

  • [2] J. Komara and P. J. Voda. Lecture Notes in Theory of Computability. 2001.

  • [3] J. Komara and P. J. Voda. Metamathematics of Computer Programming. 2001.

  • [4] I. Korec. Úvod do teórie algoritmov. Skriptá MFF UK, 1981.


Remark 

[CL] CL-TeX.


Application display Tex_f2_s / 2: s

Application display Tex_f2_rec_rsb_x / 2: x #1 #2

Application display Tex_f3_rec_rsb_y / 3: y #1 ( #2 , #3 )

Application display Tex_f3_rec_rsb_cvsf_f / 3: f ( #2 , #3 ) [ #1 ..)

Application display Tex_f3_s1 / 3: s1

Application display Tex_f3_s2 / 3: s2

Application display Tex_f2_pp_cntr_f / 2: f ( #1 , #2 )

Application display Tex_f3_h1 / 3: h1 ( #1 , #2 , #3 )

Application display Tex_f3_h2 / 3: h2 ( #1 , #2 , #3 )

Application display Tex_f2_s1 / 2: s1

Application display Tex_f2_s2 / 2: s2

Application display Tex_f2_char_r / 2: R* ( #1 , #2 )

Remark 

Chapter. Primitive Recursive Functions.


Remark 

Section. Recursion with Parameter Substitution.


Remark 

Subsection. Recursion with Parameter Substitution: Case k=1 and One Parameter.


Theory  Recursion_with_parameter_substitution

Function  G displayed by Tex_f1_g as  g ( #1 )

Function  H1  / 3 displayed by Tex_f3_h as  h ( #1 , #2 , #3 )

Function  Sb  / 2 displayed by Tex_f2_s as  s ( #1 , #2 )

Remark 

Exercise. (3 bonus points) Show that if g (y) , h (x,z,y) and s (x,y) are all primitive recursive then so is f (x,y) defined by


Function  F  / 2 displayed by Tex_f2_f as  f ( #1 , #2 )
f (0, y ) =g (y) f ( x +1, y ) =h (x,f (x,s (x,y) ) ,y)

Remark 

Hint. Derive f (x,y) as a p.r. function with the help of its course of values function f (x,y) :


Function  Cvf  / 2 displayed by Tex_f2_rec_cvf_f as  f ( #1 , #2 )
f (0, y ) =f (0,y) ,0 f ( x +1, y ) =f (x+1,y) , f (x,s (x,y) )

Remark 

Proof.


Remark 

Selector for recursive arguments. Show that the selector function xi (x) is primitive recursive.


Function  X  / 2 displayed by Tex_f2_rec_rsb_x as  x #1 ( #2 )
x i ( x ) =?

Remark 

Selector for parameters. Show that the selector function yi (x,y) is primitive recursive.


Function  Y  / 3 displayed by Tex_f3_rec_rsb_y as  y #1 ( #2 , #3 )
y i ( x , y ) =?

Remark 

Partial course of values sequence. Show that the auxiliary ternary function f (x,y) [i ..) such that

ix f (x,y) [i ..) = f ( xi (x) , yi (x,y) )

is primitive recursive.


Function  Cvsf  / 3 displayed by Tex_f3_rec_rsb_cvsf_f as  f ( #2 , #3 ) [ #1 ..)
f ( x , y ) [ i ..) =?

Remark 

Course of values function. Show that the function f (x,y) is primitive recursive.


Function  Cvf_is_primrec  / 2 displayed by Tex_f2_rec_cvf_f as  f ( #1 , #2 )
f ( x , y ) =?

Remark 

Final step. Show that the function f (x,y) is primitive recursive.


Function  F_is_primrec  / 2 displayed by Tex_f2_f as  f ( #1 , #2 )
f ( x , y ) =?

End of theory  Recursion_with_parameter_substitution

Remark 

[CL] Remark. You can test your solution by interpreting the theory. Choose non-local interpretation.


Remark 

Subsubsection. Contraction of Parameters.


Theory  Contraction_of_parameters

Function  G  / 2 displayed by Tex_f2_g as  g ( #1 , #2 )

Function  H1  / 4 displayed by Tex_f4_h as  h ( #1 , #2 , #3 , #4 )

Function  Sb1  / 3 displayed by Tex_f3_s1 as  s1 ( #1 , #2 , #3 )

Function  Sb2  / 3 displayed by Tex_f3_s2 as  s2 ( #1 , #2 , #3 )

Remark 

Exercise. Show that if g ( y1 , y2 ) , h (x,z, y1 , y2 ) , s1 (x, y1 , y2 ) and s2 (x, y1 , y2 ) are all primitive recursive then so is f (x, y1 , y2 ) defined by


Function  F  / 3 displayed by Tex_f3_f as  f ( #1 , #2 , #3 )
f (0, y1 , y2 ) =g ( y1 , y2 ) f ( x +1, y1 , y2 ) =h (x,f (x, s1 (x, y1 , y2 ) , s2 (x, y1 , y2 ) ) , y1 , y2 )

Remark 

Hint. Derive the function as primitive recursive with the help of its parameter contraction function f (x,y) :

f (x, y1 , y2 ) =f (x, y1 , y2 )

Remark 

Proof.


Function  Cf  / 2 displayed by Tex_f2_pp_cntr_f as  f ( #1 , #2 )
f ( x , y ) =?

Function  F_is_primrec  / 3 displayed by Tex_f3_f as  f ( #1 , #2 , #3 )
f ( x , y1 , y2 ) =?

End of theory  Contraction_of_parameters

Remark 

[CL] Remark. You can test your solution by interpreting the theory. Choose non-local interpretation and set component identifier suffix to the string _cp


Remark 

Subsubsection. Case Analysis.


Theory  Case_analysis

Function  G displayed by Tex_f1_g as  g ( #1 )

Function  H1  / 3 displayed by Tex_f3_h1 as  h1 ( #1 , #2 , #3 )

Function  H2  / 3 displayed by Tex_f3_h2 as  h2 ( #1 , #2 , #3 )

Function  Sb1  / 2 displayed by Tex_f2_s1 as  s1 ( #1 , #2 )

Function  Sb2  / 2 displayed by Tex_f2_s2 as  s2 ( #1 , #2 )

Predicate  R  / 2

Function  Rf  / 2 displayed by Tex_f2_char_r as  R* ( #1 , #2 )
R* ( x , y ) =1 R (x,y) R* ( x , y ) =0 ¬R (x,y)

Remark 

Exercise. Show that if g (y) , h1 (x,z,y) , h2 (x,z,y) , s1 (x,y) , s2 (x,y) and R (x,y) are all primitive recursive then so is f (x,y) defined by


Function  F  / 2 displayed by Tex_f2_f as  f ( #1 , #2 )
f (0, y ) =g (y) f ( x +1, y ) = h1 (x,f (x, s1 (x,y) ) ,y) R (x,y) f ( x +1, y ) = h2 (x,f (x, s2 (x,y) ) ,y) ¬R (x,y)

Remark 

Proof.


Function  Hh  / 3 displayed by Tex_f3_h as  h ( #1 , #2 , #3 )
h ( x , z , y ) =?

Function  Sb  / 2 displayed by Tex_f2_s as  s ( #1 , #2 )
s ( x , y ) =?

Function  F_is_primrec  / 2 displayed by Tex_f2_f as  f ( #1 , #2 )
f ( x , y ) =?

End of theory  Case_analysis

Remark 

[CL] Remark. You can test your solution by interpreting the theory. Choose non-local interpretation and set component identifier suffix to the string _ca


Remark 

Subsection. General Case.


Remark 

Theorem. Primitive recursive functions are closed under recursion with parameter substitution.


Query:


Results:

Heap used: 440644 free: 133775064
Time used: 0:0:0:76