
10 Interpreter of Primitive Recursive Functions

10.1 Primitive recursive function symbols. For every n ≥ 1, the class
PRn of n-ary primitive recursive function symbols (PR-function symbols for
short) is defined inductively as follows:

– Z ∈ PR1, S ∈ PR1 and In
i ∈ PRn for 1 ≤ i ≤ n,

– if h ∈ PRm and g1, . . . , gm ∈ PRn then Compn
m(h, g1, . . . , gm) ∈ PRn,

– if g ∈ PRn and h ∈ PRn+2 then Recn+1(g, h) ∈ PRn+1.

We set PR =
⋃

n≥1 PRn.
We interprete n-ary PR-function symbols by n-ary functions. The in-

terpretation fN of a PR-function symbol f is defined by induction on the
structure of PR-function symbols as follows:

– ZN is the zero function Z(x) = 0,
– SN is the successor function S(x) = x + 1,
– (In

i )N is the identity function In
i (~x) = xi,

–
(
Compn

m(h, g1, . . . , gm)
)N is the n-ary function defined by composition:

(
Compn

m(h, g1, . . . , gm)
)N (~x) = hN

(
gN1 (~x), . . . , gNm (~x)

)
,

–
(
Recn(g, h)

)N is the n-ary function defined by primitive recursion:

(
Recn(g, h)

)N (0, ~y) = gN (~y)
(
Recn(g, h)

)N (x + 1, ~y) = hN
(
x,

(
Recn(g, h)

)N (x, ~y), ~y
)
.

In the sequel we will often drop the superscript in fN and write shortly f
instead of fN .

It is easy to see that primitive recursive functions are exactly those func-
tions which are denoted by PR-function symbols. In other words, the class
of primitive recursive functions is just the set

⋃

n≥1

{fN | f ∈ PRn}.

10.2 Arithmetization of primitive recursive function symbols. Now
we consider the problem of coding of PR-function symbols into N. The sym-
bols are arithmetized with the help of the following pair constructors:

Z = 〈0, 0〉 (zero)
S = 〈1, 0〉 (successor)
I n

i = 〈2, n, i〉 (identities)
〈〈〈g, gs〉〉〉 = 〈3, g, gs〉 (contraction)
Compn

m(h, gs) = 〈4, n, m, h, gs〉 (composition)
Recn(g, h) = 〈5, n, g, h〉. (primitive recursion)

1



The arities of the constructors are as shown in their definitions. We postulate
that the binary constructor 〈〈〈g, gs〉〉〉 groups to the right and has the same
precedence as the pairing function

〈
x, y

〉
.

The assignment of the code pfq to the PR-function symbol f is defined
inductively on the structure of PR-function symbols:

pZq = Z

pSq = S

pIn
i q = I n

i

pCompn
m(h, g1, . . . , gm)q = Compn

m

(
phq, 〈〈〈pg1q, . . . , pgmq〉〉〉)

pRecn(g, h)q = Recn(pgq, phq).

Note that the binary operator 〈〈〈g, gs〉〉〉 plays a similar role as the pairing func-
tion

〈
x, y

〉
does for n-tuples of natural numbers. Its sole purpose is to repre-

sent the m-tuple pg1q, . . . , pgmq of the codes of PR-function symbols by its
contraction which is the number of the form 〈〈〈pg1q, . . . , pgmq〉〉〉.

10.3 Interpreter of primitive recursive functions. In this paragraph
we give a definition of a binary function e • x which effectively realizes the
interpretation of PR-function symbols. The application pfq • 〈x1, . . . , xn〉
takes the code of an n-ary PR-function symbol f and the contraction of an
n-tuple x1, . . . , xn of numbers, and yields the number f(x1, . . . , xn) as the
result, ie

pfq • 〈x1, . . . , xn〉 = f(x1, . . . , xn).

To improve readibility we will write e1 • e2 • x instead of e1 • (e2 • x), that is
we let the operator associates right.

The interpreter e • x of primitive recursive functions is defined by

Z • x = 0
S • x = x + 1
I n

i • x = [x]ni
〈〈〈g, gs〉〉〉 • x = 〈g • x, gs • x〉
Compn

m(h, gs) • x = h • gs • x
Recn(g, h) • 〈0, y〉 = g • y
Recn(g, h) • 〈

x + 1, y
〉

= h • 〈
x,Recn(g, h) • 〈x, y〉, y〉

.

This is an example of regular recursive definition which is into the lexico-
graphical order (x1, y1) <lex (x2, y2) of natural numbers. This is because the
first argument of each recursive application except the one in the last racur-
sive clause goes down. In the recursive application of the last recursive clause
the first argument Recn(g, h) stays the same and the second argument goes
down since 〈x, y〉 < 〈x + 1, y〉. We have therefore

(
Recn(g, h), 〈x, y〉) <lex

(
Recn(g, h), 〈x + 1, y〉).

2


