
Ján Komara and Paul J. Voda

Lecture Notes in Theory of
Computability

Institute of Informatics, Comenius University,

Bratislava

December 5, 2001

Preface

See the preface of [Vod00].

VI

Table of Contents

Preface . V

1. Functions . 1
1.1 Introduction . 1
1.2 Basic Functions . 1
1.3 Pairing Functions . 4
1.4 Partial Functions . 12
1.5 Exercises . 14

2. Function Operators . 15
2.1 Inductively Defined Function Classes . 15
2.2 Explicit Definitions . 17
2.3 Recursive Definitions . 22
2.4 Clausal Definitions . 38
2.5 Exercises . 50

3. Primitive Recursive Functions . 51
3.1 Primitive Recursion . 51
3.2 Course of Values Recursion . 56
3.3 Course of Values Recursion with Measure 63
3.4 Inside Primitive Recursive Functions . 75
3.5 Exercises . 79

4. Arithmetization of Data Structures . 81
4.1 Arithmetization of Word Domains . 81
4.2 Arithmetization of Finite Sequences . 81
4.3 Arithmetization of Trees . 81
4.4 Arithmetization of Symbolic Expressions 81
4.5 Exercises . 81

5. Recursive Functions . 83
5.1 Beyond Primitive Recursion . 83
5.2 Recursive Functions . 89
5.3 µ-Recursive Functions . 101

5.4 Inside Recursive Functions . 109
5.5 Exercises . 109

6. Computable Functions . 113
6.1 Turing Machines . 113
6.2 Equivalence of Turing Machines and Recursiveness 115
6.3 Turing-Church Theses and Computable Functions 119
6.4 Other Models of Computation . 120
6.5 Exercises . 120

7. Beyond Computability . 121
7.1 Decidable and Undecidable Predicates . 121
7.2 Semidecidable Predicates . 129
7.3 Arithmetical Hierarchy . 138
7.4 Degrees of Unsolvability . 138
7.5 Exercises . 138

Bibliography . 140

Index of Notation . 143

Index . 145

VIII

List of Figures

1.1 Cantor’s pairing function . 6
1.2 Enumeration of binary trees . 7
1.3 Suitable pairing function . 8

3.1 Arithmetic derivation of the pairing function 58
3.2 Lists . 59

1. Functions

1.1 Introduction

See the paragraphs 1.1.10 - 1.1.16 in [Vod00].

1.2 Basic Functions

1.2.1 Functions. If we do not state explicitly n-ary functions are over the
domain of natural numbers N = {0, 1, 2, . . . } with n ≥ 1.

1.2.2 Terms. We will deal with syntactic objects called terms. Terms are
expressions formed as sequences of concrete symbols. The terms we are inter-
ested in are formed from variables and constants by applications of function
symbols and simple conditionals (see below). We use τ, ρ, . . . as syntactic
variables ranging over terms. We write τ1 ≡ τ2 if the two terms are iden-
tical sequences of symbols. We denote by ‖τ‖ the size, i.e. the number of
operations, of the term τ .

Simple conditionals are terms of a form Ds(τ1, τ2, τ3) which can be visu-
alized as

if τ1 6= 0 then τ2 else τ3

by the notation common in computer programming.
We say that the term τ is in x1, . . . , xn if all its free variables are from

among the variables x1, . . . , xn. Closed terms do not have free variables.
We will write ~x in contexts like f(~x) where f is an n-ary function as

an abbreviation for a sequence of n variables, i.e. f(x1, · · · , xn). Generally,
f(~τ) will be an abbreviation for f(τ1, . . . , τn) where τ1, . . . , τn is a sequence
of terms. We will also write f g(~τ) instead of f(g(~τ)).

1.2.3 Substitution in terms. When we write τ [f ; ~x] we indicate that the
term τ may apply the n-ary function symbol f and variables from among the
m-variables ~x. For an n-ary function symbol g and for an m-tuple of terms
~ρ we write τ [g; ~ρ] for the term obtained from τ by the substitution of terms
~ρ for the corresponding variables of ~x as well as by the replacement of all
applications f(~τ) by applications g(~τ).

We will also use the special lambda notation τ [λ̇~y.ρ[~y]; ~x] where ~y are n
variables for the term obtained from τ by the replacement of all applications
f(~τ) by terms ρ[~τ]. Note that we have τ [g; ~x] ≡ τ [λ̇~y.g(~y); ~x].

1.2.4 Formulas. We let all binary propositional connectives in formulas
group to the right. We assign the highest precedence to the quantifiers ∀x,
∃y, and to the negation ¬. Next lower precedence has the conjunction ∧ and
then the disjunction ∨. The connectives of implication → and equivalence ↔
have the lowest precedence. The propositional constants are > (true) and ⊥
(falsehood). By ∀φ we denote the universal closure of the formula φ.

Bounded quantifiers are formulas of forms ∃x≤ τ φ and ∀x≤ τ φ, where
the variable x does not occur freely in τ . Bounded quantifiers are abbrevi-
ations for the formulas ∃x(x ≤ τ ∧ φ) and ∀x(x ≤ τ → φ) respectively. We
permit also strict bounds on existential quantifiers: ∃x < τ φ as abbreviation
for ∃x < τ (x 6= τ ∧ φ). Strict bounds on universal quantifiers are similar.

1.2.5 Modified subtraction. The domain of natural numbers is not closed
under the operation of subtraction. Instead of subtraction we use the binary
modified subtraction function x .− y which is over N and satisfies:

x .− y =

{
x− y if x ≥ y,
0 otherwise.

1.2.6 Integer division and remainder. The domain of natural number-
s is not closed under the operation of division. Instead of division we use
the binary integer division x ÷ y function, which together with the binary
remainder function x mod y, satisfies:

y > 0 → x = (x÷ y) · y + x mod y ∧ x mod y < y

x÷ 0 = x mod 0 = 0.

1.2.7 Successor and predecessor functions. The successor function S
satisfies S(x) = x + 1. The predecessor function Pr satisfies Pr(x) = x .− 1.
We will usually write τ + 1 instead of S(τ) and τ .− 1 instead of Pr(τ).

1.2.8 Identity functions. For each n ≥ 1 and 1 ≤ i ≤ n the n-ary identity
function In

i yields its i-th argument:

In
i (x1, . . . , xi, . . . , xn) = xi.

As a special case we set I = I1
1 and so we have I(x) = x.

1.2.9 Constant functions. For each n ≥ 1 the n-ary constant functions
are the n-ary functions Cn

m yielding m, i.e. Cn
m(~x) = m for every natural

numbers ~x. We customarily denote the unary constant functions C1
m by Cm,

2

i.e. we have Cm(x) = m. As a special case when m = 0 we set Z = C0 and
call it the zero function. So we have Z(x) = 0.

1.2.10 Case discrimination function. The ternary case discrimination
function D satisfies the following identities:

D(0, y, z) = z

D(x + 1, y, z) = y.

1.2.11 Boolean functions. The boolean negation function ¬∗x is such
that

¬∗x =

{
1 if x = 0,
0 otherwise.

The boolean conjunction function x ∧∗ y is such that

x ∧∗ y =

{
1 if x > 0 and y > 0,
0 otherwise.

The remaining boolean functions x ∨∗ y (disjunction), x→∗ y (implication),
and x↔∗ y (equivalence) are defined similarly.

1.2.12 Constant iteration of functions. For an unary function g and a
constant c we will write gc(τ) as an abbreviation for the c-fold iteration of
the application of g:

c︷ ︸︸ ︷
g g · · · g(τ).

We do not exclude the case c = 0 when g0(τ) is the same term as τ .

1.2.13 Predicates. If we do not state the domain of a predicate we are
concerned with n-ary predicates over N (n ≥ 1), i.e subsets of the cartesian
product Nn. Unary predicates are subsets of N.

We will denote by Rc the complement of an n-ary predicate R satisfying
Rc(~x) ↔ ¬R(~x). The graph of an n-ary function f is the (n+1)-ary predicate
f(~x) = y.

Characteristic function of an n-ary predicate R is the n-ary function R∗
such that

R∗(~x) =

{
1 if R(~x),
0 otherwise.

We denote by x =∗ y, x 6=∗ y, x≤∗ y, x <∗ y, x≥∗ y, and x >∗ y the charac-
teristic functions of the binary predicates x = y, x 6= y, x ≤ y, x < y, x ≥ y,
and x > y, respectively.

3

1.3 Pairing Functions

1.3.1 Introduction. Computer programming, in addition to the standard
numerical types, involves a large number of data structures such as n-tuples,
multidimensional arrays (vectors and matrices), lists, stacks, tables, trees,
graphs, etc. Standard programming languages (both imperative and function-
al ones) therefore work with quite complicated domains obtained by solutions
of recursive identities. We think that this is an unnecessary complication and
we look for a solution to the programming language LISP which offers excel-
lent coding of symbolic data structures into the domain of S-expressions. This
domain is freely generated from the set of countably many atoms by a binary
operation cons. There is no advantage in having infinitely many atoms, just
one, say, nil suffices. There is also no advantage of having S-expressions as a
separate domain. Nothing is lost and much is gained by the arithmetization
of the domain of S-expressions in N.

1.3.2 Pairing function. We obtain the coding convenience of LISP in the
domain of natural numbers by arithmetizing the domain from the preceding
paragraph with the help of a suitable binary pairing function (x, y). The
function, which will be defined in Par. 1.3.8, has the following properties:

(x1, y1) = (x2, y2) → x1 = x2 ∧ y1 = y2 (1)
x < (x, y) ∧ y < (x, y) (2)

x = 0 ∨ ∃y∃z x = (y, z). (3)

Property (1) is called the pairing property and it ensures that for every
number n in the range of the pairing function, i.e. such that n = (x, y) for
some x and y, the numbers x and y, called the first and second projections of
n respectively, are uniquely determined. The pairing property says that the
pairing function is an injection. From the property (2) we get 0 ≤ x < (x, y).
This means that 0 is not in the range of the pairing function and so it has
no projections, i.e.

0 6= (x, y). (4)

Thus the number 0 is an atom and plays the role of the atom nil of LISP.
Property (3) asserts that the pairing function is onto the set N \ {0}, i.e. that
0 is the only atom.

1.3.3 Pair induction. For any unary predicate R(x) we have the principle
of pair induction:

R(0) ∧ ∀x∀y(
R(x) ∧R(y) → R((x, y))

) → ∀xR(x),

i.e. in order to prove that R holds for all natural numbers it suffices to prove
R(0) and R((x, y)) under the inductive hypotheses R(x) and R(y).

4

The principle of pair induction is easily reduced to (mathematical) induc-
tion as follows. Assume R(0) and

∀x∀y(
R(x) ∧R(y) → R((x, y))

)
(1)

and prove

∀x(x < n → R(x)) (2)

by induction on n. In the base case, when n = 0, there is nothing to prove.
In the inductive case take any x such that x < n + 1 and consider two

cases. If x = 0 then we have R(x) from the assumption R(0). If x > 0 then we
have x = (v, w) for some numbers v and w by 1.3.2(3). Since v < x and w < x
by 1.3.2(2), we obtain R(v) and R(w) from IH (2). We then get R((v, w))
from (1). This ends the proof of (2) and we obtain ∀xR(x) by substituting
x + 1 for n in (2).

Instead of the unary predicate R(x) we can also use (n+1)-ary predicates
R(x, y1, . . . , xn) with parameters.

1.3.4 Pair recursion. Pair induction is used to prove properties of func-
tions defined by pair recursion. The schema of pair recursion introduces an
(n + 1)-ary function f from two functions g (which is n-ary) and h (which is
(n + 4)-ary). The function f satisfies the following recurrences:

f(0, ~y) = g(~y)
f((v, w), ~y) = h(v, w, ~y, f(v, ~y), f(w, ~y)).

The schema is justified because its recursion decreases the first-argument in
the relation <.

We also admit parameterless pair recursion defining an unary f from a
constant n and a four argument function h to satisfy:

f(0) = n

f(v, w) = h(v, w, f(v), f(w)).

1.3.5 Pair numerals. It can be easily proved by pair induction that every
natural number n can be uniquely presented as a term called pair numer-
al . The class of pair numerals is the least class of terms containing 0 and
with every two terms τ1 and τ2 also the term (τ1, τ2). We call this the pair
representation of N.

1.3.6 Pair size. The length of the pair numeral τ denoting the number
x is 5 · n + 1 where n is the number of pairing operations used in the con-
struction of the term τ . The arithmetization of the length function is the
pair size function |x|p yieding the number of pairing operations needed for

5

the construction of the pair numeral denoting x. The function is defined by
parameterless pair recursion to satisfy:

|0|p = 0
|(x, y)|p = |x|p + |y|p + 1.

J(x, y) 0 1 2 3 4 5 6 · · ·
0 11 22 43 73 114 164 224 · · ·
1 32 53 84 124 175 235 305 · · ·
2 63 94 135 185 246 316 396 · · ·
3 103 144 195 255 326 406 496 · · ·
4 154 205 266 336 417 507 607 · · ·
5 214 275 346 426 517 617 727 · · ·
6 284 355 436 526 627 737 857 · · ·
...

...
...

...
...

...
...

...

Fig. 1.1. Cantor’s pairing function J(x, y)

1.3.7 Cantor’s pairing function. Without fixing the pairing function
(x, y) we do not know the pair representation of any natural number ex-
cept 0 and our next step is to determine the function. We first note that the
standard diagonal function J of Cantor (see [Dav58]) when offset by one (to
account for the atom 0), i.e. the function

J(x, y) = (x + y) · (x + y + 1)÷ 2 + x + 1,

satisfies the properties 1.3.2(1),(2),(3). The initial segment of J is tabulated
in Fig. 1.1. The subscripts of values for J(x, y) give the pair size |J(x, y)|p.

Unfortunately, the pairing function J is not suitable for us because it
cannot be used for the development of small functional computational class-
es such as polynomial time, polynomial space, linear space etc. This was
demonstrated in [Vod95]. The reason why J is not suitable can be seen when
we enumerate the natural numbers in the J-pair representation. The numbers
with the same pair size are not grouped together as it is the case with the
dyadic size of numbers enumerated in the dyadic notation. We can see from
Fig. 1.1 that in the middle of the group of consecutive numbers 4 through 10
we have two numbers with the pair size 4, namely 8 = J(J(0, 0), J(0, J(0, 0)))
and 9 = J(J(0, J(0, 0)), J(0, 0)), while the remaining numbers have the pair
size three.

We will see in Par. 1.3.8 that as a consequence of keeping the numbers with
the same pair size together we will have |x|p = Θ(lg(x)), i.e. |x|p = O(lg(x))
and lg(x) = O(|x|p). This property assures a natural characterization by pair-
ing of computational complexity classes such as polynomial time or space (see
[Vod95]).

6

0

r
1 = (0, 0)

r
¡¡ @@

2 = (0, 1)

r
¡¡ @@r

¡¡ @@

3 = (1, 0)

r
¡¡ @@r

¡¡ @@

4 = (0, 2)

r
¡¡ @@r

¡¡ @@r
¡¡ @@

5 = (0, 3)

r
¡¡ @@r

¡¡ @@r
¡¡ @@

6 = (1, 1)

r
¡¡ @@r

¡¡ @@
r

¡¡@@

7 = (2, 0)

r
¡¡ @@r

¡¡ @@r
¡¡ @@

8 = (3, 0)

r
¡¡ @@r

¡¡ @@r
¡¡ @@

9 = (0, 4)

r
¡¡ @@r

¡¡ @@r
¡¡ @@r

¡¡ @@

10 = (0, 5)

r
¡¡ @@r

¡¡ @@r
¡¡ @@r

¡¡ @@

11 = (0, 6)

r
¡¡ @@r

¡¡ @@r
¡¡ @@

r
¡¡@@

12 = (0, 7)

r
¡¡ @@r

¡¡ @@r
¡¡ @@r

¡¡ @@

13 = (0, 8)

r
¡¡ @@r

¡¡ @@r
¡¡ @@r

¡¡ @@

14 = (1, 2)

r
¡¡ @@r

¡¡ @@
r

¡¡@@r
¡¡ @@

15 = (1, 3)

r
¡¡ @@r

¡¡ @@
r

¡¡ @@r
¡¡ @@

16 = (2, 1)

r
¡¡ @@r

¡¡ @@r
¡¡ @@

r
¡¡@@

17 = (3, 1)

r
¡¡ @@r

¡¡ @@r
¡¡@@

r
¡¡@@

18 = (4, 0)

r
¡¡ @@r

¡¡ @@r
¡¡ @@r

¡¡ @@

19 = (5, 0)

r
¡¡ @@r

¡¡ @@r
¡¡ @@r

¡¡ @@

20 = (6, 0)

r
¡¡ @@r

¡¡ @@r
¡¡ @@

r
¡¡@@

21 = (7, 0)

r
¡¡ @@r

¡¡ @@r
¡¡ @@r

¡¡ @@

22 = (8, 0)

r
¡¡ @@r

¡¡ @@r
¡¡ @@r

¡¡ @@

Fig. 1.2. Enumeration of binary trees

7

1.3.8 Suitable pairing function. We obtain a suitable pairing function
(x, y) by keeping the numbers with the same pair size together. For that we
note that every natural number in pair representation can be viewed as a
binary tree. Here 0 is represented by the empty tree and the number (x, y)
is represented by a tree with the left subtree representing x and the right
subtree representing y. Note that that the number of inner nodes of the tree
representing x is |x|p. We enumerate all binary trees by listing the binary trees
with the lesser number of inner nodes before the ones with larger number of
inner nodes. Two different binary trees t1 and t2 with the same number of
inner nodes are listed lexicographically . This means that t1 is listed before t2
if its left subtree is listed before that of t2, or if the left subtrees are identical,
the right subtree of t1 is listed before that of t2. An initial segment of the
enumeration is given in Fig. 1.2.

The enumeration of binary trees uniquely fixes the pairing function (x, y).
Namely, for two numbers x and y we take the x-th and y-th binary trees t1
and t2 (counting from zero). The position of the binary tree 〈t1, t2〉 is the
value of (x, y). Fig. 1.3 lists the initial segment of values of (x, y) in a tabular
form. The subscripts give the pair size |(x, y)|p.

(x, y) 0 1 2 3 4 5 6 · · ·
0 11 22 43 53 94 104 114 · · ·
1 32 63 144 154 375 385 395 · · ·
2 73 164 425 435 1216 1226 1236 · · ·
3 83 174 445 455 1266 1276 1286 · · ·
4 184 465 1316 1326 3997 4007 4017 · · ·
5 194 475 1336 1346 4047 4057 4067 · · ·
6 204 485 1356 1366 4097 4107 4117 · · ·
...

...
...

...
...

...
...

...

Fig. 1.3. Suitable pairing function (x, y)

1.3.9 Projections. The pairing property (3) asserts that every non-zero
number x has a form y, z for some numbers y and z which are uniquely
determined by (1). Projection functions are such that H(x) = y and T (x) = z.

The first projection function H (head) is a unary function which satisfies
the following identities:

H(0) = 0
H((y, z)) = y.

The second projection function T (tail) is a unary function which satisfies the
following identities:

8

T (0) = 0
T ((y, z)) = z.

It should be clear that we have

x = (H(x), T (x)) ↔ x 6= 0. (1)

1.3.10 Ordering properties of (x, y). From the enumeration of binary
trees given in Par. 1.3.8 we immediately obtain:

x < y → |x|p ≤ |y|p (1)
|x|p < |y|p → x < y (2)

|(x1, x2)|p = |(y1, y2)|p → ((x1, x2) < (y1, y2) ↔ x1 < y1 ∨ x1 = y1 ∧ x2 < y2).
(3)

The pairing function is strictly monotone in both arguments:

x1 < x2 → (x1, y) < (x2, y) (4)
y1 < y2 → (x, y1) < (x, y2). (5)

Indeed, the property (4) holds because we get |x1|p ≤ |x2|p from x1 < x2 by
(1). We then consider two cases. If |x1|p < |x2|p then also |(x1, y)|p < |(x2, y)|p
and we get the conclusion from (2). If |x1|p = |x2|p then also |(x1, y)|p = |(x2, y)|p
and we get the conclusion from (3). Property (5) is proved similarly.

1.3.11 Functions σ and C. We denote by σ(n) the first number in the
enumeration of pairs with with the pair size n and by C(n) the total number
of numbers with the pair size n, i.e. the total number of binary trees with
n inner nodes. The function C(n) is known as the Catalan function (see
[GKP89]) and satisfies the obvious convolution recurrences:

C(0) = 1 (1)

C(n + 1) =
∑

i≤n

C(i) · C(n− i) (2)

because every binary tree with n + 1 inner nodes has the left son with i ≤ n
inner nodes and the right son with n− i inner nodes. We clearly have

σ(0) = 0 (3)
σ(n + 1) = σ(n) + C(n). (4)

We will need the following properties:

σ(|x|p) ≤ x < σ(|x|p + 1) (5)
|σ(n)|p = n (6)

9

σ(n) ≤ C(n) (7)
2n ≤ σ(n + 1). (8)

Properties (5) and (6) hold directly from the definition of σ. Property (7)
holds trivially for n = 0. If n > 0 then the property holds because every
number x < σ(n), i.e. such that |x|p < n, can be injectively mapped into the
number (σ(n− 1− |x|p), x) with the pair size n. Property (8) is proved by
induction on n. In the base case we have 20 = 1 = σ(0 + 1). In the inductive
case we have

2n+1 = 2 · 2n
IH≤ 2 · σ(n + 1)

(7)

≤ σ(n + 1) + C(n + 1) = σ(n + 2).

1.3.12 Some properties of the pairing function. We will need the fol-
lowing properties:

2|x + 1|p ≤ 2 · (x + 1) (1)

2|x|p ≤ 2 · x + 1 (2)
C(n + 1) ≤ 4n (3)

x < 4|x|p (4)
|x|p ≤ x (5)

(x, y) ≤ 4 · (2 · x + 1)2 · (2 · y + 1)2. (6)

Property (1): We have |x + 1|p = n + 1 for some n and so

2|x+1|p = 2 · 2n
1.3.11(8)

≤ 2 · σ(n + 1) = 2 · σ(|x + 1|p)
1.3.11(5)

≤ 2 · (x + 1).

Property (2) follows from (1) and from 2|0|p = 1 = 2 · 0 + 1.
(3): If we write a number with the pair size n+1 in the pair representation

fully parenthesized and omit the left parentheses and commas we obtain a
string of)’s and 0’s of the form 00α) where the length of α is 2n. This proves
(3) because there cannot be more strings α than 22·n = 4n.

(4): We have

x
1.3.11(5)

< σ(|x|p + 1)
1.3.11(7)

≤ C(|x|p + 1)
(3)

≤ 4|x|p .

Property (5) is proved by induction on x. The base case is trivial. In the
inductive case we get x + 1 ≤ σ(|x|p + 1) from 1.3.11(5) and so we have

|x + 1|p
1.3.10(1)

≤ |σ(|x|p + 1)|p 1.3.11(6)
= |x|p + 1

IH≤ x + 1.

(6): We have

(x, y)
(4)
< 4|(x,y)|p = 4|x|p+|y|p+1 = 4 · (2|x|p)2 · (2|y|p)2

(2)

≤ 4 · (2 · x + 1)2 · (2 · y + 1)2.

10

1.3.13 The pairing function (x, y) is suitable. We will now demon-
strate that the pairing function (x, y) is a suitable pairing function, i.e. that
|x|p = Θ(lg(x)). Indeed, for x > 0 we have

2|x|p
1.3.12(1)

≤ 2 · x ≤ 2lg(x)+2

and so |x|p ≤ lg(x) + 2, i.e. |x|p = O(lg(x)). On the other hand, we have

x
1.3.12(4)

< 4|x|p = 22·|x|p

and so for x > 0 we have lg(x) < 2 · |x|p, i.e. lg(x) = O(|x|p).

1.3.14 Contraction to unary functions. We now establish a natural cor-
respondence between n-ary and unary functions and predicates over N.

If f is an n-ary function then we denote by 〈f〉 its contraction, which is
an unary function defined as follows:

〈f〉(x) =

{
f(x1, . . . , xn−1, xn) if x = (x1, . . . , xn−1, xn),
0 otherwise,

where we write (x1, . . . , xn−1, xn) as an abbreviation for

(x1, . . . , (xn−1, xn) . . .).

From the above we get

f(x1, . . . , xn−1, xn) = 〈f〉((x1, . . . , xn−1, xn)). (1)

We note that the contraction 〈f〉 of an unary function f is the function f
itself. For n > 1 we clearly have

∃x1 . . . ∃xn−1∃xn x = (x1, . . . , xn−1, xn) ⇔
x = (H T 0(x), . . . , H Tn−2(x), Tn−1(x)) ⇔
Tn−2(x) > 0

and thus we have

〈f〉(x) =

{
f(H T 0(x), . . . , H Tn−2(x), Tn−1(x)) if Tn−2(x) > 0,
0 otherwise.

(2)

If R is an n-ary relation then we denote by 〈R〉 its contraction which is
an unary predicate, satisfying:

〈R〉(x) ↔ ∃x1 . . . ∃xn−1∃xn

(
x = (x1, . . . , xn−1, xn) ∧R(x1, . . . , xn−1, xn)

)
.

From this we get

R(x1, . . . , xn−1, xn) ↔ 〈R〉((x1, . . . , xn−1, xn)).

Thus in the presence of pairing there is no essential difference between
n-ary and unary functions, except that the expression f(x) is meaningless for
an n-ary function whenever n > 1 but well-defined for its contraction 〈f〉(x).

11

1.3.15 Conventions for the symbol comma. We will usually omit the
outermost pairing parentheses around pairing (τ1, τ2). Thus, for instance, we
can write f(x) = g(x), h(x) instead of f(x) = (g(x), h(x)). We postulate that
the pairing operator ‘,’ groups to the right, i.e. that (τ1, τ2, τ3) abbreviates
(τ1, (τ2, τ3)). We assign the lowest precedence to pairing. Thus x + y · v, z is
an abbreviation for ((x + (y · v)), z).

The omission of parentheses around pairing can lead to ambiguities in sit-
uations where commas could be confused with the separators of arguments
of n-ary functions. In such situations when we write f(τ1, . . . , τn, . . . , τn+m)
we (obviously) treat the commas as separators of arguments if m = 0 and we
understand the expression as an abbreviation for f(τ1, . . . , (τn, . . . , τn+m)) if
m > 1. Thus the first n−1 commas separate the arguments while the remain-
ing ones are the infix pairing operators. We adopt similar comma conventions
for n-ary predicates.

For instance, if f is binary then f((τ1, τ2), (τ3, τ4, τ5)) can be abbreviated
by the dropping of the outermost pairing parentheses to f((τ1, τ2), τ3, τ4, τ5)
The reader will note that we cannot drop the parentheses around τ1, τ2. If R
is an unary predicate then R((τ1, τ2)) can be written as R(τ1, τ2).

We extend the dual role of commas to sequences like ~x and ~τ . For instance,
when f is an n-ary function then the basic property of its contraction 〈f〉 is:

〈f〉(x1, . . . , xn) = f(x1, . . . , xn).

The commas on the left of the identity stand for the pairing operator while
they are separators on the right. We can abbreviate this to 〈f〉(~x) = f(~x)
with the same understanding about the commas in the sequence ~x.

1.4 Partial Functions

1.4.1 Partial functions. A partial n-ary function f is a mapping with the
domain S which is a subset of the cartesian product Nn and with the range
a subset of N. The partial function f is total , or just a function, if S = Nn.

For every number n we denote by ∅(n) the nowhere defined n-ary partial
function, i.e. the partial function with the empty domain ∅ ⊆ Nn.

1.4.2 Graphs of partial functions. The graph of an n-ary partial function
f is the (n + 1)-ary relation denoted by f(~x) ³ y which holds if f is defined
for ~x with the value y. We clearly have for (total) functions f :

f(~x) ³ y ↔ f(~x) = y.

1.4.3 Completion of partial functions. We say that the (total) function
g is the completion of a partial function f if the following holds:

12

g(~x) =

{
y if f(~x) ³ y,
0 otherwise.

1.4.4 Chains of partial functions. For two partial functions f1 and f2 of
the same arity we write f1 ⊆ f2 if the inclusion holds set-theoretically, i.e. if
we have

f1(~x) ³ y → f2(~x) ³ y

for all ~x and y. Note that ∅(n) ⊆ f for every n-ary partial function f .
An infinite sequence of partial functions f0, f1, f2, . . . of the same arity is a

chain if we have fi ⊆ fi+1 for all i. It should be clear that the set-theoretical
union of this chain, which is written as

⋃
i fi, is a partial function for which

we have

(
⋃

i

fi)(~x) ³ y ↔ ∃i fi(~x) ³ y (1)

fi ⊆
⋃

i

fi. (2)

We also have

∀i fi ⊆ f →
⋃

i

fi ⊆ f (3)

because if (
⋃

i fi)(~x) ³ y holds then we have fi(~x) ³ y for some i by 1.4.4(1)
and f(~x) ³ y from the assumption.

1.4.5 Partial denotation of terms. Interpretation of a term is an as-
signment of concrete partial functions to the function symbols applied in
the term. Closed terms obtain meaning by interpretation and they partially
denote natural numbers. Terms with free variables partially denote natural
numbers only subject to an assignment of natural numbers as values of their
variables.

A term τ [~x] applying partial functions, i.e. with some partial functions
assigned to the function symbols of τ , may fail to denote and in this respect
it acts as a partial function of ~x arguments. For this reason we introduce for
each term τ the formula τ ³ y, called the graph of τ , defined by induction
on the structure of τ :

x ³ v ≡ x = v (1)
n ³ v ≡ n = v (2)

f(τ1, . . . , τn) ³ v ≡ ∃v1 · · · ∃vn(
n∧

i=1

τi ³ vi ∧ f(v1, . . . , vn) ³ v) (3)

Ds(τ1, τ2, τ3) ³ v ≡ ∃v1

(
τ1 ³ v1 ∧ (v1 6= 0 ∧ τ2 ³ v ∨ v1 = 0 ∧ τ3 ³ v)

)
. (4)

13

Straightforward induction on the structure of terms τ yields the following
property of graphs of τ :

τ [~x] ³ y ∧ τ [~x] ³ z → y = z.

A closed interpreted term τ is assigned as its partial denotation the num-
ber y if τ ³ y holds. The term τ is defined , or it converges, if ∃y τ ³ y holds,
which we write as τ ↓. Otherwise τ is undefined , or it diverges which we write
as τ ↑. A term is total if it applies only total functions. In such case we clearly
have τ ³ v ↔ τ = v.

Note that the interpretation of simple conditionals (4) is non-strict be-
cause the term τ ≡ Ds(τ1, τ2, τ3) denotes only if τ1 denotes and then if τ1 6= 0
the term τ denotes the same number as the term τ2 and if τ1 = 0 then the
term τ denotes the same number as the term τ3. Note that in the first case
the term τ3, and in the second case the τ2, may diverge without affecting the
denotation of τ . Note also that if all partial functions applied in τ are total
then we have Ds(τ1, τ2, τ3) = D(τ1, τ2, τ3).

1.4.6 Use and mention of terms. In situations where we discuss the syn-
tax and semantic of languages containing terms it is important to distinguish
between their use and mention, i.e. between extensions and intensions, of
terms. When a term τ is mentioned then we understand under τ the term
itself, i.e. a finite sequence of symbols. Terms are most often mentioned in
contexts like ‘the term τ ’. When the term τ is used then we understand it as
the name of its denotation (subject to an intepretation and assignment).

When the term τ is defined, i.e. when τ ³ n holds for some n, then we
can use τ as a name for n. If τ is total we have:

τ [~x] ³ y ↔ τ [~x] = y.

Note that the first occurrence of the term τ is mentioned whereas the second
one is used.

We make the same distinction between the use and mention of function
symbols. They are mentioned in contexts ‘the function symbol f ’ and then
we mean the sequence of symbols constituting the function symbol. Function
symbols are used in contexts ‘the function f ’ and then we mean the function
interpreting the symbol f .

1.4.7 Non-strict identity. In the presence of partial functions we need
the non-strict identity τ1 ' τ2 abbreviating the formula ∀y(τ1 ³ y ↔ τ2 ³ y).
Here y is a new variable. In other words, non-strict identity holds iff either
both terms converge and denote the same number or else both diverge. It
should be clear that if τ1 and τ2 are total then we have τ1 ' τ2 ↔ τ1 = τ2.

1.5 Exercises

14

2. Function Operators

2.1 Inductively Defined Function Classes

2.1.1 Classes of partial functions. We will denote by F , G, H, and I
(possibly with subscripts) classes, i.e. sets, of partial functions over N. The
class of all partial functions over N is denoted by P. For arbitrary class F we
denote by F (n) the set of all n-ary partial functions of F . Thus P(n) is the
set of all n-ary partial functions over N.

For a class of partial functions F we say that the predicate R is an F-
predicate if its characteristic function R∗ is in F . By F∗ we denote the class
of all F-predicates.

2.1.2 Function operators. We will encounter in the following many differ-
ent kinds of function operators which are functionals, i.e. functions operating
over partial functions. An n-ary function operator O is a functional, which
takes n partial functions f1, . . . , fn as arguments and yields the partial func-
tion f = O(f1, . . . , fn) as the result. We also admit n = 0 and then the
operator O can be identified with the partial function it yields.

For an n-ary function operator O and a class of partial functions F we
say that F closed under O if for any partial functions f1, . . . , fn from F also
the partial function f = O(f1, . . . , fn) yielded by the operator is in F .

We are interested mostly in effective function operators. That is, a func-
tion operator is called effective (in intuitive sense) if when applied to effective
partial functions from its domain the result of the application is also an ef-
fective partial function.

2.1.3 Inductively defined classes of functions. For a class of partial
functions I and for a family of function operators {Oi}i∈I we say that the
class F of partial functions is (inductively) generated from I by {Oi}i∈I if
the following holds for every partial function f :

f ∈ F iff f is obtained from I by finitely many applications of the
function operators {Oi}i∈I .

The partial functions in I are called the initial partial functions of F .

2.1.4 Theorem. The class F generated from I by {Oi}i∈I is the set small-
est class containing I and closed under the function operators from {Oi}i∈I .

Proof. Let us denote by {Gα}α∈J the set of all classes containing I and closed
under the function operators {Oi}i∈I . The set is non-empty since it contains
at least the class of all partial functions P. Let G =

⋂
α∈J Gα. We wish to

show that G = F .
The inclusion G ⊆ F is obvious since it is easy to see that the class F

contains I and it is closed under the function operators {Oi}i∈I . On the
other hand every class Gα contains each partial function obtained from I by
finitely many applications of the function operators {Oi}i∈I . Thus F ⊆ Gα

and hence F ⊆ G. ut

2.1.5 Induction on the construction of inductively defined classes.
The property of an inductively defined class F that it is the smallest class
containing I and closed under the operators {Oi}i∈I will be often used in
the following to show that all functions f from F posses a property P(f)
by induction on the construction of functions f in F . For this it is sufficient
to consider two cases. If f ∈ I we have to show P(f). If f = O(f1, . . . , fn)
then we have to show P(f) under the inductive hypotheses that the functions
f1, . . . , fn posses the property.

2.1.6 Relatively defined function classes. Suppose that the class F is
generated from I by the function operators {Oi}i∈I . For a class G we say
that G is F-closed if I ⊆ G and G is closed under all operators {Oi}i∈I . Note
that we then have F ⊆ G by the minimality of F .

For a class of partial functions H we say that the class G is F in H if G is
generated from H and I by the function operators {Oi}i∈I , or equivalently
by Thm. 2.1.4, if G is the smallest F-closed class containing H.

2.1.7 Universal functions. For a given binary partial function U(e, x) we
say that the number e is an index of an n-ary partial function f if we have

∀x1 . . . ∀xn f(x1, . . . , xn) ' U(e, (x1, . . . , xn)). (1)

We say that U is universal for a class F if the following holds

f ∈ F iff f has an index (2)

for every partial function f . Note that this is equivalent to

F =
⋃

n≥1

{λx1, . . . , xn.U(e, (x1, . . . , xn)) | e ∈ N}. (3)

2.1.8 Theorem. Let F be a class of partial functions closed under explicit
definitions containing a unary function g such that g(x) 6= x for all x. Then
there is no universal partial function for F such that its completion is in F .
In particular, the class F does not contain its own universal (total) function.

16

Proof. Suppose that there is a universal partial function U for F such that
its completion U1 is in F . Then the unary function f explicitly defined by

f(x) ' g U1(x, x) (1)

is in F and thus there is an index e of f w.r.t. U . Since U1 is the completion
of U then we have

f(x) = U1(e, x) (2)

for all x by 2.1.7(1). We obtain

f(e, e)
(1)
= g U1(e, e)

(2)
= g f(e, e).

Contradiction. ut

2.2 Explicit Definitions

2.2.1 Operator of composition. For every pair of numbers m ≥ 1 and
n ≥ 1 the operator of composition takes an m-ary partial function h and
m n-ary partial functions g1, . . . , gm and yields an n-ary partial function f
satisfying:

f(~x) ' h(g1(~x), . . . , gm(~x)). (1)

If the argument functions are total so is the function yielded by the compo-
sition operator. Note that then (1) is equivalent to

f(~x) = h(g1(~x), . . . , gm(~x)). (2)

2.2.2 Conditional operator. For every n ≥ 1 the conditional operator
takes three n-ary partial functions g1, g2, and g3, and yields an n-ary partial
function f satisfying:

f(~x) ' Ds(g1(~x), g2(~x), g3(~x)). (1)

If the argument functions are total so is the function yielded by the condi-
tional operators. Note that then (1) is equivalent to

f(~x) = D(g1(~x), g2(~x), g3(~x)). (2)

2.2.3 Explicit definitions. Explicit definitions of partial functions are of
a form

f(~x) ' τ [~x], (1)

17

where the term τ [~x] contains at most the indicated variables free and does
not apply f . Clearly there is a unique partial function f satisfying (1). If all
partial functions applied in τ [~x] are total so is the function yielded by the
explicit definition. Note that then (1) is equivalent to

f(~x) = τ [~x]. (2)

Equations of the form (2) are called explicit definitions of functions.
Explicit definition (1) (and similarly (2)) can be viewed as a function

operator taking all partial functions applied in τ and yielding the partial
function f .

2.2.4 Unary contractions. Let F be a class closed under explicit defini-
tions of functions containing the pairing function (x, y) and its projections
H(x) and T (x). Then for every n-ary function f we have:

f is in F iff its unary contraction 〈f〉 is in F .

The claim trivially holds for unary functions. If n > 1 then we consider two
cases. If f ∈ F then by 1.3.14(2) we obtain

〈f〉(x) = Ds(Tn−2(x), (H T 0(x),H T 1(x), . . . ,H Tn−2(x), Tn−1(x)), 0)

and we can take the identity as an explicit definition of 〈f〉 in F . The reverse
implication follows from 1.3.14(1).

2.2.5 Boolean functions. If F is a class closed under explicit definitions
of functions then F contains all boolean functions since they can be derived
in F by the following explicit definitions:

¬∗x = D(x, 0, 1) (1)
x ∧∗ y = D(x,D(y, 1, 0), 0) (2)
x ∨∗ y = ¬∗(¬∗x ∧∗ ¬∗y) (3)

x→∗ y = ¬∗x ∨∗ y (4)
x↔∗ y = (x→∗ y) ∧∗ (y→∗ x). (5)

2.2.6 Bounded formulas. Bounded formulas are formulas constructed
from atomic formulas: τ1 < τ2, τ1 ≤ τ2, τ1 > τ2, τ1 ≥ τ2, τ1 = τ2, and Q(~τ)
by propositional connectives and by bounded quantification. The terms of
bounded formulas are composed from variables and constant symbols by ap-
plications of (total) functions.

2.2.7 Explicit definitions of predicates with bounded formulas. Ex-
plicit definitions of predicates with bounded formulas are of a form

R(~x) ↔ φ[~x], (1)

18

where φ is a bounded formula with at most the indicated n-tuple of variables
free and without any application of the predicate symbol R.

If the equivalence (1) is such that the list of g1, . . . , gk (k ≥ 0) of functions
is minimal such that every function f applied in φ is in the list and if for
every predicate Q applied in φ its characteristic function Q∗ is in the list
then the equivalence is explicit definition of the predicate R from g1, . . . , gk.
Every such explicit definition can be viewed as a k-place function operator
yielding the characteristic function R∗ of the predicate R from the functions
g1, . . . , gk.

2.2.8 Operator of bounded minimalization. For every n ≥ 1 the oper-
ator of bounded minimalization takes an (n + 1)-ary function g and yields
an (n + 1)-ary function f satisfying:

f(z, ~x) = y ↔ y ≤ z ∧ g(y, ~x) = 1 ∧ ∀y1 < y g(y1, ~x) 6= 1 ∨
∀y ≤ z g(y, ~x) 6= 1 ∧ y = 0.

(1)

The function f defined by (1) is such that f(z, ~x) = y where y is the smallest
number y ≤ z such that φ[~x, y] holds. We have f(z, ~x) = 0 if there is no such
number.

In the sequel we abbreviate (1) to

f(z, ~x) = µy≤z[g(y, ~x) = 1].

2.2.9 Definitions by bounded minimalization. Definitions of functions
by bounded minimalization are of a form

f(~x) = y ↔ y ≤ τ [~x] ∧ φ[~x, y] ∧ ∀z < y ¬φ[~x, z] ∨
∀z ≤ τ [~x]¬φ[~x, z] ∧ y = 0,

(1)

where τ [~x] is a term and φ[~x, y] is a bounded formula with at most the
indicated variables free, both without any application of f . We require that
the term τ is built up only from variables and constants by applications of
functions. The function f defined by (1) is such that f(~x) is the smallest
number y ≤ τ [~x] such that φ[~x, y] holds. We have f(~x) = 0 if there is no such
number.

In the sequel we abbreviate (1) to

f(~x) = µy≤τ [~x][φ[~x, y]].

We permit also strict bounds in (1). That is, we allow definitions of a form

f(~x) = µy<τ [~x][φ[~x, y]]

as abbreviation for

f(~x) = µy≤τ [~x][y < τ [~x] ∧ φ[~x, y]].

19

2.2.10 Theorem. A class F is closed under explicit definitions of partial
functions iff F contains the identity functions In

i , the constant functions Cm,
and it is closed under composition and conditional.

Proof. We prove first the implication (→). Suppose that F is closed under
explicit definitions of partial functions. Then each identity function In

i has
the following explicit definition in F : In

i (x1, . . . , xi, . . . , xn) = xi. Similarly,
each constant function Cm can be explicitly defined in F by Cm(x) = m.
If the n-ary partial function f is defined by composition from the partial
functions h, g1, . . . , gm in F then we define f in the class F by the explicit
definition 2.2.1(1). Finally, if the n-ary partial function f is defined by the
conditional operator from the partial functions g1, g2, g3 in F then we define
f in F by the explicit definition 2.2.2(1).

We prove the implication (←) by assuming that F contains the identi-
ty functions In

i , the constant functions Cm and that it is closed under the
composition and conditional of partial functions. We show that F is closed
under explicit definitions f(~x) ' τ [~x] of n-ary functions f by induction on
the structure of terms τ .

If τ ≡ xi with 1 ≤ i ≤ n then f is the identity function In
i ∈ F .

If τ ≡ m then f is the constant function Cn
m which can be defined in F by

the composition Cn
m(~x) = Cm In

1 (~x) of the unary constant function Cm ∈ F
and the identity function In

1 ∈ F .
If τ ≡ h(ρ1[~x], . . . , ρm[~x]), where h ∈ F , then we explicitly define the n-ary

partial functions g1(~x) ' ρ1[~x], . . . , gm(~x) ' ρm[~x] and get g1, . . . , gm in F by
IH. We now obtain f ∈ F from h, g1, . . . , gm by the composition 2.2.1(1).

Finally, if τ ≡ Ds(ρ1[~x], ρ2[~x], ρ3[~x]) then we explicitly define the n-ary
partial functions g1(~x) ' ρ1[~x], g2(~x) ' ρ2[~x], g3(~x) ' ρ3[~x] and get g1, g2, g3

in F by IH. We obtain f ∈ F from g1, g2, g3 by the conditional 2.2.2(1). ut

2.2.11 Remark. In the sequel we will use the following special cases of
Thm. 2.2.10 which can be proved by similar means:

(i) A class F of functions is closed under explicit definitions iff F contains the
identity functions In

i , the constant functions Cm, the case discrimination
function D and it is closed under composition.

2.2.12 Theorem. Every class F closed under explicit definitions of func-
tions, under bounded minimalization, and containing ≤∗ is closed under ex-
plicit definitions of predicates with bounded formulas.

Proof. We show that F is closed under explicit definitions R(~x) ↔ φ[~x] of
n-ary predicates by induction on the structure of formulas φ.

If φ is one of τ1 ≤ τ2, τ1 < τ2, τ1 ≥ τ2, τ1 > τ2, or τ1 = τ2 we define the
characteristic function R∗ of R in F by the corresponding explicit definition:

20

R∗(~x) = τ1[~x]≤∗ τ2[~x]
R∗(~x) = ¬∗τ2[~x]≤∗ τ1[~x]
R∗(~x) = τ2[~x]≤∗ τ1[~x]
R∗(~x) = τ2[~x] <∗ τ1[~x]
R∗(~x) = τ1[~x]≤∗ τ2[~x] ∧∗ τ2[~x]≤∗ τ1[~x].

If φ ≡ Q(~ρ) then, since Q∗ ∈ F , we define R∗ in F by explicit definition:
R∗(~x) = Q∗(~ρ[~x]).

If φ ≡ ¬ψ we use IH and define an auxiliary n-ary predicate Q ∈ F by
explicit predicate definition: Q(~x) ↔ ψ[~x]. We then define R∗ in F by explicit
definition: R∗(~x) = ¬∗Q∗(~x).

If φ ≡ φ1 ∧ φ2 we obtain in F two auxiliary n-ary predicates Q1(~x) ↔ φ1[~x]
and Q2(~x) ↔ φ2[~x] by IH. We then define R∗ in F by explicit definition:
R∗(~x) = Q1∗(~x) ∧∗ Q2∗(~x).

If φ ≡ ∃y ≤ τ ψ we use IH and define an auxiliary (n + 1)-ary predicate
Q ∈ F by explicit predicate definition: Q(y, ~x) ↔ ψ[y, ~x]. Then we define an
auxiliary witnessing function f ∈ F by bounded minimalization:

f(z, ~x) = µy≤z[Q∗(y, ~x) = 1].

The characteristic function R∗ of the predicate R has then explicit definition
in F by: R∗(~x) = Q∗[f(τ [~x], ~x), ~x].

If φ ≡ ∀y ≤ τ ψ we use IH and define an auxiliary (n + 1)-ary predicate
Q ∈ F by explicit predicate definition: Q(y, ~x) ↔ ψ[y, ~x]. Then we define an
auxiliary counterexample function f ∈ F by bounded minimalization of the
function ¬∗Q∗ ∈ F :

f(z, ~x) = µy≤z[¬∗Q∗(y, ~x) = 1].

The characteristic function R∗ of the predicate R has then explicit definition
in F by: R∗(~x) = Q∗[f(τ [~x], ~x), ~x].

We leave the cases with the remaining propositional connectives and with
strict bounded quantifiers to the reader. ut

2.2.13 Theorem. Every class F closed under explicit definitions of func-
tions, under bounded minimalization, and containing ≤∗ is closed under def-
initions of functions with bounded minimalization.

Proof. Suppose that the n-ary function f is defined by the bounded mini-
malization

f(~x) = µy≤τ [~x][φ[~x, y]]

from the functions and predicates from F . We can explicitly define f in F by

21

R(y, ~x) ↔ φ[~x, y]
g(z, ~x) = µy≤z[R∗(y, ~x) = 1]

f(~x) = g(τ [~x], ~x)

since the characteristic function R∗ of R is in F by Thm. 2.2.12. ut

2.3 Recursive Definitions

2.3.1 Functional equations with non-strict identity. Let τ [f ; ~x] be
a term in the n-variables ~x containing applications of function symbols
g1, . . . , gk, where k ≥ 0, and at least one application of the n-ary function
symbol f . We are interested in solving function equations of the form

f(~x) ' τ [f ; ~x] (1)

for all arguments ~x. More precisely, if we assign k partial functions g1, . . . , gk

to the corresponding function symbols then we say that a partial function f
solves (1) if the property holds for all ~x. The following theorem asserts that
there is a solution of the function equation (1) which is minimal in certain
sense.

2.3.2 Graphs of terms are monotone. Graphs of terms τ [f] ³ y are
monotone in f in the following sense:

f1 ⊆ f2 ∧ τ [f1] ³ y → τ [f2] ³ y. (1)

This is proved by assuming f1 ⊆ f2, taking any ~x and then proving

∀y(τ [f1] ³ y → τ [f2] ³ y)

by induction on the construction of τ . So taky any y, assume τ [f1] ³ y, and
continue by the case analysis of τ .

If τ is a constant or a variable then τ [f2] ³ y holds trivially.
If τ ≡ f(ρ1, . . . , ρn) then from the assumption f1(ρ1[f1], . . . , ρn[f1]) ³ y

we get that there are numbers y1, . . . , yn such that ρi[f1] ³ yi for all 1 ≤ i ≤ n
and f1(y1, . . . , yn) ³ y. Hence also f2(y1, . . . , yn) ³ y and from n IH’s we get
ρi[f2] ³ yi for all 1 ≤ i ≤ n. But this means that f2(ρ1[f2], . . . , ρn[f2]) ³ y
holds. The case when τ ≡ g(~ρ) with g 6≡ f has a similar proof.

Finally, if τ ≡ Ds(ρ1, ρ2, ρ3) then from Ds(ρ1[f1], ρ2[f1], ρ3[f1]) ³ y we get
ρ1[f1] ³ y1 for some y1 and we have ρ1[f2] ³ y1 from IH. We now consider
two cases. If y1 > 0 then we have ρ2[f1] ³ y and we obtain ρ2[f2] ³ y from
another IH. But then Ds(ρ1[f2], ρ2[f2], ρ3[f2]) ³ y holds. The case y1 = 0 is
proved similarly.

22

2.3.3 Graphs of terms are continuous. Graphs of terms τ [f] ³ y are
continuous in f in the sense that for any chain of n-ary functions f0, f1, . . .
we have

τ [
⋃

i

fi] ³ y → ∃i τ [fi] ³ y. (1)

Indeed, we take any ~x and prove ∀y(1) by induction on the construction of
the term τ . So take any y, assume τ [

⋃
i fi] ³ y, and continue by case analysis

of τ .
If τ is a constant or a variable then τ [f0] ³ y holds trivially.
If τ ≡ f(ρ1, . . . , ρn) then we have for all 1 ≤ j ≤ n numbers yj such

that ρj [
⋃

i fi] ³ yj and (
⋃

i fi)(y1, . . . , yn) ³ y hold. From the last we have
fi0(y1, . . . , yn) ³ y for some i0. From n IH’s there are numbers ij such that
ρj [fij

] ³ yi holds. For i = max(i0, i1, . . . , in) we have ρj [fi] ³ yi as well as
fi(y1, . . . , yn) ³ y by 2.3.2(1) and so we also have τ [fi] ³ y. The case when
τ ≡ g(~ρ) with g 6≡ f has a similar proof.

If τ ≡ Ds(ρ1, ρ2, ρ3) then we have ρ1[
⋃

i fi] ³ y1 for some y1 and we obtain
ρ1[fj] ³ y1 for some j from IH. We now consider two cases. If y1 > 0 then
we have ρ2[

⋃
i fi] ³ y and we obtain ρ2[fk] ³ y for some k from another

IH. For i = max(j, k) we have ρ1[fi] ³ y1 and ρ2[fi] ³ y by 2.3.2(1) and so
Ds(ρ1[fi], ρ2[fi], ρ3[fi]) ³ y holds. The case y1 = 0 is proved similarly.

2.3.4 First recursion theorem (Kleene). Every functional equation

f(~x) ' τ [f ; ~x]

in an n-ary function symbol f has a solution
⋃

i fi, where the partial functions
fi are explicitly defined to satisfy

f0 = ∅(n)

fi+1(~x) ' τ [fi; ~x]

form a chain. The solution is minimal in the sense that we have
⋃

i fi ⊆ f
for any solution f .

Proof. That the partial functions fi form a chain, i.e. that fi ⊆ fi+1 holds, is
proved by induction on i. The base case f0 = ∅(n) ⊆ f1 holds trivially. In the
inductive case we assume fi+1(~x) ³ y and obtain τ [fi; ~x] ³ y by the definition
of fi+1. We get τ [fi+1; ~x] ³ y from IH by 2.3.2(1) and so we have fi+2(~x) ³ y
by the definition of fi+2.

We now prove that the partial function
⋃

i fi is a solution of the functional
equation by showing

(
⋃

i

fi)(~x) ³ y ↔ τ [
⋃

i

fi; ~x] ³ y

23

In the direction (→) we assume (
⋃

i fi)(~x) ³ y and obtain fi(~x) ³ y from
1.4.4(1) for some i. Because the partial functions fi form a chain we may
assume that i is positive and so we have τ [fi−1; ~x] ³ y by the definition of
fi. We then obtain τ [

⋃
i fi; ~x] ³ y from 1.4.4(2) and 2.3.2(1). In the direction

(←) we assume τ [
⋃

i fi; ~x] ³ y and from 2.3.3(1) we get τ [fi; ~x] ³ y for some i
and so fi+1(~x) by the definition of fi+1. We obtain (

⋃
i fi)(~x) ³ y by 1.4.4(2).

If f is any solution of the functional equation we prove first fi ⊆ f by
induction on i. The base case ∅(n) ⊆ f holds trivially. In the inductive case
we assume fi+1(~x) ³ y and obtain τ [fi; ~x] ³ y by the definition of fi+1. Hence
we have τ [f ; ~x] ³ y by IH and 2.3.2(1). Thus f(~x) ³ y holds. We then obtain⋃

i fi ⊆ f from 1.4.4(3). ut

2.3.5 Recursive definitions. Let the term τ of the functional equation

f(~x) ' τ [f ; ~x] (1)

be such that it applies the function symbols f and also g1, . . . , gk. If the
last symbols are interpreted by the corresponding partial functions g1, . . . , gk

then the the functional equation (1) is a recursive definition from the partial
functions g1, . . . , gk. The definition defines the partial function f which is
its minimal solution guaranteed to exist by Thm. 2.3.4.

Recursive definition (1) can be viewed as a function operator taking all
partial functions g1, . . . , gk applied in τ and yielding the partial function f
defined by it.

2.3.6 Remark. Note that if

f(~x) ' τ [f ; ~x] (1)

is a recursive definition from (total) functions defining a (total) function f ,
then the function f is the unique solution of the functional equation (1). We
then have

f(~x) = τ [f ; ~x]. (2)

Note also that f is also the unique function satisfying the identity (2).

2.3.7 Effectivity of recursive definitions. We will show in the subse-
quent paragraphs that the recursive definitions are effective function oper-
ators. That is, we provide an effective process by which we can compute
the function f defined by a recursive definition f(~x) ' τ [f ; ~x] from partial
functions g1, . . . , gk provided we have algorithms for computing the partial
functions g1, . . . , gk. Our model of computability is based on reductions (sim-
plifications) of a certain kind of terms - here called recursive terms. That the
recursive definitions are effective follows from Thm. 2.3.14.

24

2.3.8 Recursive terms. A language L of recursive terms is given by a set
oracle function symbols. All oracle function symbols of arity n > 0 will come
from the sequence

gn
0 , gn

1 , . . . , gn
i ,

The set of recursive terms (R-terms for short) of the language L is the
smallest set of terms satisfying

– the variables x1, x2, . . . and the constant 0 are R-terms,
– if τ is a R-term so are (τ + 1) and (τ .− 1),
– if τ1, τ2, and τ3 are R-terms so is Ds(τ1, τ2, τ3),
– if ~τ is a non-empty n-tuple of R-terms then fn(~τ) is a R-term,
– if τ is a R-term and ~ρ is a non-empty n-tuple of R-terms then (λn.τ)(~ρ) is

a R-term subject to restrictions below,
– if ~τ is a non-empty n-tuple of R-terms and gn

i ∈ L then gn
i (~τ) is a R-term.

Function symbols fn are called n-ary recursors. Function symbols λn.τ
are called n-ary defined functions.

An occurrence of a variable x in a R-term τ is free if it does not occur
in the term ρ of a defined function symbol λn.ρ which is applied in τ . The
occurrence is bound otherwise.

Likewise, an occurrence of a recursor fn is free if it does not occur in the
term ρ of a defined function symbol λn.ρ which is applied in τ . The occurrence
is bound otherwise.

A defined function symbol λn.τ is legal if all free occurrences of variables
in τ are of variables from among the n-tuple of variables x1, . . . , xn and if all
free occurrences of recursors in τ are of the form fn.

A R-term is closed if it does not have free occurrences of recursors or of
any variable.

2.3.9 Standard interpretation of recursive terms. R-terms of a lan-
guage L obtain the standard partial denotations once we interprete the oracle
function symbols gn

i of L as partial functions. This is done with the help of
a mapping I, called the interpretation of L, from oracles of L into partial
functions, where we interprete the n-ary oracle function symbol gn

i ∈ L by
the n-ary partial function I(gn

i). We will usually abbreviate I(gn
i) by gn

i and
called the partial function gn

i an oracle. An interpretation is called total if
oracle function symbols are interpreted by (total) functions.

Let I be a interpretation of the language L. By induction on the R-terms
τ of L we extend the interpretation I to defined function symbols λn.τ as
follows. Suppose that τ [fn; ~x] is a term such that λn.τ is a legal defined
function symbol and it has all applied defined function symbols interpreted
by IH and we interprete the function symbol λn.τ by the partial function f
defined by the definition

f(~x) ' τ [f ; ~x]

25

which is explicit if f is not applied in τ and recursive otherwise.

2.3.10 Notation for n-tuples of monadic numerals. We will need a
notation for n-tuples of monadic numerals, which are closed R-terms, and we
define for n ≥ 1:

x1, . . . , xn ≡ Sx1(0), . . . , Sxn(0).

Note that x ≡ Sx(0).

2.3.11 Reductions of closed recursive terms. For any interpretation I
of the language L we now describe a possibly infinite process by which we can
reduce (compute, calculate, simplify) a closed R-term of L until we obtain a
(monadic) numeral which cannot be further reduced.

If a closed R-term τ is not a numeral then it must contain at least one
occurrence, called the redex (for reducible expression), of one of the closed
R-terms listed below on the left hand side:

(x .− 1) B1 x .− 1
Ds(0, τ2, τ3) B1 τ3

Ds(x + 1, τ2, τ3) B1 τ2

(λn.τ [fn; ~x])(~x) B1 τ [λn.τ ; ~x]
gn

i (~x) B1 gn
i (~x).

One step reduction consists of locating the leftmost redex in τ and re-
placing it by its contraction, which is the closed term on the corresponding
right-hand side. By the replacement we obtain again a closed R-term ρ. We
note that the term ρ is uniquely determined by τ .

We say that τ1 reduces to τ2 in k steps, in symbols τ1 Bk τ2, if there is a
finite one step reduction sequence of length k of closed R-terms ρ0, ρ1, . . . , ρk

such that ρ0 ≡ τ1, ρk ≡ τ2, and for each i < k we obtain the term ρi+1 by
one step reduction from the term ρi. We write τ1 B≤k τ2 if τ1 Bn τ2 for some
n ≤ k. We write τ1 B τ2 if τ1 Bk τ2 for some k.

It is not difficult to see that for every closed R-terms τ , ρ1, and ρ2 we
have

τ B ρ1 ∧ τ B ρ2 → ρ1 B ρ2 ∨ ρ2 B ρ1.

Since we have x B ρ iff ρ ≡ x, we can see that if τ reduces to a monadic
numeral then the numeral is uniquely determined.

2.3.12 Effectivity of reductions. We can always effectively determine if
a sequence of symbols is a closed R-term. We can also effectively recognize
a monadic numeral. If a closed R-term is not a monadic numeral we can
effectively locate in it its leftmost redex and produce a new closed term τ1

26

by copying the term τ and replacing the redex by its contraction provided
that the redex is not an application of a function from F . We can effectively
repeat one step reductions until we obtain a monadic numeral which can be
reduced only to itself.

Thus if L = ∅, the reductions are effective. If L is not empty then we can
perform the reductions only relatively in a sense that we obtain the monadic
numeral to the right of B1 of a redex-contraction pair

gn
i (x1, . . . , xn) B1 gn

i (x1, . . . , xn)

as an answer to a question to an oracle for gn
i . There is no need to consider

oracles as mystical objects. We can think of the above redex contraction pairs
as elements of an infinite enumerable sequence ordered by the non-decreasing
numbers i + x1 + · · ·+ xn in which the answer is looked up by searching.
Note that the answer will be always found after finitely many steps because
the functions gn

i are total. However, the process of searching through the
sequence is not effective because we cannot in general effectively present the
sequence.

2.3.13 Denotational versus operational semantics. Function symbols
λn.τ can be both used and mentioned. The function symbol λn.τ is used as
a name denoting an n-ary function f over N. The same symbol is mentioned
as a program (rule) for the computation of the function f by reductions.

The next theorem asserts that such functions can be computed by re-
ductions in exactly those points in which they are defined. This establishes
the equivalence of so-called denotational (definitional) semantics with the
operational (computational) semantics.

2.3.14 Theorem. We have

(λn.τ)(~x) ³ y ↔ (λn.τ)(~x) B y. (1)

Proof. The (→)-direction of (1) is proved by triple induction. The outer in-
duction is on the structure of defined function symbols λn.τ :

∀~x∀y((λn.τ)(~x) ³ y → (λn.τ)(~x) B y). (2)

So take any λn.τ [fn; ~x]. Let f0 = ∅(n) and fi+1(~x) ' τ [fi; ~x]. We prove by (the
middle) induction on i:

∀~x∀y(fi(~x) ³ y → (λn.τ)(~x) B y). (3)

In the base case there is nothing to prove since f0 is nowhere defined. In
the inductive case we take any ~x and prove by (the inner) induction on the
structure of subterms ρ[fn; ~x] of τ :

∀y(ρ[fi; ~x] ³ y → ρ[λn.τ ; ~x] B y). (4)

27

We take any subterm ρ of τ , any y, assume ρ[fi; ~x] ³ y and continue by the
case analysis of ρ.

If ρ ≡ xi then y = xi and thus

xi[λn.τ ; ~x] ≡ xi B0 xi.

If ρ ≡ 0 then y = 0 and thus

0[λn.τ ; ~x] ≡ 0 B0 0.

If ρ ≡ ρ1 + 1 then y = y1 + 1 for some y1 such that ρ1[fi; ~x] ³ y1. We have

(ρ1 + 1)[λn.τ ; ~x] ≡ ρ1[λn.τ ; ~x] + 1
inner IH

B y1 + 1 ≡ y1 + 1.

If ρ ≡ ρ1
.− 1 then y = y1

.− 1 for some y1 such that ρ1[fi; ~x] ³ y1. We have

(ρ1
.− 1)[λn.τ ; ~x] ≡ ρ1[λn.τ ; ~x] .− 1

inner IH
B y1

.− 1 B1 y1
.− 1.

If ρ ≡ Ds(ρ1, ρ2, ρ3) then ρ1[fi; ~x] ³ y1 for some y1. We consider two sub-
cases. If y1 6= 0 then ρ2[fi; ~x] ³ y and we have

Ds(ρ1, ρ2, ρ3)[λn.τ ; ~x] ≡ Ds(ρ1[λn.τ ; ~x], ρ2[λn.τ ; ~x], ρ3[λn.τ ; ~x])
inner IH

B

Ds(y1, ρ2[λn.τ ; ~x], ρ3[λn.τ ; ~x]) B1 ρ2[λn.τ ; ~x]
inner IH

B y1.

The subcase when x = 0 is similar.
If ρ ≡ fn(~ρ) then for all j = 1, . . . , n there are numbers yj such that

ρj [fi; ~x] ³ yj and fi(~y) ³ y. We have

fn(~ρ)[λn.τ ; ~x] ≡ (λn.τ)(~ρ[λn.τ ; ~x])
inner IH’s

B (λn.τ)(~y)
middle IH

B y.

If ρ ≡ (λm.σ)(~ρ) then for all k = 1, . . . ,m there are numbers yk such that
ρk[fi; ~x] ³ yk and (λm.σ)(~y) ³ y. We have

(λm.σ)(~ρ)[λn.τ ; ~x] ≡ (λm.σ)(~ρ[λn.τ ; ~x])
inner IH’s

B (λm.σ)(~y)
outer IH

B y.

If ρ ≡ gm
j (~ρ) then for all k = 1, . . . , m there are numbers yk such that

ρk[fi; ~x] ³ yk and gm
j (~y) ³ y. We have

gm
j (~ρ)[λn.τ ; ~x] ≡ gm

j (~ρ[λn.τ ; ~x])
inner IH’s

B gm
j (~y) B1 gm

j (~y) ≡ y.

This ends the proof of the inner induction.
We now finish the inductive case of the middle induction by taking any y

such that fi+1(~x) ³ y holds. We thus have τ [fi; ~x] ³ y and we obtain

28

(λn.τ)(~x) B1 τ [λn.τ ; ~x]
(4)
B y

by taking ρ ≡ τ in the inner induction formula.
We can now finish the proof of the outer induction (2). We take any ~x and

y such that (λn.τ)(~x) ³ y holds. Then fi(~x) ³ y for some i from Thm. 2.3.4
and thus, by (3), we obtain (λn.τ)(~x) B y.

The (←)-direction of (1) follows from the next generalised property:

for every closed R-term τ we have

∀y(τ Bk y → τ ³ y), (5)

which is proved by complete induction on k. We take any closed R-term τ
and prove (5) by (the inner) induction on the structure of the term τ . So
take any y such that τ Bk y holds and consider two cases. If the term τ is a
numeral then k = 0 and thus τ ≡ y. Consequently, τ = y. So suppose that τ
is not a numeral. Then k > 0 and we continue by the case analysis on the
closed R-term τ .

If τ ≡ ρ + 1 then there is a y1 such that ρ Bk y1 and

(ρ + 1) Bk (y1 + 1) ≡ y1 + 1 ≡ y.

We have ρ ³ y1 by the inner IH and, since y1 + 1 = y, we obtain ρ + 1 ³ y.
If τ ≡ ρ .− 1 then there is a y1 such that ρ Bk−1 y1 and

(ρ .− 1) Bk−1 (y1
.− 1) B1 y1

.− 1 ≡ y.

We have ρ ³ y1 by the outer IH and, since y1
.− 1 = y, we obtain ρ .− 1 ³ y.

If τ ≡ Ds(ρ1, ρ2, ρ3) then there is a k1 < k and a y1 such that ρ1 Bk1 y1.
By the outer IH we have ρ1 ³ y1 and we consider two subcases. If y1 6= 0
then we have

Ds(ρ1, ρ2, ρ3) Bk1 Ds(y1, ρ2, ρ3) B1 ρ2 Bk−k1−1 y.

We have ρ2 ³ y by another outer IH and so Ds(ρ1, ρ2, ρ3) ³ y. The subcase
when y1 = 0 is similar.

If τ ≡ (λn.σ)[fn; ~x](~ρ) then for all i = 1, . . . , n there are numbers ki and
yi such that ρi Bki yi and

∑
i ki < k. We then have

(λn.σ)(~ρ) BP
i ki

(λn.σ)(~y) B1 σ[λn.σ; ~y] Bk−1−Pi ki
y.

We have σ[λn.σ; ~y] ³ y by the outer IH and from (λn.σ)(~y) ' σ[λn.σ; ~y] we
obtain (λn.σ)(~y) ³ y. We have ρi ³ yi by outer IH’s and so (λn.σ)(~ρ) ³ y
holds.

If τ ≡ gn
i (~ρ) then for all j = 1, . . . , n there are numbers kj and yj such

that ρj Bkj yj and
∑

j kj < k. We then have

gn
i (~ρ) BP

i ki
gn

i (~y) B1 gn
i (~y) ≡ y

We have ρj ³ yj by outer IH’s and, since gn
i (~y) ³ y, we obtain gn

i (~ρ) ³ y. ut

29

2.3.15 Well-founded relations over N. In this paragraph we discuss bi-
nary relations denoted by ≺ over the set of natural numbers. We use the infix
notation and write x ≺ y as an abbreviation for ≺(x, y), i.e. for 〈x, y〉 ∈ ≺.
We conventionally write y Â x as an abbreviation for x ≺ y.

For a non-empty subset K of N we say that its element m ∈ K is ≺-
minimal if

∀x(x ≺ m → x 6∈ K).

A binary relation x ≺ y is well-founded if every non-empty subset K of N
has a ≺-minimal element.

We call a (finite or infinite) sequence x0, x1, x2, . . . , xn, . . . of numbers
≺-descending if xi+1 ≺ xi for all i, i.e.

x0 Â x1 Â x2 Â · · · Â xn Â · · · .

A binary relation x ≺ y is noetherian if every ≺-descending sequence is
finite.

Let φ[x] be a property of natural numbers. We say that the property is
≺-progressive if

∀y(y ≺ x → φ[y]) → φ[x]

holds for all numbers x.
For a binary relation x ≺ y the following conditions are equivalent:

(i) ≺ is a well-founded relation,
(ii) ≺ is a noetherian relation,
(iii) (≺-induction principle): for every ≺-progressive property φ[x] we have

∀xφ[x].

The proof is standard and left to the reader.
Let x ≺ y be a well-founded relation, φ[~x] a property of natural numbers,

and µ[~x] a total term. We then have

∀~x
(
∀~y(

µ[~y] ≺ µ[~x] → φ[~y]
) → φ[~x]

)
→ φ[~x]

for every ~x and and call it ≺-induction on ~x with measure µ[~x].

Let x ≺ y be a binary relation over N. We say that it is an order of N if
the following holds:

x 6≺ x

x ≺ y ∧ y ≺ z → x ≺ z

x ≺ y ∨ x = y ∨ x Â y.

An order x ≺ y is a well-order if it is also a well-founded relation. For instance,
the standard order x < y of natural numbers is a well-order.

30

2.3.16 Functional equations. Let τ [f ; ~x] be a term in the n-variables ~x
containing applications of function symbols g1, . . . , gk, where k ≥ 0, and at
least one application of the n-ary function symbol f . We are interested in
solving functional equations of the form

f(~x) = τ [f ; ~x] (1)

for all arguments ~x. More precisely, if we assign k functions g1, . . . , gk to the
corresponding function symbols then we say that a function f solves (1) if the
property holds for all ~x. If the functional equation (1) has a unique solution
f then we say that the function f is defined by (1).

We are interested in functional equations defining functions obeying
the following condition of effectivity. We say that the function defined by
Par. 2.3.19 satisfies the effectivness condition if the function f is also a min-
imal solution of the functional equation

f(~x) ' τ [f ; ~x]

with non-strict identity. In Par. 2.3.19 we describe sufficient and necessary
conditions on functional equations to define functions satisfying the above
effectiveness condition.

2.3.17 Bounded recursion. By a functional equation with bounded recur-
sion we mean a functional equation of a form

f(~x) = τ [λ̇~y.Ds(µ[~y]≺∗ µ[~x], f(~y), 0); ~x], (1)

where µ[~x] is a total term in ~x called measure and ≺ is a well-founded relation.
Note that every recursive application in (1) is surrounded by a guard

guaranteeing the decrease of recursive arguments in the measure µ. This
means that every recursive application f(~ρ) in τ [f ; ~x] is replaced (starting
from the bottom) by the term

Ds(µ[~ρ]≺∗ µ[~x], f(~ρ), 0).

In the sequel we will usually abbreviate the equation (1) into the form

f(~x) = τ [[f]µ,≺
~x ; ~x]. (2)

We will omit the qualifier ≺ from (2) when ≺ is the standard well-order <
of natural numbers.

The following theorem says that there is a unique function f satisfying
the functional equation (2). We say that f is defined by ≺-bounded recursion
with measure µ.

31

2.3.18 Theorem (Bounded recursion). Every functional equation with
bounded recursion has a unique solution.

Proof. We claim that f defined by

f(~x) ' τ [[f]µ,≺
~x ; ~x] (1)

is a unique solution of the functional equation 2.3.17(2).
We first prove by ≺-induction on ~x with measure µ[~x] that f(~x)↓ holds.

So take any ~x. By induction on the structure of terms we prove an auxiliary
property:

if ρ[f ; ~x] is a subterm of τ then ρ[[f]µ,≺
~x ; ~x]↓. (2)

Take any subterm ρ of τ and continue by the case analysis on the struc-
ture of the term ρ. If ρ ≡ Ds(ρ1[f ; ~x], ρ2[f ; ~x], ρ3[f ; ~x]) then by the inner IH
ρ1[[f]µ,≺

~x ; ~x] ³ y1 for some y1. We consider two subcases. If y1 6= 0 then by
the inner IH again ρ2[[f]µ,≺

~x ; ~x] ³ y2 for some y2. We thus have

Ds(ρ1[[f]µ,≺
~x ; ~x], ρ2[[f]µ,≺

~x ; ~x], ρ3[[f]µ,≺
~x ; ~x]) ³ y2.

The subcase when y1 = 0 is similar. If ρ ≡ g(~ρ[f ; ~x]), where g is a m-
ary (total) function, then by the inner IH there are numbers ~y such that
ρi[[f]µ,≺

~x ; ~x] ³ yi for all i = 1, . . . ,m. We obtain

g(~ρ[[f]µ,≺
~x ; ~x]) ³ g(~y)

since g is total. If ρ ≡ f(~ρ[f ; ~x]) then by the inner IH there are numbers ~y

ρi[[f]µ,≺
~x ; ~x] ³ yi for all i = 1, . . . , n. We consider two subcases. If µ[~y] ≺ µ[~x]

then by the outer IH f(~ρ[[f]µ,≺
~x ; ~x]) ³ y for some y. We clearly have

Ds(µ[~ρ[[f]µ,≺
~x ; ~x]]≺∗ µ[~x], f(~ρ[[f]µ,≺

~x ; ~x]), 0) ³ y.

The subcase when µ[~y] ≺ µ[~x] does not hold is obvious. The remaining cases
when ρ ≡ xi or ρ ≡ n are straightforward and left to the reader.

With the auxiliary property proved we take ρ ≡ τ in (2) and obtain that
τ [[f]µ,≺

~x ; ~x]↓ holds. From (1) we thus get f(~x)↓.
We see that f is a (total) function and thus, by the discussion in Par. 2.3.6,

the function f is the unique solution of the functional equation 2.3.17(2). ut

2.3.19 Regular recursion. We can drop the guards around the recursive
applications in definitions with bounded recursion 2.3.17(2) if we restrict
the recursive applications in τ to regular applications. For that we need the
concepts of governing conditions and conditions of regularity.

To every term τ and an occurrence of a subterm ρ of τ we define by in-
duction on ‖τ‖ − ‖ρ‖ the governing conditions Γ τ

ρ of ρ in τ . If ρ ≡ τ then

32

Γ τ
ρ ≡ >. If ρ is either a variable or a constant then Γ τ

ρ ≡ >. If ρ ≡ f(ρ1, . . . , ρn)
then Γ τ

ρi
≡ Γ τ

ρ . If ρ ≡ Ds(ρ1, ρ2, ρ2) then

Γ τ
ρ1
≡ Γ τ

ρ , Γ τ
ρ2
≡ Γ τ

ρ ∧ ρ1 6= 0, Γ τ
ρ3
≡ Γ τ

ρ ∧ ρ1 = 0.

Consider a functional equation of a form

f(~x) = τ [f ; ~x]. (1)

Assume further we are given a measure term µ[~x] in ~x and a well-founded re-
lation ≺. We assign to each recursive occurrence ρ ≡ f(~ρ[f ; ~x]) in τ governed
by Γ τ

ρ [f ; ~x] in τ the following condition of regularity :

Γ τ
ρ [f ; ~x] → µ[~ρ[f ; ~x]] ≺ µ[~x]. (2)

Regularity asserts the same as the informal phrase that the recursion de-
creases in the measure µ in the well-founded relation ≺.

We say that the functional equation (1) is regular if the function g defined
by bounded recursion:

g(~x) = τ [[g]µ,≺
~x ; ~x]

satisfies its conditions of regularity (2), i.e. the following holds

Γ τ
ρ [g; ~x] → µ[~ρ[g; ~x]] ≺ µ[~x]

for each condition of regularity (2) of the functional equation (1).

2.3.20 Theorem (Regular recursion). Every functional equation with
regular recursion has a unique solution satisfying its condition of effectivity.

Proof. Suppose that the function g defined by bounded recursion:

g(~x) = τ [[g]µ,≺
~x ; ~x] (1)

satisfies the conditions of regularity w.r.t. µ and ≺ of the functional equation

f(~x) = τ [f ; ~x]. (2)

We show that g is the unique solution of (2) and the minimal solution of the
functional equation

f(~x) ' τ [f ; ~x] (3)

with non-strict identity.
We first prove that g is a solution of (2), i.e. we have

g(~x) = τ [g; ~x]. (4)

33

By induction on the structure of subterms ρ[f ; ~x] of τ we prove an auxiliary
property:

Γ τ
ρ [g; ~x] → ρ[[g]µ,≺

~x ; ~x] = ρ[g; ~x], (5)

where Γ τ
ρ [f ; ~x] governs ρ in τ . So assume Γ τ

ρ [g; ~x] and continue by the case
analysis of ρ. If ρ ≡ f(~ρ[f ; ~x]) then we obtain

Ds(µ[~ρ[[g]µ,≺
~x ; ~x]]≺∗ µ[~x], g(~ρ[[g]µ,≺

~x ; ~x]), 0) IH=

= Ds(µ[~ρ[g; ~x]]≺∗ µ[~x], g(~ρ[g; ~x]), 0)
(∗)
= g(~ρ[g; ~x]).

The step marked by (∗) follows from regularity since the terms ~ρ are governed
by Γ τ

ρ in τ . The remaining cases are straightforward and left to the reader.
With the auxiliary property proved we obtain (4) from

g(~x)
(1)
= ρ[[g]µ,≺

~x ; ~x]
(5)
= τ [g; ~x]

by noting that Γ τ
τ ≡ >.

We now show that the function g is the minimal solution of (3). So take
any solution f of (3) We prove by ≺-induction on the measure µ[~x] of ~x that
f(~x) ' g(~x) holds. Take any ~x. By induction on the structure of subterms ρ
of τ we prove an auxiliary property:

Γ τ
ρ [g; ~x] → ρ[f ; ~x] ' ρ[g; ~x] (6)

where Γ τ
ρ [f ; ~x] governs ρ in τ . So assume Γ τ

ρ [g; ~x] and continue by the case
analysis of ρ. If ρ ≡ f(~ρ[f ; ~x]) then Γ τ

ρi
[g; ~x] holds and thus by the inner

IH ρi[f ; ~x] ' ρi[g; ~x] for every i = 1, . . . , n. We obtain from regularity that
µ[~ρ[g; ~x]] ≺ µ[~x] and so f(~ρ[g; ~x]) ' g(~ρ[g; ~x]) by the outer IH. Consequently

f(~ρ[f ; ~x]) ' g(~ρ[g; ~x]).

The remaining cases are straightforward and left to the reader. With the
auxiliary property proved we obtain the inductive case of the outer induction
from

f(~x)
(3)' τ [f ; ~x]

(6)' τ [g; ~x]
(4)
= g(~x)

by noting that Γ τ
τ ≡ >.

Since g is the minimal solution of (3) then it is the unique solution of (2)
(see also Par. 2.3.6). ut

2.3.21 Regular recursive definitions. Let the term τ [f ; ~x] of the func-
tional equation with regular recursion

f(~x) = τ [f ; ~x]. (1)

34

be such that they applies the function symbols f and also g1, . . . , gk. If the
last symbols are interpreted by the corresponding functions g1, . . . , gk then
the functional equation (1) is a regular recursive definition from the functions
g1, . . . , gk. The definition defines the function f which is its unique solution
guaranteed to exist by Thm. 2.3.20.

Recursive definition (1) can be viewed as a function operator taking al-
l functions g1, . . . , gk applied in τ and yielding the function f defined by
it. Note that we do not count into the arguments of the function operator
functions occurring in the measure term µ[~x].

Our measure terms µ[~x] are almost always into the well-order < of nat-
ural numbers. In such cases we say that the definition is regular in the i-th
argument if µ[~x] ≡ xi.

2.3.22 Theorem. Every functional equation defining a function satisfying
its condition of effectivity is a regular recursive definition of the same func-
tion.

Proof. Suppose that the functional equation

f(~x) = τ [f ; ~x] (1)

has a unique solution f and the n-ary function f is also the minimal solution
of the functional equation

f(~x) ' τ [f ; ~x] (2)

with non-strict identity.
Let f0 = ∅(n) and fi+1(~x) ' τ [fi; ~x]. We claim that (1) is a recursive def-

inition of f regular in the measure m(~x), where

m(~x) is the minimal number i such that fi+1(~x)↓,
which is into the standard well-order < of natural numbers. Note that

m(~x) < i ↔ fi(~x) ³ f(~x) (3)
m(~x) ≥ i ↔ fi(~x)↑ (4)

since the partial functions fi form a chain and f =
⋃

i fi by Thm. 2.3.4.
We first prove for every subterm ρ[f ; ~x] of τ that

∀y(ρ[fm(~x); ~x] ³ y → ρ[f ; ~x] ³ y) (5)

by induction with measure m(~x).
Now we prove for every subterm ρ[f ; ~x] of τ that

Γ τ
ρ [f ; ~x] → ρ[fm(~x); ~x] ' ρ[f ; ~x], (6)

where Γ τ
ρ governs ρ in τ . Property (6) is proved by induction on ‖τ‖ − ‖ρ‖.

35

Next we prove for every recursive application f(~ρ[f ; ~x]) in τ that

Γ τ
f(~ρ)[f ; ~x] → m(~ρ[f ; ~x]) < m(~x), (7)

where Γ τ
f(~ρ) governs f(~ρ) in τ .

Finally we prove

f(~x) = τ [[f]m(~x)
~x ; ~x]. (8)

This concludes the proof of the theorem. ut

2.3.23 Functions estimating the length of reductions. For every R-
function symbol λn.τ we define the estimating function dλn.τ (z) with the help
of auxiliary terms δρ estimating the length of reductions needed to reduce
the subterms ρ of τ to monadic numerals. The auxiliary terms are defined by
recursion on the construction of ρ:

δxi
≡ 0

δ0 ≡ 0
δ(ρ+1) ≡ δρ

δ(ρ .−1) ≡ δρ + 1

δDs(ρ1,ρ2,ρ3) ≡ δρ1 + δρ2 + δρ3 + 1
δfn(ρ1,...,ρn) ≡ δρ1 + . . . + δρn + f(z)

δ(λn.τ)(ρ1,...,ρn) ≡ δρ1 + · · ·+ δρn + dλn.τ (z)
δgm

i (ρ1,...,ρm) ≡ δρ1 + · · ·+ δρm + 1.

We now define the unary estimating functions dλn.τ by induction on the
construction of R-terms τ . The estimating functions for all R-function sym-
bols applied in τ are defined by IH. We note that f is applied in τ iff it is
also applied in the term δτ [f ; z] as an unary function symbol. We define the
estimating function by

dλn.τ (0) = 0
dλn.τ (z + 1) = δτ [dλn.τ ; z] + 1.

2.3.24 Theorem. Suppose that (λn.τ)(~x) = τ [λn.τ ; ~x] is a regular recursive
definition with a measure µ[~x] into the well-order < of natural numbers. As-
sume further that the term τ does not apply any defined function symbols.
Then we have

(λn.τ)(~x) = y ↔ (λn.τ)(~x) B≤dλn.τ (µ[~x]+1) y. (1)

Proof. Let f0 = ∅(n) and fi+1(~x) ' τ [fi; ~x]. We prove by induction on i:

∀~x∀y(fi(~x) ³ y → (λn.τ)(~x) B≤dλn.τ (i) y). (2)

36

In the base case there is nothing to prove since f0 is nowhere defined. In
the inductive case we take any ~x and prove by (the inner) induction on the
structure of subterms ρ[fn; ~x] of τ :

∀y(ρ[fi; ~x] ³ y → ρ[λn.τ ; ~x] B≤δρ[λn.τ ;i] y). (3)

We take any subterm ρ of τ , any y, assume ρ[fi; ~x] ³ y and continue by the
case analysis of ρ.

If ρ ≡ xi then y = xi and thus

xi[λn.τ ; ~x] ≡ xi B0 xi,

where δxi
[dλn.τ ; i] = 0.

If ρ ≡ 0 then y = 0 and thus

0[λn.τ ; ~x] ≡ 0 B0 0,

where δ0[dλn.τ ; i] = 0.
If ρ ≡ ρ1 + 1 then y = y1 + 1 for some y1 such that ρ1[fi; ~x] ³ y1. We have

(ρ1 + 1)[λn.τ ; ~x] ≡ ρ1[λn.τ ; ~x] + 1
inner IH

B≤δρ1 [dλn.τ ;i] y1 + 1 ≡ y1 + 1,

where δ(ρ1+1)[dλn.τ ; i] = δρ1 [dλn.τ ; i].
If ρ ≡ ρ1

.− 1 then y = y1
.− 1 for some y1 such that ρ1[fi; ~x] ³ y1. We have

(ρ1
.− 1)[λn.τ ; ~x] ≡ ρ1[λn.τ ; ~x] .− 1

inner IH
B≤δρ1 [dλn.τ ;i] y1

.− 1 B1 y1
.− 1,

where δ(ρ1
.−1)[dλn.τ ; i] = δρ1 [dλn.τ ; i] + 1.

If ρ ≡ Ds(ρ1, ρ2, ρ3) then ρ1[fi; ~x] ³ y1 for some y1. We consider two sub-
cases. If y1 6= 0 then ρ2[fi; ~x] ³ y and we have

Ds(ρ1, ρ2, ρ3)[λn.τ ; ~x] ≡ Ds(ρ1[λn.τ ; ~x], ρ2[λn.τ ; ~x], ρ3[λn.τ ; ~x])
inner IH

B≤δρ1 [dλn.τ ;i]

Ds(y1, ρ2[λn.τ ; ~x], ρ3[λn.τ ; ~x]) B1 ρ2[λn.τ ; ~x]
inner IH

B≤δρ2 [dλn.τ ;i] y1,

where δDs(ρ1,ρ2,ρ3)[dλn.τ ; i] ≥ δρ1 [dλn.τ ; i] + 1 + δρ2 [dλn.τ ; i]. The subcase when
x = 0 is similar.

If ρ ≡ fn(ρ1, . . . , ρn) then there are numbers y1, . . . , yn such that ρj [fi; ~x] ³ yj

for j = 1, . . . , n and fi(y1, . . . , yn) ³ y. We have

fn(ρ1, . . . , ρn)[λn.τ ; ~x] ≡ (λn.τ)(ρ1[λn.τ ; ~x], . . . , ρn[λn.τ ; ~x])
inner IH’s

B≤P δρj
[dλn.τ ;i]

(λn.τ)(y1, . . . , yn)
outer IH

B≤dλn.τ (i) y,

where δfn(ρ1,...,ρn)[dλn.τ ; i] =
∑

δρj [dλn.τ ; i] + dλn.τ (i).

37

If ρ ≡ gm
j (ρ1, . . . , ρm) then there are numbers y1, . . . , ym such that ρk[fi; ~x] ³ yk

for k = 1, . . . , m and gm
j (y1, . . . , ym) ³ y. We have

gn
j (ρ1, . . . , ρm)[λn.τ ; ~x] ≡ gn

j (ρ1[λn.τ ; ~x], . . . , ρm[λn.τ ; ~x])
inner IH’s

B≤P δρk
[dλn.τ ;i]

gn
j (y1, . . . , ym) B1 gm

j (y1, . . . , ym) ≡ y.

This ends the proof of the inner induction.
We now finish the inductive case of the outer induction by taking any y

such that fi+1(~x) ³ y holds. We thus have τ [fi; ~x] ³ y and we obtain

(λn.τ [fn; ~x])(~x) B1 τ [λn.τ ; ~x]
(2)

B≤δτ [λn.τ ;i] y,

where dλn.τ (i + 1) = 1 + δτ [λn.τ ; i].

The (←)-direction of (1) follows from Thm. 2.3.14. ut

2.4 Clausal Definitions

2.4.1 Introduction. We extend the language of terms with new constructs
- generalized conditionals. Some of them by being variable binding constructs
are well-known from LISP and from functional languages. Generalized con-
ditionals will not be used for the presentation purposes. We will use clausal
definitions instead (see Par. 2.4.25). Definitions in clausal form allow pat-
tern matching style of definitions which is very readable. Clausal definitions
are presented to humans in the form of clauses which are formulas derived
from generalized regular recursive definitions f(~x) = α[f ; ~x] of functions (see
Par. 2.4.20) by eliminating generalized conditionals in α via first-order con-
structs.

2.4.2 Patterns. Consider a formula

φ[x1, . . . , xn; y1, . . . , ym] (1)

with all its free variables among the indicated. The variables ~x ≡ x1, . . . , xn

and ~y ≡ y1, . . . , ym are called respectively the input and the output variables
of (1). The formula is called a pattern if it satisfies the following pattern’s
uniqueness condition:

φ[~x; y1, . . . , ym] ∧ φ[~x; z1, . . . , zm] → y1 = z1 ∧ · · · ym = zm. (2)

A term ρ[~x] in ~x is called a recognizer of the pattern (1) if we have

ρ[~x] = 0 ∨ ρ[~x] = 1 (3)
∃~y φ[~x; ~y] ↔ ρ[~x] = 1. (4)

38

Terms δ1[~x], . . . , δm[~x] in ~x are called destructors of the pattern (1) if have

∃y1 . . . ∃ym φ[~x; y1, . . . , ym] ↔ φ[~x; δ1[~x], . . . , δm[~x]]. (5)

We require that the recognizers and the destructors of patterns are are built
up only from variables and constants by applications of (total) functions.

We give here examples of typical patterns we will use later. We will indi-
cate only the output variables of patterns.

2.4.3 Monadic patterns. Monadic patterns are formulas of a form

τ = y + 1 (1)

with the output variable y. The pattern’s uniqueness condition

τ = y + 1 ∧ τ = z + 1 → y = z

holds trivially. Note that we have

∃y τ = y + 1 ↔ τ 6= 0

and thus ρ ≡ (τ 6=∗ 0) is the recognizer of the pattern (1). Note also that

∃y τ = y + 1 ↔ τ = τ .− 1 + 1

and so δ ≡ (τ .− 1) is the destructor of the pattern (1).

2.4.4 Pair patterns. Pair patterns are formulas of a form

τ = y1, y2 (1)

with the output variables y1 and y2. The pattern’s uniqueness condition

τ = y1, y2 ∧ τ = z1, z2 → y1 = z1 ∧ y2 = z2

follows from the pairing property 1.3.2(1) of the pairing function. Note that
we have

∃y1∃y2 τ = y1, y2 ↔ τ 6= 0

and thus ρ ≡ (τ 6=∗ 0) is the recognizer of the pattern (1). Note also that

∃y1∃y2 τ = y1, y2 ↔ τ = H(τ), T (τ)

and so δ1 ≡ H(τ) and δ2 ≡ T (τ) are the destructors of the pattern (1).

39

2.4.5 Pair constructors patterns. A pair constructor is either a constant
Kc = c, 0 or an n-ary function Kc(~y) = c, (~y) where c is a constant called the
tag of the constructor.

Constant pair constructor patterns are formulas of a form

τ = Kc (1)

with empty output variables, where Kc is a constant pair constructor. Note
that we have

τ = Kc ↔ τ 6= 0 ∧H(τ) = c ∧ T (τ) = 0

and thus ρ ≡ (x 6=∗ 0 ∧∗ H(τ) =∗ c ∧∗ T (τ) =∗ 0) is the recognizer of the pat-
tern (1).

Functional pair constructor patterns are formulas of a form

τ = Kc(~y), (2)

with the output variables ~y, where Kc(~y) is an n-ary functional pair con-
structor. Note that we have

∃~y τ = Kc(~y) ↔ H(τ) = c ∧ Tn−1(τ) 6= 0

and thus ρ ≡ (H(τ) =∗ c ∧∗ Tn−1(τ) 6=∗ 0) is the recognizer of the pattern
(2). Note also that

∃~y τ = Kc(~y) ↔ τ = Kc(H T (τ), . . . , H Tn−1(τ), Tn(τ))

and so the terms ~δ ≡ δ1, . . . , δn defined by

δi ≡
{

H T i−1(τ) if 1 ≤ i < n

Tn(τ) if i = n

are the destructors of the pattern (2).

2.4.6 Generalized terms. We now describe the syntax of generalized
terms which, unlike the complex syntax which seems to be de rigueur in the
definitions of programming languages, is in the usual simple style of logic.
The reader should bear on mind that this syntax is not meant for presentation
to humans. We use α, β, . . ., as syntactic variables ranging over generalized
terms.

For a given n-tuple of variables ~x we define the set of generalized terms
in ~x as the smallest set of expressions satisfying the following:

– Every term in ~x which is built up only from variables and constants by
applications of (total) functions is a generalized term in ~x.

40

– The expression of the form (m ≥ 1):

α[~x] ≡ D~δ1,...,~δm
ρ1,...,ρm

(φ1[~x; ~y1], β1[~x, ~y1], . . . , φm[~x; ~ym], βm[~x, ~ym]), (1)

where φi[~x; ~yi] are patterns with the recognizer ρi and the destructors ~δi,
and βi[~x, ~yi] are generalized terms in ~x, ~yi. Moreover, the patterns satisfies
the following disjointness and completeness conditions respectively:

m∧

i,j=1
i 6=j

¬(∃~yi φi[~x; ~yi] ∧ ∃~yj φj [~x; ~yj]) (2)

m∨

i=1

∃~yi φi[~x; ~yi]. (3)

Generalized terms of a form (1) are called generalized conditionals or case
discrimination terms. The variables ~yi are said to be bound in the term (1).

We extend the notion of the graphs of terms for generalized conditionals
as follows. The graph α ³ v of the generalized conditional 2.4.6(1) is the
formula of the form

m∨

i=1

∃~yi

(
φi[~x; ~yi] ∧ βi[~x, ~yi] ³ v

)
. (4)

2.4.7 Notational conventions. In the sequel we usually omit recognizers
and destructors from the notation of generalized conditionals. We will visual-
ize the conditionals of a form 2.4.6(1) by the notation known from functional
programming languages as

case
φ1[~x; ~y1] ⇒~y1 β1[~x, ~y1]
...
φm[~x; ~ym] ⇒~ym

βm[~x, ~ym]
end

We will write the conditional 2.4.6(1) even as

case
φ1[~x; ~y1] ⇒~y1 β1[~x, ~y1]
...
φm−1[~x; ~ym−1] ⇒~ym−1 βm−1[~x, ~ym−1]
otherwise ⇒ βm[~x]

end

when the last pattern φm is of the form
∧m−1

i=1 ¬∃~yiφi.
We give here examples of typical generalized conditionals we will use later.

We will indicate only the output variables of patterns.

41

2.4.8 Equality tests. Equality tests are conditionals of a form

D∅,∅ρ1,ρ2
(τ1 = τ2, β1, τ1 6= τ2, β2), (1)

where ρ1 ≡ (τ1 =∗ τ2) and ρ2 ≡ (τ1 6=∗ τ2). We visualize the conditional (1)
as

case
τ1 = τ2 ⇒ β1

τ1 6= τ2 ⇒ β2

end

2.4.9 Negation discrimination. Negation discrimination terms are con-
ditionals of a form

D∅,∅ρ1,ρ2
(R(~τ), β1,¬R(~τ), β2), (1)

where ρ1 ≡ R∗(~τ) and ρ2 ≡ (¬∗R∗(~τ)). We visualize the conditional (1) as

case
R(~τ) ⇒ β1

¬R(~τ) ⇒ β2

end

2.4.10 Dichotomy discrimination. Dichotomy discrimination terms are
conditionals of a form

D∅,∅ρ1,ρ2
(τ1 ≤ τ2, β1, τ1 > τ2, β2), (1)

where ρ1 ≡ (τ1 ≤∗ τ2) and ρ2 ≡ (τ1 >∗ τ2). We visualize the conditional (1)
as

case
τ1 ≤ τ2 ⇒ β1

τ1 > τ2 ⇒ β2

end

2.4.11 Trichotomy discrimination. Trichotomy discrimination terms are
conditionals of a form

D∅,∅,∅ρ1,ρ2,ρ3
(τ1 < τ2, β1, τ1 = τ2, β2, τ1 > τ2, β3), (1)

where ρ1 ≡ (τ1 <∗ τ2), ρ2 ≡ (τ1 =∗ τ2), and ρ3 ≡ (τ1 >∗ τ2). We visualize the
conditional (1) as

case
τ1 < τ2 ⇒ β1

τ1 = τ2 ⇒ β2

τ1 > τ2 ⇒ β3

end

42

2.4.12 Discrimination on constant patterns. Discrimination on con-
stants are conditionals of a form

D∅,...,∅,∅ρ1,...,ρk,ρk+1
(τ = c1, β1, . . . , τ = ck, βk,

k∧

i=1

τ 6= ci, βk+1), (1)

where c1, . . . , ck are constants denoting pairwise different numbers, for each
1 ≤ i ≤ k we have ρi ≡ (τ =∗ ci), and ρk+1 ≡ τ 6=∗ c1 ∧∗ · · · ∧∗ τ 6=∗ ck. We
visualize the conditional (1) as

case
τ = c1 ⇒ β1

...
τ = ck ⇒ βk

otherwise ⇒ βk+1

end

2.4.13 Discrimination on monadic patterns. Monadic discrimination
terms are conditionals of a form

D∅,δ2
ρ1,ρ2

(τ = 0, β1, τ = y + 1, β2[y]), (1)

where ρ1 ≡ (τ =∗ 0), ρ2 ≡ (τ 6=∗ 0), and δ2 ≡ (τ .− 1). We visualize the con-
ditional (1) as

case
τ = 0 ⇒ β1

τ = y + 1 ⇒y β2[y]
end

2.4.14 Discrimination on pair patterns. Pair discrimination terms are
conditionals of a form

D∅,(δ1
2 ,δ2

2)
ρ1,ρ2 (τ = 0, β1, τ = y1, y2, β2[y1, y2]), (1)

where ρ1 ≡ (τ =∗ 0), ρ2 ≡ (τ 6=∗ 0), δ1
2 ≡ H(τ), and δ2

2 ≡ T (τ). The disjoint-
ness condition 2.4.6(2) and the completeness condition 2.4.6(3) of the con-
ditional (1) follow from the properties 1.3.2(4) and 1.3.2(3) of the pairing
function respectively. We visualize the conditional (1) as

case
τ = 0 ⇒ β1

τ = y1, y2 ⇒y1,y2 β2[y1, y2]
end

43

2.4.15 Discrimination on pair constructors patterns. Pair construc-
tor discrimination terms are conditionals of a form

D~δ1,...,~δm,∅
ρ1,...,ρm,ρm+1

(
τ = Kc1(~y1), β1[~y1], . . . , τ = Kcm(~ym), βm[~ym],
m∧

i=1

¬∃~yi τ = Kci(~yi), βm+1

)
,

(1)

where Kci
(~yi) are pair constructors with pairwise different tags ci. The rec-

ognizer ρi and the destructors ~δi of the pattern τ = Kci
(~yi) are defined as in

Par. 2.4.5. The recognizer of the last pattern satisfies

ρm+1 ≡ (ρ1 =∗ 0 ∧∗ · · · ∧∗ ρm =∗ 0).

The disjointness condition 2.4.6(2) of the conditional (1) follows from the
pairing property 1.3.2(1) of the pairing function and its completeness condi-
tion 2.4.6(3) holds trivially. We visualize the conditional (1) as

case
τ = Kc1(~y1) ⇒~y1 β1[~y1]

...
τ = Kcm(~ym) ⇒~ym

βm[~ym]
otherwise ⇒ βm+1

end

2.4.16 Assignments. Assignments are conditionals of a form

Dδ
ρ(τ = y, β[y]), (1)

where ρ ≡ 1 and δ ≡ τ . We visualize the conditional (1) as

let τ = y in β[y]

2.4.17 Translation of generalized terms. We now describe an effective
process which for a given generalized term α finds an equivalent term α?, i.e.
we have

α? = α, (1)

and without generalized conditionals. The idea is based on the fact that the
generalized conditional 2.4.6(1) has the same denotation as the term

(m−1)-times︷ ︸︸ ︷
Ds(ρ1, β1[~x,~δ1], . . .Ds(ρm−1, βm−1[~x,~δm−1], βm[~x,~δm]) . . .).

The mapping α? is defined inductively on the structure of generalized terms
as follows. If α is without conditionals then α? ≡ α. Otherwise, we have

44

D~δ1,...,~δm
ρ1,...,ρm

(φ1, β1[~y1], . . . , φm, βm[~ym])
?
≡

≡
(m−1)-times︷ ︸︸ ︷

Ds(ρ1, β
?
1 [~δ1], . . .Ds(ρm−1, β

?
m−1[~δm−1], β?

m[~δm]) . . .).

2.4.18 Generalized explicit definitions. Generalized explicit definitions
of functions are of a form

f(~x) = α[~x], (1)

where the generalized term α[~x] contains at most the indicated variables free
and does not apply f . Clearly there is a unique function f satisfying (1).

Generalized explicit definition (1) can be viewed as a function operator
taking all functions applied in α and yielding the function f .

2.4.19 Theorem. Every class F closed under explicit definitions of func-
tions is closed under generalized explicit definitions.

Proof. The theorem follows directly from the property 2.4.17(1) of the trans-
lation function α?. ut

2.4.20 Generalized regular recursive definitions. Suppose that the fol-
lowing equation

f(~x) = α[f ; ~x] (1)

is such that its translation

f(~x) = α?[f ; ~x] (2)

is a regular recursive definition of f . By 2.4.17(1) the function f is a unique
function satisfying the equation (1) We call the equation (1) a generalized
regular recursive definition of f .

Generalized regular recursive definition (1) can be viewed as a function
operator taking all functions applied in α and yielding the function f . The
following theorem is then straightforward.

2.4.21 Theorem. Every class F closed under regular recursive definitions
is closed under generalized regular recursive definitions.

2.4.22 Remark. We can check directly whether the equation 2.4.20(1) is
a generalized regular recursive definition with the help of conditions of reg-
ularity which are defined in the same way as the conditions of regularity of
recursive definitions with ordinary terms. For that we need only to extend
the concept of governing conditions onto generalized terms.

To every generalized term α and an occurrence of a subterm β of α we
define by induction on ‖α‖ − ‖β‖ the governing condition Γα

β of β in α.

45

If β ≡ α then Γα
β ≡ >. Otherwise, if β is a term without conditionals then

Γα
β ≡ >. Finally, if β ≡ D~δ1,...,~δm

ρ1,...,ρm
(φ1, β1, . . . , φm, βm) then

Γα
ρi
≡ Γα

δj
i

≡ Γα
β

Γα
βi
≡ Γα

β ∧ φi.

It is easy to see that for a given measure µ[~x] and a well-founded rela-
tion ≺ the conditions of regularity of the equations 2.4.20(1) and 2.4.20(2)
are equivalent. Consequently, the equation 2.4.20(1) is a generalized regular
recursive definition iff there is a measure µ[~x] and a well-founded relation ≺
such that the function g defined by bounded recursion:

g(~x) = α?[[g]µ,≺
~x ; ~x]

satisfies all its conditions of regularity, i.e. the following holds

Γα
β [g; ~x] → µ[~α[g; ~x]] ≺ µ[~x]

for every recursive occurrence β ≡ f(~β[f ; ~x]) in α governed in α by Γα
β [f ; ~x].

2.4.23 Clauses. Clauses are Horn formulas, i.e. implications with formulas
in the consequent. Every clause can be presented in a form

ψ1 ∧ · · · ∧ ψk → f(~ρ) = α, (1)

where α is a generalized term. Clauses used in definitions are in logic pro-
gramming customarily written with converse implications:

f(~ρ) = α ← ψ1 ∧ · · · ∧ ψk. (2)

We adopt this custom and treat such a formula only as a notational variant of
(1). The identity f(~ρ) = α is the head of the clause (2) and the conjunction
on the right hand side constitutes the body of the clause. We do not exclude
the case when k = 0 when the body of the clause is empty and then the
clause is written as f(~ρ) = α.

The clause (2) is terminal if it the term α does not contain conditionals,
i.e. it is built up only from variables and constans by applications of functions.
Otherwise, the clause is non-terminal .

2.4.24 Clausal form of equations with generalized terms. We now
describe the transformation called unfolding which leads from an equation

f(~x) = α[~x], (1)

where the generalized term α may apply f , to a finite set of terminal clauses

{φ1, . . . , φm} (2)

46

satisfying the following:

∀~x f(~x) = α[~x] ↔ ∀φ1 ∧ · · · ∧ ∀φm. (3)

The set of clauses (2) is called a clausal form of the equation (1).
In one unfolding step we take a non-terminal clause φ of a form

f(~x) = D~δ1,...,~δm
ρ1,...,ρm

(χ1, β1, . . . , χm, βm) ← ψ1 ∧ · · · ∧ ψk

and unfold the clause to the set of clauses {φ1, . . . , φm}, where every its clause
φi is of the form (1 ≤ i ≤ m):

f(~x) = βi ← ψ1 ∧ · · · ∧ ψk ∧ χi

Clearly, the clauses {φ1, . . . , φm} satisfies the following unfolding invariant :

∀φ ↔ ∀φ1 ∧ · · · ∧ ∀φm. (4)

The unfolding process for the equation (1) is started from the initial
clause (1) and eventually leads to the set of terminal clauses (2). Property
(3) follows from the unfolding invariant (4).

2.4.25 Clausal definitions. Suppose that

f(~x) = α (1)

is a generalized explicit definition of f if α does not apply f or a generalized
regular recursive definition of f otherwise. Suppose further that the set of
clauses

{φ1, . . . , φm} (2)

is a clausal form of the equation (1). By 2.4.24(3) the function f is a unique
function satisfying the clauses (2). We call the clauses (2) a clausal definition
of the function f . The clausal definition is called explicit if the definition (1)
is explicit and recursive otherwise.

Clausal definition (2) can be viewed as a function operator taking all
functions applied in α and yielding the function f . Thus the only requirement
imposed on clausal definitions is that they should be obtained by unfolding
of some generalized definition of a form (1).

2.4.26 Presentation of clausal definitions. We may further simplify a
clausal definition for the purposes of presentation to a human reader. For
instance, we may rename variables of one of its clauses. We may eliminate
variables of clauses in contexts like τ = x provided that the variable x does
not occur in the term τ by substituting it for the corresponding term. For
instance, the clause

47

φ[x] ← φ1[x] ∧ τ = x ∧ φ2[x]

is simplified into the equivalent clause

φ[τ] ← φ1[τ] ∧ φ2[τ].

We may simplified a clausal definition by omitting from it one or more
default clauses which are clauses with the heads f(~ρ) = 0. Due to the omitted
defaults and because of the writing of implications in the direction ← only,
a clausal definition is more than the statement of the properties asserted by
the non-default clauses. In order to distinguish such a clausal definition from
the mere assertion of properties we always write clausal definitions aligned to
the left .

We can define a predicate R by a clausal definition which defines its
characteristic function R∗ and is such that the heads of the clauses have
the form R∗(~ρ) = 1 or R∗(~ρ) = 0 and all applications of R∗ in the bodies
are one of the following forms: R∗(~ρ) = 1, R∗(~ρ) 6= 0, or R∗(~ρ) = 0. We can
present such a definition in a predicate form where we replace R∗(~ρ) = 1 and
R∗(~ρ) 6= 0 by R(~ρ) and R∗(~ρ) = 0 by ¬R(~ρ). We can also remove all defaults
which are clauses with the heads ¬R(~ρ).

Clausal definitions are probably best explained with examples. The reader
will note that the conditions of regularity of clausal definitions can be easily
read off from their recursive clauses. For simplicity we will omit the recog-
nizers and the destructors in the notation of generalized conditionals. We
strongly recommend that readers interested in more details in programming
and proving with the clausal language download the text [KV01].

2.4.27 Example. Consider the following recursive definition of the remain-
der function x mod y:

x mod y = case
y = 0 ⇒ 0
y > 0 ⇒ case

x < y ⇒ x
x ≥ y ⇒ (x .− y) mod y

end
end

(1)

The definition is regular in the first argument x since its condition of regu-
larity

y > 0 ∧ x ≥ y → x .− y < y (2)

is trivially satisfied.
We unfold the equation (1) to the following three clauses

x mod y = 0 ← y = 0 (3)
x mod y = x ← y > 0 ∧ x < y (4)
x mod y = (x .− y) mod y ← y > 0 ∧ x ≥ y. (5)

48

Then we omit the first clause (3) by default whereby we obtain

x mod y = x ← y > 0 ∧ x < y (6)
x mod y = (x .− y) mod y ← y > 0 ∧ x ≥ y. (7)

The final clauses (6) and (7) forms the clausal definition of the remainder
function x mod y derived from the equation (1). Note that the condition of
regularity (2) can be easily read off from the last clause (7).

2.4.28 Example. Consider the following recursive definition of the charac-
teristic function Even∗(x) of the predicate Even(x) ↔ ∃y x = 2 · y holding of
even numbers:

Even∗(x) = case
x = 0 ⇒ 1
x = y + 1 ⇒y case

Even∗(y) 6= 0 ⇒ 0
Even∗(y) = 0 ⇒ 1

end
end

(1)

The definition is regular in x, since its condition of regularity

x = y + 1 → y < x (2)

is trivially satisfied.
We unfold the equation (1) to the clauses

Even∗(x) = 1 ← x = 0 (3)
Even∗(x) = 0 ← x = y + 1 ∧ Even∗(y) 6= 0 (4)
Even∗(x) = 1 ← x = y + 1 ∧ Even∗(y) = 0. (5)

We simplify the clauses by eliminating the local variable x from their bodies;
in particular, the variable x is substituted for the y + 1 in the both clauses
(4) and (5). After simplification we obtain the following clauses

Even∗(0) = 1 (6)
Even∗(y + 1) = 0 ← Even∗(y) 6= 0 (7)
Even∗(y + 1) = 1 ← Even∗(y) = 0 (8)

The clauses are then transformed into predicate form:

Even(0) (9)
¬Even(y + 1) ← Even(y) (10)
Even(y + 1) ← ¬Even(y). (11)

Finally, we omit the second clause (10) by default whereby we obtain

Even(0) (12)
Even(y + 1) ← ¬Even(y) (13)

The final clauses (12) and (13) forms the clausal definition of the predicate
Even(x). Note that the condition of regularity (2) can be easily read off from
the last clause (13).

49

2.5 Exercises

2.5.1 Exercise. Suppose that F is a class of functions closed under explicit
definitions of predicates with bounded formulas. Show that the following
predicates are in F :

– the predicate x | y holding if x divides y,
– the predicate Prime(x) holding if x is a prime number,
– the predicate ∃y x = 2y holding if x is a power of two,
– the predicate ∃y x = 3y holding if x is a power of three,
– the predicate ∃y x = 4y holding if x is a power of four,
– the predicate ∃y x = py holding if x is a power of the prime number p,

50

3. Primitive Recursive Functions

We will in this chapter investigate a class of effectively computable functions
which has a particulary simple inductive definition and actually it was the
first known class of computable functions. The class of primitive recursive
functions will be shown closed in the following sections under three succes-
sively stronger special cases of recursive definitions. The strongest special
case is that of recursive definitions regular in primitive recursive measures
(see Thm. 3.3.11). Contrary to the original expectations, primitive recursive
functions are not closed under recursive definitions (see Par. 5.1.2).

3.1 Primitive Recursion

3.1.1 Operator of primitive recursion. The operator of primitive recur-
sion takes an n-ary function g and an (n + 2)-ary function h and yields the
(n + 1)-ary function f defined by

f(0, ~y) = g(~y) (1)
f(x + 1, ~y) = h(x, f(x, ~y), ~y). (2)

The argument x is called the recursive argument whereas the arguments ~y
are parameters. Note that we require that the definition has at least one
parameter.

3.1.2 Primitive recursive functions. The class of primitive recursive
functions is generated from the successor function x + 1, the zero function
Z(x) = 0, and the identity functions In

i (~x) = xi by composition of functions
and primitive recursion.

We denote by PRIMREC the class of primitive recursive functions. We
denote by PRIMREC(F) primitive recursive functions in the class F . Clearly
we have PRIMREC = PRIMREC(∅).

3.1.3 Unary constant functions are primitive recursive. We show by
induction on n that every unary constant function Cn(x) = n is primitive
recursive. In the base case we have C0 = Z. In the inductive case we assume

that the constant function Cn is primitive recursive by IH and define the con-
stant function Cn+1 as a primitive recursive function by unary composition:

Cn+1(x) = Cn(x) + 1.

3.1.4 Case discrimination function is primitive recursive. The case
analysis function D satisfies D(0, y, z) = z and D(x + 1, y, z) = y. We derive
D as a primitive recursive function by primitive recursion from the idenitity
functions I2

2 and I4
2 :

D(0, y, z) = I2
2 (y, z)

D(x + 1, y, z) = I4
3 (x, D(x, y, z), y, z).

3.1.5 Theorem. Primitively recursively closed classes F are closed under
explicit definitions of functions.

Proof. The claim follows directly from Par. 3.1.3, Par. 3.1.4, and Thm. 2.2.10
(see also Par. 2.2.11(i)). ut

3.1.6 Theorem. Primitively recursively closed classes F are closed under
generalized explicit definitions of functions.

Proof. Directly from Thm. 3.1.5 and Thm. 2.4.19. ut

3.1.7 Boolean functions are primitive recursive. Primitive recursive
functions are closed under explicit definitions and thus, by Par. 2.2.5, the
boolean functions are primitive recursive.

3.1.8 Primitive recursive definitions. A primitive recursive definition
of a function f is of a form

f(~y, 0, ~z) = τ1[~y, ~z] (1)

f(~y, x + 1, ~z) = τ2[λ̇~y1x1~z1.f(~y, x, ~z); ~y, x, ~z], (2)

where τ1[~y, ~z] and τ2[f ; ~y, x, ~z] are terms containing at most the indicated
variables free and the term τ1 may not applied the function symbol f . Note
that every recursive application in the term of the second identity has the
form f(~y, x, ~z). Note also that the parameters ~y and ~z may be empty.

The primitive recursive definition can be viewed as a function operator
taking all functions applied in τ1 and τ2 and yielding the function f .

3.1.9 Theorem. Primitively recursively closed classes F are closed under
primitive recursive definitions.

Proof. Let f be defined by the above primitive recursive definition from func-
tions in F . First we explicitly define in F two auxiliary functions:

52

g(w, ~y, ~z) = τ1[~y, ~z] (1)

h(x, a, w, ~y, ~z) = τ2[λ̇~y1x1~z1.a; ~y, x, ~z]. (2)

We then define a function f1 ∈ F by primitive recursion:

f1(0, w, ~y, ~z) = g(w, ~y, ~z) (3)
f1(x + 1, w, ~y, ~z) = h(x, f1(x,w, ~y, ~z), w, ~y, ~z). (4)

We now prove by induction on x:

f(~y, x, ~z) = f1(x, 0, ~y, ~z). (5)

In the base case we have:

f(~y, 0, ~z)
3.1.8(1)

= τ1[~y, ~z]
(1)
= g(0, ~y, ~z)

(3)
= f1(0, 0, ~y, ~z).

In the inductive case we have:

f(~y, x + 1, ~z)
3.1.8(2)

= τ2[λ̇~y1x1~z1.f(~y, x, ~z); ~y, x, ~z]
(2)
= h(x, f(~y, x, ~z), 0, ~y, ~z) IH=

= h(x, f1(x, 0, ~y, ~z), 0, ~y, ~z)
(4)
= f1(x + 1, 0, ~y, ~z).

With (5) proved we can use it as explicit definition of f ∈ F .
The reader will note that the reason why we have added to the arguments

of f1 the seemingly superfluous parameter w is to cater to the case when
~y ≡ ~z ≡ ∅ where we need that the function f1 has at least one parameter as
required by the operator of primitive recursion. ut

3.1.10 Generalized primitive recursive definitions. In order to obtain
the comfort of recursive definitions in the clausal form we introduce a special
form of generalized recursive definitions and show in Thm. 3.1.11 that the
primitive recursive functions are closed under it.

Generalized primitive recursive definitions are generalized regular clausal
definitions of a form

f(~y, x1, ~z) = case
x1 = 0 ⇒ β1[~y, ~z]
x1 = x + 1 ⇒x β2[λ̇~y1x1~z1.f(~y, x, ~z); ~y, x, ~z]

end

(1)

regular in x1, where β1[~y, ~z] and β2[f ; ~y, x, ~z] are generalized terms containing
at most the indicated variables free and the term β1 may not applied the
function symbol f . Note that every recursive application in the generalized
term of the second identity has the form f(~y, x, ~z). Note also that the function
f satisfies

53

f(~y, 0, ~z) = β1[~y, ~z] (2)

f(~y, x + 1, ~z) = β2[λ̇~y1x1~z1.f(~y, x, ~z); ~y, x, ~z]. (3)

The generalized primitive recursive definition can be viewed as a function
operator taking all functions applied in the generalized terms β1 and β2 and
yielding the function f .

3.1.11 Theorem. Primitively recursively closed classes F are closed under
generalized primitive recursive definitions.

Proof. Let the function f be defined by the generalized primitive recursive
definition 3.1.10(1) from functions of F . We have

f(~y, 0, ~z) = β?
1 [~y, ~z] (1)

f(~y, x + 1, ~z) = β?
2 [λ̇~y1x1~z1.f(~y, x, ~z); ~y, x, ~z] (2)

by 3.1.10(2)(3) and the property 2.4.17(1) of the translation function α?. By
Thm. 3.1.9 we can take the identities (1) and (2) as a derivation of f in F . ut

3.1.12 Addition is primitive recursive. The addition function x + y is
a primitive recursive function by primitive recursive definition:

0 + y = y
(x + 1) + y = (x + y) + 1.

Note that the last + in the second clause belongs to the successor function.

3.1.13 Predecessor function is primitive recursive. The predecessor
function x .− 1 is a primitive recursive function by primitive recursive defini-
tion:

0 .− 1 = 0
(x + 1) .− 1 = x.

3.1.14 Modified subtraction is primitive recursive. The modified sub-
traction function x .−y is a primitive recursive function by primitive recursive
definition:

x .− 0 = x
x .− (y + 1) = (x .− y) .− 1.

Note that in the second clause the last .− belongs to the the predecessor
function x .− 1.

3.1.15 Multiplication is primitive recursive. The multiplication func-
tion x · y is is a primitive recursive function by primitive recursive definition:

0 · y = 0
(x + 1) · y = x · y + y.

54

3.1.16 Exponentiation function is primitive recursive. The exponen-
tiation function xy is a primitive recursive function by primitive recursive
definition:

x0 = 1
xy+1 = xy · x.

3.1.17 Predicate x ≤ y is primitive recursive. The characteristic func-
tion of the binary predicate x ≤ y is primitive recursive by explicit definition:

(x≤∗ y) = ¬∗(x .− y),

since we have x ≤ y ⇔ x .− y = 0 ⇔ ¬∗(x .− y) = 1.

3.1.18 The equality predicate is primitive recursive. The character-
istic function of the binary predicate x = y is primitive recursive by explicit
definition:

(x =∗ y) = (x≤∗ y) ∧∗ (y ≤∗ x).

3.1.19 Lemma. Primitively recursively closed classes F are closed under
the operator of bounded minimalization.

Proof. If f(z, ~x) = µy≤z[g(y, ~x) = 1] from a function g ∈ F then we can define
f ∈ F by (generalized) primitive recursive definition:

f(0, ~x) = 0
f(z + 1, ~x) = f(z, ~x) ← g(f(z, ~x), ~x) = 1
f(z + 1, ~x) = z + 1 ← g(f(z, ~x), ~x) 6= 1 ∧ g(z + 1, ~x) = 1
f(z + 1, ~x) = 0 ← g(f(z, ~x), ~x) 6= 1 ∧ g(z + 1, ~x) 6= 1. ut

3.1.20 Theorem. Primitively recursively closed classes F are closed under
explicit definitions of predicates with bounded formulas and under definitions
of functions with bounded minimalization.

Proof. The class F contains the predicate ≤ and so the theorem follows from
Thm. 2.2.12 and Thm. 2.2.13 by Thm. 3.1.5 and Lemma 3.1.19. ut

3.1.21 Integer division is primitive recursive. We define the integer
division x÷ y as a primitive recursive function by bounded minimalization:

x÷ y = µq≤x[x < (q + 1) · y].

3.1.22 Remainder function is primitive recursive. We define the re-
mainder function x mod y as a primitive recursive function by explicit clausal
definition:

x mod y = x .− (x÷ y) · y ← y > 0.

55

3.1.23 The operator of iteration. We have encountered in Par. 1.2.12
the iteration notation gn(x) for constants n. The notation is generalized with
the help of the operator of iteration which takes a unary function g and yields
a binary function f satisfying:

f(0, x) = x

f(n + 1, x) = f
(
n, g(x)

)
.

We say that f is the iteration of g. We will often write gτ1(τ2) as an abbre-
viation for the application f(τ1, τ2). We clearly have:

g0(x) = f(0, x) = x (1)

g1(x) = f(1, x) = g(x) (2)

gn+m(x) = f(n + m,x) = f
(
n, f(m,x)

)
= gngm(x). (3)

3.1.24 Theorem. Primitively recursively closed classes F are closed under
the iteration of functions.

Proof. If the binary function f is obtained by the iteration of a g ∈ F we
define f ∈ F by primitive recursive definition:

f(0, y) = y
f(x + 1, y) = g f(x, y). ut

3.2 Course of Values Recursion

In this section we show that primitive recursive functions are closed under
course of values recursive definitions which are recursive definitions with the
recursive argument going arbitrarily down in the recursive applications and
with the parameters unchanged. For that we need to show that the pairing
function (x, y) and the projection functions H and T are primitive recursive
functions.

Pairing Function is Primitive Recursive

3.2.1 Catalan function is primitive recursive. We have introduced the
pairing function (x, y) in Par. 1.3.8 by set theoretical means of enumerating all
binary trees. We need a primitive recursive definition of the pairing function.
For that we need to know that the Catalan function C(n) (see Par. 1.3.11),
which yields the count of numbers x with the pair size n, is a primitive
recursive function.

We cannot use the convolution recurrences for C from Par. 1.3.11 because
they constitute a course of values recursive definition. We show instead that
the Catalan function satisfies:

56

C(n) =
1

n + 1
·
(

2 · n
n

)
. (1)

This certainly holds for n = 0 because C(0) = 1 and so we assume n > 0.
Let τ be a (fully parenthesized) pair numeral such that |τ |p = n. If we omit
from τ the commas and left parentheses we get a string of a form 0α where
α consists of n zeroes and n right parentheses. The string 0α can be viewed
as a postfix representation of the pair numeral τ (right parentheses play the
role of postfix pairing operators). We have

(
2·n
n

)
different strings 0α out of

which C(n) are in the postfix form. The reader will note that when counting
from left to right in a postfix form 0α the count of zeroes is always greater
than the count of right parentheses. This also holds in the converse when a
string 0α satisfies the above counting condition then it is a postfix form. We
get all non-postfix strings 0α by choosing n− 1 zeroes into the 2 · n positions
of the string α and then filling up the free positions from left to right by n
right parentheses. The last free position is filled by the remaning zero. The
string 0α thus obtained cannot be a postfix form because there are n right
parentheses and at most that much zeroes to the left of the last position
filled. Thus there are

(
2·n
n−1

)
non-postfix strings and we have:

C(n) =
(

2 · n
n

)
−

(
2 · n
n− 1

)
=

(
2 · n
n

)
− n

n + 1
·
(

2 · n
n

)
=

1
n + 1

·
(

2·n
n

)
.

We have

C(n + 1)
(1)
=

1
n + 2

·
(

2 · n + 2
n + 1

)
=

1
n + 2

· (2 · n + 2) · (2 · n + 1)
(n + 1)2

·
(

2 · n
n

)
=

=
4 · n + 2
n + 2

· C(n).

Hence, the Catalan function C is a primitive recursive function by primitive
recursion:

C(0) = 1
C(n + 1) = (4 · n + 2) · C(n)÷ (n + 2).

3.2.2 Function σ is primitive recursive. The function σ(n) which yield-
s the least number with the pair size n was introduced in Par. 1.3.11 by
recurrences which constitute its primitive recursive derivation by primitive
recursive definition:

σ(0) = 0
σ(n + 1) = σ(n) + C(n).

3.2.3 Pair size function is primitive recursive. The pair size function
|x|p cannot be defined as a primitive recursive function by its natural defini-
tion:

57

|0|p = 0
|v, w|p = |v|p + |w|p + 1

because the folding of the pair discrimination introduces the projection func-
tions H and T .

We use instead the property 1.3.11(5) which says that

σ(|x|p) ≤ x < σ(|x|p + 1)

and the property 1.3.12(5) which says that |x|p ≤ x and define |x|p as a
primitive recursive function by bounded minimalization:

|x|p = µn≤x[x < σ(n + 1)].

3.2.4 Relative offset function. We define the unary relative offset func-
tion Ro(x) as the excess of the number x over the number σ(|x|p), i.e.

Ro(x) = x− σ(|x|p)
which is a non-negative number by 1.3.11(5). The function Ro is thus primi-
tive recursive by explicit definition:

Ro(x) = x .− σ(|x|p).

r
6
0

q · · · q r
6

σ(|x, y|p)

q · · · q r
6

σ(|x|p), σ(|y|p)

q · · · q r
6

x, σ(|y|p)

q · · · q r
6

x, y

· · ·
I1z }| { I2z }| { I3z }| { I4z }| {

Fig. 3.1. Arithmetic derivation of the pairing function (x, y)

3.2.5 Pairing function is primitive recursive. We are now ready to
give an arithmetic derivation of the pairing function as a primitive recursive
function. We refer the reader to Fig. 3.1 where we have shown four intervals
I1, I2, I3, and I4 consisting jointly of all numbers preceding the number (x, y).

The interval I1 consists of σ(|x, y|p) = σ(|x|p + |y|p + 1) numbers z such
that

0 ≤ z < σ(|x, y|p).
The interval I2 consists of numbers v, w such that

σ(|x, y|p) ≤ v, w < σ(|x|p), σ(|y|p).
There is

∑
i<|x|p C(i) · C(|x|p + |y|p .− i) such numbers. The last can be ex-

pressed with the help of the binary function λxz.
∑

i<x C(i) · C(z .− i) which
is a primitive recursive function by primitive recursion:

58

∑
i<0 C(i) · C(z .− i) = 0∑
i<x+1 C(i) · C(z .− i) = C(x) · C(z .− x) +

∑
i<x C(i) · C(z .− i).

The interval I3 consists of Ro(x) · C(|y|p) numbers v, w such that

σ(|x|p), σ(|y|p) ≤ v, w < x, σ(|y|p).
The interval I4 consists of Ro(y) numbers v, w such that

x, σ(|y|p) ≤ v, w < x, y.

Hence, the number (x, y) is preceded by as many numbers as there are in
the intervals I1, I2, I3, and I4 and we have the following primitive recursive
derivation of the pairing function by explicit definition:

(x, y) = σ(|x|p + |y|p + 1) +
∑

i<|x|p
C(i) · C(|x|p + |y|p .− i)+

+ Ro(x) · C(|y|p) + Ro(y).

3.2.6 Projection functions are primitive recursive. Now that we know
that the pairing function is primitive recursive we can define the projection
functions H and T as primitive recursive functions by bounded minimaliza-
tion:

H(x) = µv<x[∃w < xx = v, w]
T (x) = µw<x[∃v < x x = v, w].

x, 0 x, y, 0 x, y, z, 0 x1, x2, . . . , xn, 0

r
¡¡ @@

x 0

r
¡¡ @@r

¡¡ @@x

y 0

r
¡¡ @@r

¡¡ @@r
¡¡ @@

x

y

z 0

r
¡¡ @@r

¡¡ @@ p p p r
¡¡ @@

x1

x2

xn 0

Fig. 3.2. Lists

3.2.7 Lists. There is a simple way of arithmetizing finite sequences over
natural numbers. We assign the code 0 to the empty sequence ∅. The non-
empty sequence x1 x2 . . . xn is coded by the number (x1, x2, . . . , xn, 0) (see
Fig. 3.2). The reader will note that the assignment of codes is one to one,
every finite sequence of natural numbers is coded by exactly one natural

59

number, and vice versa, every natural number is the code of exactly one
finite sequence of natural numbers. Codes of finite sequences are called lists
in computer science and this is how we will be calling them from now on.

3.2.8 List indexing function is primitive recursive. The list indexing
function (x)i yields the i-th element of a list x (counting from 0), i.e.

(x0, . . . , xi, . . . , xn−1, 0)i = xi. (1)

The indexing function has the following recursive definition regular in the
second argument:

(v, w)0 = v
(v, w)i+1 = (w)i.

Although the pairing discrimination is admissible, this is not a definition by
primitive recursion because the first argument is modified in the recursive
application. We can, however, explicitly derive the list indexing function as
a primitive recursive function from the iteration of T :

(x)i = H T i(x).

3.2.9 List length function is primitive recursive. The list length func-
tion L(x) yields the length element of a list x, i.e.

L(x0, . . . , xi, . . . , xn−1, 0) = n. (1)

The list length function has the following natural regular recursive definition:

L(0) = 0
L(v, w) = L(w) + 1.

We can explicitly derive the list length function as a primitive recursive func-
tion by the bounded minimalization:

L(x) = µn≤x[Tn(x) = 0].

Course of Values Recursion

3.2.10 Course of values functions. For an (n+1)-ary function f we call
the (n + 1)-ary function f defined by primitive recursive definition:

f(0, ~y) = 0
f(x + 1, ~y) = f(x, ~y), f(x, ~y)

the course of values function for f . It should be clear that f(x, ~y) yields the
list of all values of f from x− 1 to 0:

f(x, ~y) = f(x− 1, ~y), f(x− 2, ~y), . . . , f(1, ~y), f(0, ~y), 0.

60

This property is formally expressed by the following formulas:

Lf(x, ~y) = x (1)

∀z(
z < x → (

f(x, ~y)
)
x−(z+1)

= f(z, ~y)
)
. (2)

Both properties are proved by induction on x. We prove here only the second
one. The base case holds trivially since z < 0 cannot be satisfied. In the
inductive case we assume z < x+1 and consider two cases. If z = x we have:

(
f(x + 1, ~y)

)
x+1−(z+1)

=
(
f(x, ~y), f(x, ~y)

)
0

= f(z, ~y).

If z < x then we have:
(
f(x + 1, ~y)

)
x+1−(z+1)

=
(
f(x + 1, ~y), f(x, ~y)

)
x+1−(z+1)

=

=
(
f(x, ~y)

)
x−(z+1)

IH= f(z, ~y).

3.2.11 Course of values recursive definitions. Recursive definitions
where the recursive argument goes arbitraily down in the recursive appli-
cations while the parameters stay unchanged are the obvious generalization
of primitive recursive definitions.

Suppose that

f(~x) = τ [f ; ~x] (1)

is a regular recursive definition of an n-ary function f regular in an i-th
argument and is such that every occurrence of a recursive application of f in
the term τ has the form

f(x1, . . . , xi−1, ρi, xi+1, . . . , xn)

for some ρi. The definition (1) is then called the course of values recursive
definition of f .

The following theorem asserts that primitive recursive functions are closed
under course of values recursive definitions.

3.2.12 Theorem. Primitively recursively closed classes F are closed under
course of values recursive definitions.

Proof. We prove the claim for the following special case when the function
f is defined by course of values recursive definition from the functions of F
regular in the first argument:

f(x, ~y) = τ [f ; x, ~y].

We define its course of values function by primitive recursive definition as a
primitive recursive function:

61

f(0, ~y) = 0
f(x + 1, ~y) = τ [λ̇z, ~y.

(
f(x, ~y)

)
x .−(z+1)

;x, ~y], f(x, ~y).

We show, by induction on x, that the property 3.2.10(2) holds . In the base
case there is nothing to prove. In the inductive case take any z < x + 1 and
consider two cases.

If z < x then we have
(
f(x + 1, ~y)

)
x+1 .−(z+1)

def=
(
τ [λ̇z, ~y.

(
f(x, ~y)

)
x .−(z+1)

;x, ~y], f(x, ~y)
)
x .−(z+1)+1

=

=
(
f(x, ~y)

)
x

.−(z+1)

IH= f(z, ~y).

If z = x then we first prove by (the inner) induction on the structure of
subterms ρ[f ;x, ~y] of τ an auxiliary property:

Γ τ
ρ [f ; x, ~y] → ρ[λ̇z, ~y.

(
f(x, ~y)

)
x .−(z+1)

; x, ~y] = ρ[f ; x, ~y], (1)

where Γ τ
ρ governs ρ in τ . So take any subterm ρ of τ , assume Γ τ

ρ [f ; x, ~y], and
procced by the case analysis on the structure of ρ. If ρ ≡ f(ρ1[f ; x, ~y], ~y) then
ρ1[f ; x, ~y] < x by regularity and we obtain

(
f(x, ~y)

)
x

.−(ρ1[λ̇z,~y.(f(x,~y))
x
.−(z+1)

;x,~y]+1)

inner IH=

=
(
f(x, ~y)

)
x

.−(ρ1[f ;x,~y]+1)

outer IH= f(ρ1[f ;x, ~y], ~y).

The remaining cases are straightforward and left to the reader. With the
auxilliary property proved we prove the inductive step of the outer induction
when z = x as follows:

(
f(x + 1, ~y)

)
x+1

.−(x+1)

def=
(
τ [λ̇z, ~y.

(
f(x, ~y)

)
x

.−(z+1)
; x, ~y], f(x, ~y)

)
0

=

= τ [λ̇z, ~y.
(
f(x, ~y)

)
x

.−(z+1)
; x, ~y]

(1)
= τ [f ; x, ~y] def= f(z, ~y).

The general case can be easily obtained from the special case and is left
to the reader. ut

3.2.13 Generalized course of values recursive definitions. Suppose
that

f(~x) = α[f ; ~x] (1)

is a generalized regular recursive definition of an n-ary function f regular in
an i-th argument and is such that every occurrence of a recursive application
of f in the generalized term α has the form

f(x1, . . . , xi−1, βi, xi+1, . . . , xn)

62

for some βi. The definition (1) is then called the generalized course of values
recursive definition of f .

Note that the equation (1) is a generalized course of values recursive
definition of f iff its translation f(~x) = α?[f ; ~x] is a course of values recursive
definition of f . As a corollary of Thm. 3.2.12 we obtain the following claim.

3.2.14 Theorem. Primitively recursively closed classes F are closed under
generalized course of values recursive definitions.

3.2.15 List concatenation function is primitive recursive. In the se-
quel we will need the binary list concatenation function x⊕ y concatenating
two lists, i.e.

(x1, . . . , xn, 0)⊕ (y1, . . . , ym, 0) = x1, . . . , xn, y1, . . . , ym, 0. (1)

The function is defined by course of values recursion regular in the first
argument as a primitive recursive function:

0⊕ y = y
(v, w)⊕ y = v, w ⊕ y.

3.3 Course of Values Recursion with Measure

R. Péter [Pét67] defined classes of k-recursive functions with nested recursion.
She has proved that the classes form a strictly increasing hierarchy. By the
theorem of Tait [Tai61] (see also [Ros82]) k-recursive functions can be defined
by < ωωk

-ordinal recursion. For instance, the well known Péter-Ackermann’s
function A (see Par. 5.1.2) is 2-recursive. Péter has proved in [Pét36] that
primitive recursive functions are closed for the special case k = 1 of simply
nested recursion where the recursive argument, say the i-th one, goes from x+
1 to x and the parameters may be arbitrarily substituted for, even with nested
recursive applications. Such simply nested recursion is then regular in the i-
th argument. We generalize this result in Thm. 3.3.11 where we prove that
primitive recursive functions are closed under regular recursive definitions
with primitive recursive measures. This is done by the arithmetization of
reductions by primitive recursive functions.

Arithmetization of Reductions

3.3.1 Fixing language and interpretation. In the current subsection we
fix the language L of recursive terms and the total interpretation I of the
language L. By g(n, i, x) we denote the ternary function defined as

g(n, i, x) =

{
gn

i (~x) if gn
i ∈ L and x = (~x),

0 otherwise.

63

We say that the function g represents the interpretation I. We clearly have

gn
i (~x) = g(n, i, (~x)) (1)

for every oracle gn
i of L.

3.3.2 Arithmetization of recursive terms. We arithmetize R-terms and
R-functions symbols with the following pair constructors:

xi = 0, i (variables)
0 = 1, 0 (zero)
S(t) = 2, t (successor)
Pr(t) = 3, t (predecessor)
Ds(t1, t2, t3) = 4, t1, t2, t3 (conditional)
t1 • t2 = 5, t1, t2 (curried application)
e[[[ts]]] = 6, e, ts (partial application)
fn = 0, n (recursors)
λn. t = 1, n, t (defined functions)
gn

i = 2, n, i. (oracles)

The arities of constructors are as shown in their definitions. We postulate that
the binary constructor • groups to the left, i.e. that t1 • t2 • t3 abbreviates
(t1 • t2) • t3.

We assign to every R-term τ and to every R-function symbol f their
codes pτq and pfq inductively on the structure of R-terms and of R-function
symbols:

pxiq = xi (1)
p0q = 0 (2)

pτ + 1q = S(pτq) (3)
pτ .− 1q = Pr(pτq) (4)

pDs(τ1, τ2, τ3)q = Ds(pτ1q, pτ2q, pτ3q) (5)
pf(τ1, . . . , τn)q = pfq[[[pτ1q, . . . , pτkq, 0]]] • pτk+1q • · · · • pτnq (6)

where k is the maximal number such that
the terms τ1, . . . , τk are numerals

pfnq = fn (7)
pλn.τq = λn. pτq (8)

pgn
i q = gn

i . (9)

3.3.3 Codes of numerals. Applications of functions are reduced when
their arguments are numerals. In order to recognize when the codes of ar-
guments are already reduced we will need a unary predicate Nm holding of
the codes of numerals, i.e. Nm(t) ↔ ∃x t = pxq. The predicate is primitive
recursive by parameterless course of values recursive definition:

64

Nm(0)
Nm S(t) ← Nm(t).

We will need a unary coding function pxq which takes a number x and
yields the code of the numeral x. The function is primitive recursive by prim-
itive recursive definition:

p0q = 0
px + 1q = S(pxq).

Its inverse Dc(t), called the decoding function, satisfies

Dc(pxq) = x. (1)

The function is primitive recursive by parameterless course of values recursive
definition:

Dc(0) = 0
Dc S(t) = Dc(t) + 1.

We will also need a binary function Dcs(ts) decoding non-empty lists of
numerals. The function satisfies

n > 0 → Dcs(px1q, . . . , pxnq, 0) = x1, . . . , xn (2)

and it is primitive recursive by course of values recursive definition:

Dcs(t, ts) = Dc(t) ← ts = 0
Dcs(t, ts) = Dc(t),Dcs(ts) ← ts 6= 0.

3.3.4 Contraction function. The binary contraction function t1 • t2 asso-
ciating to the left satisfies the identity

pf(τ1, . . . , τn)q = pfq[[[pτ1q, . . . , pτkq, 0]]] • pτk+1q • · · · • pτnq, (1)

where the terms τ1, . . . , τk are numerals, and it is defined by explicit definition
as a primitive recursive function:

e[[[ts]]] • t2 = e[[[ts ⊕ (t2, 0)]]] ← Nm(t2)
t1 • t2 = t1 • t2 ← ¬(∃e∃ts t1 = e[[[ts]]] ∧Nm(t2)

)
.

3.3.5 Arithmetization of substitution function. The substitution func-
tion τ [λn.σ; ~x] is over recursive terms. Its arithmetization t[[[e; rs]]] is a ternary
function which takes the code t of the R-term τ [fn; x1, . . . , xn] with all free
recursors and free variables indicated, the code e of the n-ary function sym-
bol λn.σ and the list rs = px1q, . . . , pxnq, 0 of the codes of the numerals
x1, . . . , xn, and yields the code of the R-term τ [λn.σ;x1, . . . , xn], i.e.

pτq[[[pλn.σq; px1q, . . . , pxnq, 0]]] = pτ [λn.σ; x1, . . . , xn]q. (1)

The arithmetized substitution function is primitive recursive by course of
values definition regular in the first argument:

65

xi[[[e; rs]]] = (rs)i
.−1

0[[[e; rs]]] = 0
S(t)[[[e; rs]]] = S(t[[[e; rs]]])
Pr(t)[[[e; rs]]] = Pr(t[[[e; rs]]])
Ds(t1, t2, t3)[[[e; rs]]] = Ds(t1[[[e; rs]]], t2[[[e; rs]]], t3[[[e; rs]]])
(t1 • t2)[[[e; rs]]] = t1[[[e; rs]]] • t2[[[e; rs]]]
fn[[[ts]]][[[e; rs]]] = e[[[ts]]]
(λn. t)[[[ts]]][[[e; rs]]] = (λn. t)[[[ts]]]
gn

i [[[ts]]][[[e; rs]]] = gn
i [[[ts]]].

Property (1) is proved by induction on the structure of the R-term τ . If
τ ≡ xi with 1 ≤ i ≤ n then we have

pxiq[[[pλn.σq; px1q, . . . , pxnq, 0]]] = xi[[[pλn.σq; px1q, . . . , pxnq, 0]]] def=

= (px1q, . . . , pxnq, 0)i
3.2.8(1)

= pxi
.−1q = pxi

.−1[λn.σ;x1, . . . , xn]q.

If τ ≡ fn(τ1, . . . , τk, . . . , τn), where k is the maximal number such that the
terms τ1, . . . , τk are numerals, then we have

pfn(τ1, . . . , τn)q[[[pλn.σq; px1q, . . . , pxnq, 0]]] =

=
(
fn[[[pτ1q, . . . , pτkq, 0]]] • pτk+1q • · · · • pτnq

)
[[[pλn.σq; px1q, . . . , pxnq, 0]]] def=

= pλn.σq[[[pτ1q, . . . , pτkq, 0]]] •
• pτk+1q[[[pλn.σq; px1q, . . . , pxnq, 0]]] • · · · •
• pτnq[[[pλn.σq; px1q, . . . , pxnq, 0]]] IH’s=

= pλn.σq[[[pτ1q, . . . , pτkq, 0]]] •
• pτk+1[λn.σ; x1, . . . , xn]q • · · · • pτn[λn.σ; x1, . . . , xn]q 3.3.4(1)

=

= p(λn.σ)
(
τ1, . . . , τk, τk+1[λn.σ; x1, . . . , xn], . . . , τn[λn.σ; x1, . . . , xn]

)
q =

= p
(
(λn.σ)(τ1, . . . , τn)

)
[λn.σ;x1, . . . , xn]q.

The cases when τ is the application either of a defined function or of an oracle
are similar. The remaining cases are straightforward and left to the reader.

3.3.6 Auxiliary functions. We will also need two auxiliary functions
Pn(t) and Dn(t1, t2, t3) satisfying

Pn(pxq) = px .− 1q (1)
Dn(pxq, t2, t3) = D(x, t2, t3). (2)

The functions are defined explicitly as a primitive recursive functions:

Pn(0) = 0
Pn S(t) = t

Dn(0, t2, t3) = t3
Dn(S(t1), t2, t3) = t2.

66

3.3.7 Arithmetization of one-step reduction. We intend to define a
unary function Rdg satisfying:

Rdg(pxq) = pxq (1)
for every ρ, if τ B1 ρ then Rdg(pτq) = pρq. (2)

The function Rdg is defined as primitive recursive in g by parameterless
course of values definition:

Rdg(0) = 0
Rdg S(t) = S Rdg(t)
Rdg Pr(t) = Pn(t) ← Nm(t)
Rdg Pr(t) = Pr Rdg(t) ← ¬Nm(t)
Rdg Ds(t1, t2, t3) = Dn(t1, t2, t3) ← Nm(t1)
Rdg Ds(t1, t2, t3) = Ds(Rdg(t1), t2, t3) ← ¬Nm(t1)
Rdg(t1 • t2) = t1 • Rdg(t2) ← ∃e∃ts t1 = e[[[ts]]]
Rdg(t1 • t2) = Rdg(t1) • t2 ← ¬∃e∃ts t1 = e[[[ts]]]
Rdg (λn. t)[[[ts]]] = t[[[λn. t; ts]]]
Rdg gn

i [[[ts]]] = pg(n, i,Dcs(ts))q.
Property (1) is proved by induction x. The base case is straightforward.

In the inductive case we have

Rdg(px + 1q) = Rdg S(pxq) def= S Rdg(pxq) IH= S(pxq) = px + 1q.

Property (2) is proved by induction on the structure of the closed R-term
τ . Take any ρ such that τ B1 ρ and consider two cases. If the term τ is a
redex then we continue by the case analysis on the structure of the term τ .
If τ ≡ x .− 1 then ρ ≡ x .− 1 and we have

Rdg(px .− 1q) = Rdg Pr(pxq) def= Pn(pxq)
3.3.6(1)

= px .− 1q.

If τ ≡ Ds(x, τ2, τ3) then we consider two subcases. If x 6= 0 then ρ ≡ τ2 and
we obtain

Rdg(pDs(x, τ2, τ3)q) = Rdg Ds(pxq, pτ2q, pτ3q) def= Dn(pxq, pτ2q, pτ3q)
3.3.6(2)

=
= D(x, pτ2q, pτ3q) = pτ2q.

The case when x = 0 is similar. If τ ≡ (λn.σ[fn; ~x])(~x) then ρ ≡ σ[λn.σ; ~x]
and we have

Rdg(p(λn.σ)(x1, . . . , xn)q) = Rdg (λn. pσq)[[[px1q, . . . , pxnq, 0]]] def=

= pσq[[[λn. pσq; px1q, . . . , pxnq, 0]]]
3.3.5(1)

= pσ[λn.σ; x1, . . . , xn]q.

If τ ≡ gn
i (~x) then ρ ≡ gn

i (~x) and we have

67

Rdg(pgn
i (x1, . . . , xn)q) = Rdg gn

i [[[px1q, . . . , pxnq, 0]]] def=

= pg(n, i,Dcs(px1q, . . . , pxnq, 0)q 3.3.3(2)
= pg(n, i, x1, . . . , xn)q 3.3.1(1)

=

= pgn
i (x1, . . . , xn)q.

Now suppose that the term τ is not a redex. We continue by the case analysis
on the structure of the term τ . If τ ≡ τ1 + 1 then τ1 B1 ρ1 for some ρ1. Thus
ρ ≡ ρ1 + 1 and we have

Rdg(pτ1 + 1q) = Rdg S(pτ1q) def= S Rdg(pτ1q) IH= S(pρ1q) = pρ1 + 1q.

If τ ≡ τ1
.− 1 then τ1 B1 ρ1 for some ρ1. Thus ρ ≡ ρ1

.− 1 and we have

Rdg(pτ1
.− 1q) = Rdg Pr(pτ1q) def= Pr Rdg(pτ1q) IH= Pr(pρ1q) = pρ1

.− 1q.

If τ ≡ Ds(τ1, τ2, τ3) then τ1 B1 ρ1 for some ρ1. Thus ρ ≡ Ds(ρ1, τ2, τ3) and
we have

Rdg(pDs(τ1, τ2, τ3)q) = Rdg Ds(pτ1q, pτ2q, pτ3q) def=

= Ds(Rdg(pτ1q), pτ2q, pτ3q) IH= Ds(pρ1q, pτ2q, pτ3q) = pDs(ρ1, τ2, τ3)q.

Suppose finally that τ ≡ f(τ1, . . . , τk, τk+1, τk+2, . . . , τn), where f is either a
defined function or an oracle. The number k < n is such that the terms
τ1, . . . , τk are numerals and τk+1 not. Then τk+1 B1 ρk+1 for some ρk+1 and
thus ρ ≡ f(τ1, . . . , τk, ρk+1, τk+2, . . . , τn). We have

Rdg(pf(τ1, . . . , τk, τk+1, τk+2, . . . , τn)q) =

= Rdg

(
pfq[[[pτ1q, . . . , pτkq, 0]]] • pτk+1q • pτk+2q • · · · • pτnq

) def=

= pfq[[[pτ1q, . . . , pτkq, 0]]] • Rdg(pτk+1q) • pτk+2q • · · · • pτnq IH=

= pfq[[[pτ1q, . . . , pτkq, 0]]] • pρk+1q • pτk+2q • · · · • pτnq 3.3.4(1)
=

= pf(τ1, . . . , τk, ρk+1, τk+2, . . . , τn)q.

3.3.8 Arithmetization of reductions. The binary iteration of the reduc-
tion function Rdk

g(t) defined by

Rd0
g(t) = t

Rdk+1
g (t) = Rdk

g Rdg(t)

is primitive recursive function in g by Thm. 3.1.24.
Properties 3.3.7(1)(2) generalizes to

Rdk
g(pxq) = pxq (1)

for every τ , if τ Bk ρ then Rdk
g(pτq) = pρq. (2)

68

Property (1) is proved by a straightforward induction on k. Property (2)
is proved by the same induction as follows. The base case is trivial. In the
inductive case take any τ such that τ Bk+1 ρ. Then τ B1 σ Bk ρ for some σ
and we obtain

Rdk+1
g (pτq) = Rdk

g Rdg(pτq)
3.3.7(2)

= Rdk
g(pσq) IH= pρq.

3.3.9 Theorem. The following holds for every closed R-term τ :

τ B≤k x iff Rdk
g(pτq) = pxq. (1)

Proof. Assume τ B≤k x. Then τ Bl x for some l ≤ k and we obtain

Rdk
g(pτq)

3.1.23(3)
= Rdk−l

g Rd l
g(pτq)

3.3.8(2)
= Rdk−l

g (pxq)
3.3.8(1)

= pxq.

The reverse implication:

for every closed R-term τ , if Rdk
g(pτq) = pxq then τ B≤k x,

is proved by induction on k. The base case is obvious. In the inductive case
take any closed R-term τ such that Rdk+1

g (pτq) = pxq. By the properties
3.3.7(1)(2) of the reduction function Rdg we get that there is a closed R-
term ρ such that Rdg(pτq) = pρq and τ B≤1 ρ. We have Rdk

g(pρq) = pxq
and thus ρ B≤k x by IH. We can conclude that τ B≤k+1 x. ut

Course of Values Recursion with Measure

3.3.10 Course of values recursive definitions with measure. Suppose
that

f(~x) = τ [f ; ~x] (1)

is a regular recursive definition of an n-ary function f with the measure
µ[~x] which is into the well-order < of natural numbers. The definition (1)
is then called the course of values recursive definition with measure and can
be viewed as a function operator taking all functions applied in τ and µ and
yielding the function f .

3.3.11 Theorem. Primitively recursively closed classes F are closed under
course of values recursive definitions with measure.

Proof. Let f be defined by the course of values recursive definition

f(x1, . . . , xn) = τ [f ;x1, . . . , xn]

from the functions g1, . . . , gk ∈ F which is regular in the measure µ[~x] with
all functions applied from F . We wish to show that also f ∈ F .

69

We can suppose without loss of generality that τ is a recursive term of
the language L = {gn1

1 , . . . , gnk

k }, where n1, . . . , nk are respectively the arities
of the functions g1, . . . , gk. The interpretation I of L interpretes the oracles
gn1
1 , . . . , gnk

k by the corresponding functions g1, . . . , gk. The ternary function
g(n, i, x) representing the interpretation I is derived in F by the following
explicit definition:

g(n1, 1, x1, . . . , xn1) = g1(x1, . . . , xn1)
g(n2, 2, x1, . . . , xn2) = g2(x1, . . . , xn2)
...
g(nk, k, x1, . . . , xnk

) = gk(x1, . . . , xnk
).

We claim that

f(x1, . . . , xn) = Dc Rddλn.τ (µ[x1,...,xn]+1)
g (pλn.τq[[[px1q, . . . , pxnq, 0]]]). (1)

Property (1) follows from

(λn.τ)(x1, . . . , xn) = y
Thm. 2.3.24⇒

(λn.τ)(x1, . . . , xn) B≤dλn.τ (µ[x1,...,xn]+1) y
Thm. 3.3.9⇒

Rddλn.τ (µ[x1,...,xn]+1)
g

(
p(λn.τ)(x1, . . . , xn)q

)
= pyq 3.3.3(1)⇒

Dc Rddλn.τ (µ[x1,...,xn]+1)
g

(
pλn.τq[[[px1q, . . . , pxnq, 0]]]

)
= y

by noting that f = λn.τ .
Now, we can take the identity (1) as a derivation of the function f in

F by noting that the estimating function dλn.τ is primitive recursive (see
Par. 2.3.23). ut

3.3.12 Theorem. Primitive recursive functions in F are generated from the
same initial functions, the successor function, and the predecessor function
by explicit definitions and course of values recursive definitions with measure.

Proof. Let us denote by G the class of functions generated from F , x+1, and
x .− 1 by explicit definitions and course of values recursive definitions with
measure.

The class PRIMREC(F) contains the predecessor function by Par. 3.1.13
and it is closed both under explicit definitions and course of values recursive
definitions with measure by Thm. 3.1.5 and Thm. 3.3.11, respectively. Hence
PRIMREC(F) ⊆ G.

The converse is proved as follows. The class G is closed under explicit
definitions and therefore, by Par. 2.2.11, it contains the identity functions
and the zero function and it is closed under composition. Thus it suffices to
show the closure under the operator of primitive recursion. Let the function
f is obtained from the functions g, h ∈ G by primitive recursion:

70

f(0, ~y) = g(~y)
f(x + 1, ~y) = h(x, f(x, ~y), ~y).

We can derive f in G by the following course of values recursive definition:

f(x, ~y) = Ds

(
x, h(x .− 1, f(x .− 1, ~y), ~y), g(~y)

)

regular in the first argument. ut

3.3.13 Generalized course of values recursive definitions with mea-
sure. Suppose that

f(~x) = α[f ; ~x] (1)

is a generalized regular recursive definition of an n-ary function f with the
measure µ[~x] which is into the well-order < of natural numbers. The definition
(1) is then called the generalized course of values recursive definition with
measure and can be viewed as a function operator taking all functions applied
in α and µ and yielding the function f .

Note that the equation (1) is a generalized course of values recursive
definition of f with the measure µ[~x] iff its translation f(~x) = α?[f ; ~x] is a
course of values recursive definition of f with the same measure. As a corollary
of Thm. 3.3.11 we obtain the following claim.

3.3.14 Theorem. Primitively recursively closed classes F are closed under
generalized course of values recursive definitions with measure.

3.3.15 Theorem. Primitive recursive functions in F are generated from the
same initial functions, the successor function, and the predecessor function
by generalized explicit definitions and generalized course of values recursive
definitions with measure.

Proof. Directly from Thm. 3.3.12 using Thm. 3.1.6 and Thm. 3.3.14. ut

71

3.3.16 n-tuples. In the sequel we will need functions and predicates oper-
ating over (non-empty) n-tuples of natural numbers. We will code a n-tuple
x1, . . . , xn, where n ≥ 1, by the number (x1, . . . , xn). Codes of n-tuples will
be called also n-tuples.

The binary predicate Tp(n, x) holding of (non-empty) n-tuples, i.e.

Tp(n, x) ↔ n ≥ 1 ∧ ∃x1 . . . ∃xn x = (x1, . . . , xn), (1)

is defined by (generalized) course of values recursion regular in n with sub-
stitution in parameter as a primitive recursive predicate:

Tp(1, x)
Tp(n + 2, x1, x) ← Tp(n + 1, x)

The ternary selection function [x]ni selects the i-th element of an n-tuple
x, i.e. we have

1 ≤ i ≤ n → [x1, . . . , xn]ni = xi. (2)

The function [x]ni is defined by course of values recursion regular in n with
substitution in parameters as a primitive recursive function:

[x1]11 = x1

[x1, x]n+2
1 = x1

[x1, x]n+2
i+2 = [x]n+1

i+1 .

The ternary concatenation function x#n y concatenates an n-tuple x and
an m-tuple y, i.e. we have

(x1, . . . , xn) #n (y1, . . . , ym) = x1, . . . , xn, y1, . . . , ym. (3)

The function x#n y is defined by course of values recursion regular in n with
substitution in parameter x as a primitive recursive function:

x1 #1 y = x1, y
x1, x #n+2 y = x1, x #n+1 y.

3.3.17 Codes of defined recursive function symbols. We claim that
there is a binary primitive recursive predicate Cdf n(e) satisfying

Cdf n(e) iff e = pλn. τq for some defined R-function symbol λn. τ . (1)

For that we need some auxiliary functions and predicates.
The predicate Nms(ts) holds if ts is a list of the codes of numerals. The

predicate is defined by course of values recursion as a primitive recursive
predicate:

Nms(0)
Nms(t, ts) ← Nm(t) ∧Nms(ts).

72

The ternary predicate Tm(t, rs, n) satisfies for all n ≥ 1 and for all R-
terms ρ1, . . . , ρk in the recursor fn and in the variables x1, . . . , xn:

the predicate Tm(t, (pρ1q, . . . , pρkq, 0), n) holds iff there is a R-term
τ in the recursor fn and in the variables x1, . . . , xn such that

pτq = t • pρ1q • · · · • pρkq.

The predicate is defined by course of values recursion on t with substitution
in parameters as a primitive recursive predicate:

Tm(xi, 0, n) ← 1 ≤ i ≤ n
Tm(0, 0, n)
Tm(S(t), 0, n) ← Tm(t, 0, n)
Tm(Pr(t), 0, n) ← Tm(t, 0, n)
Tm(Ds(t1, t2, t3), 0, n) ← Tm(t1, 0, n) ∧ Tm(t2, 0, n) ∧ Tm(t3, 0, n)
Tm(t1 • t2, rs, n) ←

Tm(t1, (t2, rs), n) ∧ Tm(t2, 0, n) ∧ ∃e∃ts t1 = e[[[ts]]] ∧ ¬Nm(t2)
Tm(t1 • t2, rs, n) ←

Tm(t1, (t2, rs), n) ∧ Tm(t2, 0, n) ∧ ¬∃e∃ts t1 = e[[[ts]]]
Tm(fm[[[ts]]], rs, n) ← m ≥ 1 ∧m = n ∧Nms(ts) ∧ L(ts) + L(rs) = m
Tm((λm. t)[[[ts]]], rs, n) ←

m ≥ 1 ∧Nms(ts) ∧ L(ts) + L(rs) = m ∧ Tm(t, 0, m)
Tm(gm

i [[[ts]]], rs, n) ← m ≥ 1 ∧Nms(ts) ∧ L(ts) + L(rs) = m

The predicate Cdf n(e) holding of the codes of n-ary defined recursive
function symbols is defined explicitly as a primitive recursive predicate:

Cdf n(e) ↔ n ≥ 1 ∧ ∃t≤ e(e = λn. t ∧ ∧Tm(t, 0, n)).

3.3.18 Auxiliary functions and predicates. The function Ar(e) takes
the code e of a R-function symbol f and yields the arity of f , i.e. we have

Ar(pfnq) = Ar(pλn.τq) = Ar(pgn
i q) = n. (1)

The function is defined explicitly as a primitive recursive function:

Ar(fn) = n
Ar(λn. t) = n
Ar(gn

i) = n.

The binary function pxq(n) applies the coding function to each element
of an n-tuple x, i.e. we have

px1, . . . , xnq(n) = px1q, . . . , pxnq. (2)

The function pxq(n) is defined by course of values recursion regular in n with
substitution in parameter as a primitive recursive function:

73

px1q(1) = px1q
px1, xq(n+2) = px1q, pxq(n+1).

The ternary iteration contraction function t •n rs satisfying

t •n (r1, . . . , rn) = t • r1 • · · · • rn (3)

is defined by course of values recursion regular in rs with substitution in
parameter as a primitive recursive function:

t •1 r = r
t •n+2 (r, rs) = t • r •n+1 rs

The binary application function e(ts) is such that the following holds

pf(τ1, . . . , τn)q = pfq(pτ1q, . . . , pτnq) (4)

for every R-term f(τ1, . . . , τn). We define the application function explicitly
as a primitive recursive function:

e(ts) = e[[[0]]] •Ar(e) ts.

74

3.4 Inside Primitive Recursive Functions

3.4.1 Increasing functions. A unary function f is increasing if

x < y → f(x) < f(y)

holds. For increasing functions we have:

x ≤ f(x) (1)
0 < f(0) → x < f(x). (2)

Property (1) is proved by induction on x. The base case is trivial. For the
inductive case we get from IH: x ≤ f(x) < f(x + 1) and so x + 1 ≤ f(x + 1).
For the property (2) we assume 0 < f(0) and prove x < f(x) by induction
on x. The base case is trivial and in the inductive case we have from IH:
x < f(x) < f(x + 1) and so x + 1 < f(x + 1).

Iterations of increasing functions are increasing:

x < y → fz(x) < fz(y) (3)

0 < f(0) → x < fy+1(x) (4)
0 < f(0) ∧ x < y → fx(z) < fy(z). (5)

Property (3) is proved by straightforward induction on z. For the property
(4) we assume 0 < f(0) and prove x < fy+1(x) by induction on y. For the
property (5) we assume 0 < f(0) and x < y and obtain

fx(z)
(4)
< fy−xfx(z) = fy(z).

3.4.2 Fast increasing functions. We define a sequence of unary primitive
recursive functions Ai:

A0(x) = x + 1

An+1(x) = Ax+1
n (1).

We claim that we have:

An+1(0) = An(1) (1)
An+1(x + 1) = AnAn+1(x). (2)

Indeed, for (1) we have An+1(0) = A1
n(1) = An(1) and for (2) we have

An+1(x + 1) = Ax+2
n (1) = AnAx+1

n (1) = AnAn+1(x).
By straightforward induction on x we can prove:

A1(x) = x + 2 (3)
A2(x) = 2 · x + 3 (4)
A3(x) = 8 · 2x − 3. (5)

We prove in the following theorem that the functions An are very fast
increasing functions. The main property of functions An is expressed by
Thm. 3.4.5.

75

3.4.3 Theorem. The functions An are monotone in the following sense.
Whenever n1 ≤ n2, k1 ≤ k2, and x ≤ y holds then also

Ak1
n1

(x) ≤ Ak2
n2

(y) (1)

holds. If at least one of the conditions in the assumptions is strict < then we
have Ak1

n1
(x) < Ak2

n2
(y). We also have

An(x + 1) ≤ An+1(x) (2)

Ak
n(x) < An+1(k + x). (3)

Proof. We prove first

x < An(x) (4)

by induction on n. In the base case we have x < x + 1 = A0(x). The inductive
case x < An+1(x) is proved by induction on x. In the base case we have

0 < 1
outer IH

< An(1)
3.4.2(1)

= An+1(0).

In the inductive case we have

x + 1
inner IH

< An+1(x) + 1
outer IH≤ AnAn+1(x)

3.4.2(2)
= An+1(x + 1).

We now prove that An are increasing functions:

∀x∀y(x < y → An(x) < An(y)) (5)

by induction on n. In the base case we get from x < y:

A0(x) = x + 1 < y + 1 = A0(y).

In the inductive case we know from IH that An is increasing for which
0 < An(0) holds by (4). From x < y we then have:

An+1(x) = Ax+1
n (1)

3.4.1(5)
< Ay+1

n (1) = An+1(y).

Property (2) is proved by induction x. In the base case we have An(1)
3.4.2(1)

= An+1(0).

In the inductive case we have x + 2
(4)

≤ An(x + 1)
IH≤ An+1(x) and so

An(x + 2)
(5)

≤ AnAn+1(x)
3.4.2(2)

= An+1(x + 1).

We now prove the first of the following properties

An(x) < An+1(x) (6)
n1 < n2 → An1(x) < An2(x) (7)

n1 < n2 → Ak
n1

(x) < Ak
n2

(y). (8)

76

by considering two cases. If x = 0 we have An(0)
(5)
< An(1)

3.4.2(1)
= An+1(0). If

x = y + 1 we have y + 1
(4)

≤ An(y)
(5)
< An(y + 1)

(2)

≤ An+1(y) and so

An(y + 1)
(5)
< AnAn+1(y)

3.4.2(2)
= An+1(y + 1).

Properties (7) and (8) now follow by simple induction proofs.
For the property (1) assume n1 ≤ n2, k1 ≤ k2, x ≤ y, and obtain:

Ak1
n1

(x)
3.4.1(3)

≤ Ak1
n1

(y)
3.4.1(5)

≤ Ak2
n1

(y)
(8)

≤ Ak2
n2

(y).

It should be obvious that if any of the assumptions is strict < then the
corresponding step in the above chain is also strict.

Property (3) is proved by induction on k. In the base case we have

A0
n(x)

(1)
< A1

n+1(x) = An+1(0 + x). In the inductive case we have

Ak+1
n (x) = AnAk

n(x)
IH,(1)

< AnAn+1(k + x)
3.4.2(2)

= An+1(k + 1 + x). ut

3.4.4 Limited functions. For a given increasing function h we say that an
n-ary function f is limited by h if there is a number k such that for all ~x we
have f(~x) ≤ hk max(~x).

3.4.5 Theorem. Every primitive recursive function f(~x) is limited by An

for some n.

Proof. By induction on the construction of primitive recursive functions f
we prove ∃n∃k∀~x f(~x) ≤ Ak

n max(~x). For the initial functions we have:

S(x) = A0(x) = A1
0 max(x)

Z(x) = 0 ≤ x = A0
0(x)

Im
i (~x) = xi ≤ max(~x) = A0

0 max(~x).

If f is an m-ary function derived by composition from the primitive recur-
sive functions g, h1, . . . , hp where g is p-ary then we get from IH the numbers
n0, n1, . . . , np as well as k0, k1, . . . , kp such that for n = max(n0, n1, . . . , np),
k′ = max(k1, . . . , kp), and k = k0 + k′ we have:

g(~y)
IH≤ Ak0

n0
max(~y)

3.4.3(1)

≤ Ak0
n max(~y) (1)

hi(~x)
IH≤ Aki

ni
max(~x)

3.4.3(1)

≤ Ak′
n max(~x). (2)

We then have

77

f(~x) = g(h1(~x), . . . , hp(~x))
(1)

≤ Ak0
n max(h1(~x), . . . , hp(~x))

(2)3.4.3(1)

≤
Ak0

n Ak′
n max(~x) = Ak

n max(~x).

If the function f is derived by primitive recursion from primitive recursive
functions g and h then by IH there are numbers n1, k1, n2, k2 such that

g(~y)
IH≤ Ak1

n1
max(~y) (3)

h(x, ~y, a)
IH≤ Ak2

n2
max(x, ~y, a). (4)

We may assume without loss of generality that k2 > 0. By induction on x we
prove:

f(x, ~y) ≤ Ak2·x+k1
max(n1,n2)

max(~y). (5)

In the base case we have:

f(0, ~y) = g(~y)
(3)

≤ Ak1
n1

max(~y)
3.4.3(1)

≤ Ak2·0+k1
max(n1,n2)

max(~y).

In the inductive case we note that, since

x + max(~y) = Ax
0 max(~y)

3.4.3(1)

≤ Ak2·x+k1
max(n1,n2)

max(~y) (6)

holds, we obtain

f(x + 1, ~y) = h(x, ~y, f(x, ~y))
(4)

≤ Ak2
n2

max(x, ~y, f(x, ~y))
3.4.3(1),IH

≤

Ak2
n2

max(x, ~y,Ak2·x+k1
max(n1,n2)

max(~y))
(6),3.4.3(1)

≤

Ak2
n2

Ak2·x+k1
max(n1,n2)

max(~y)
3.4.3(1)

≤
Ak2

max(n1,n2)
Ak2·x+k1

max(n1,n2)
max(~y) = A

k2·(x+1)+k1

max(n1,n2)
max(~y).

It is easy to see that for k > 0 we have Ak
2(x) = 2k · x + 3 · (2k − 1) and so

there is a k3 such that

k2 · x + max(~y) ≤ (k2 + 1) ·max(x, ~y) ≤ Ak3
2 max(x, ~y) (7)

holds. We set n = max(n1, n2, 1) + 1 and k = k1 + 1 + k3 and obtain:

f(x, ~y)
(5)

≤ Ak2·x+k1
max(n1,n2)

max(~y) = Ak1
max(n1,n2)

Ak2·x
max(n1,n2)

max(~y)
3.4.3(3)

≤

Ak1
max(n1,n2)

Amax(n1,n2)+1(k2 · x + max(~y))
3.4.3(1)

≤

Ak1
n An(k2 · x + max(~y))

(7)

≤ Ak1
n AnAk3

2 max(x, ~y)
3.4.3(1)

≤
Ak1+1+k3

n max(x, ~y) = Ak
n max(x, ~y). ut

+

78

3.5 Exercises

Primitive Recursion

3.5.1 Exercise. Show that the binary function |x−y| is primitive recursive.

3.5.2 Exercise. Show that the factorial function x! is primitive recursive.

3.5.3 Exercise. Show that the integer square root function b√xc satisfying

b√xc2 ≤ x < (b√xc+ 1)2

is primitive recursive.

3.5.4 Exercise. Let f(y, ~x) be a primitive recursive function. Show that
the finite sum

∑
y<z f(y, ~x) and product

∏
y<z f(y, ~x) are primitive recursive

functions.

3.5.5 Exercise. Show that the binary predicate x |y holding if x is a divisor
of y is primitive recursive.

3.5.6 Exercise. Show that the function nd(x) counting the number of
nonzero divisors of x is primitive recursive. We set nd(0) = 0.

3.5.7 Exercise. Show that the predicate Prime(x) holding of prime num-
bers is primitive recursive.

3.5.8 Exercise. Show that the function π(x) counting the number of primes
p ≤ x is primitive recursive.

3.5.9 Exercise. Show that the function pi yielding the i-th prime number
is primitive recursive. For instance p0 = 2, p1 = 3, p2 = 5, and p3 = 7.

3.5.10 Exercise. Show that the binary function exi(x) yielding the expo-
nent of pi in the prime factorization of the number x 6= 0, i.e.

exi(px0
0 px1

1 . . . pxn
n) =

{
xi if i ≤ n

0 otherwise,

is primitive recursive. We set exi(0) = 0.

3.5.11 Exercise. We code a finite sequence x0, . . . , xn−1 of numbers by the
number 〈x0, . . . , xn−1〉 defined by

〈x0, . . . , xn−1〉 =
∏

i<n

pxi+1
i .

79

In particular, the empty sequence ∅ is coded by the number 1.
Show that the predicate SEQ(x) holding of the codes of finite sequences

of numbers is primitive recursive.
Show further that the length function lh(x) satisfying

lh(〈x0, . . . , xn−1〉) = n

is primitive recursive.
Show also that the subscription function (x)i such that

i < n → (〈x0, . . . , xn−1〉)i = xi

holds is primitive recursive.
Finally show that the binary concatenation function x ∗ y satisfying

〈x0, . . . , xn−1〉 ∗ 〈y0, . . . , ym−1〉 = 〈x0, . . . , xn−1, y0, . . . , ym−1〉

is primitive recursive.

Course of Values Recursion

In the subsequent exercises use the method of course of values functions to
show that the functions in question are primitive recursive.

3.5.12 Exercise. Show that the function fib(n) yielding the n-th element
of the sequence of Fibonacci is primitive recursive. The function has the
following course of values recursive definition:

fib(0) = 0
fib(1) = 1
fib(n + 2) = fib(n + 1) + fib(n).

Course of Values Recursion with Measure

3.5.13 Exercise. Define the predicate Ctm(t) holding of the codes of closed
R-terms.

Inside Primitive Recursive Functions

80

4. Arithmetization of Data Structures

See [Vod00] and [KV01].

4.1 Arithmetization of Word Domains

See the paragraphs 1.2.1 - 1.2.8 in [Vod00] and the chapter 16 in [KV01].

4.2 Arithmetization of Finite Sequences

See the paragraphs 1.4.1 - 1.4.6 in [Vod00] and the chapters 12 and 15 in
[KV01].

4.3 Arithmetization of Trees

See the paragraphs 1.4.13 - 1.4.23 in [Vod00] and the chapter 13 in [KV01].

4.4 Arithmetization of Symbolic Expressions

See the paragraphs 1.4.24 - 1.4.25 in [Vod00] and the chapter 14 in [KV01].

4.5 Exercises

See the chapters 11-16 in [KV01].

82

5. Recursive Functions

In Sect. 5.1 we negatively chacterize the class of primitive recursive functions
as being strictly less than the class of effectively computable functions. In
Sect. 5.2 we discuss recursive definitions of partial functions in the style
of Herbrand-Gödel-Kleene equations. Partial functions defined by recursive
equations are called partial recursive functions and we show that they are
effectively computable. The characterization of Kleene of recursive functions
by µ-recursive functions is given in Sect. 5.3.

5.1 Beyond Primitive Recursion

For long time it was assumed that the computable functions coincide with
primitive recursive functions. In 1928 W. Ackermann [Ack28] gave the first
example of a function which is evidently effectively computable but it is not
primitive recursive. The function was simplified by R. Péter [Pét35] in 1935
to the function A given in Par. 5.1.2. We will also show that the universal
function for primitive recursive functions is effectively computable but not a
primitive recursive function.

5.1.1 Lexicographical order. Consider the binary predicate x <lex y de-
fined by

x <lex y ↔ x = 0 ∧ y > 0 ∨ ∃x1∃x2∃y1∃y2

(
x = x1, x2 ∧ y = y1, y2 ∧
∧ (x1 < y1 ∨ x1 = y1 ∧ x2 < y2)

)
.

The predicate clearly satisfies

0 <lex y1, y2

x1, x2 <lex y1, y2 ↔ x1 < y1 ∨ x1 = y1 ∧ x2 < y2.

The predicate is called the lexicographical order of natural numbers. It is a
well-order.

Ackermann-Péter Function Grows Too Fast

5.1.2 The Ackermann-Péter function. The Ackermann-Péter function
A(n, x) is defined by the following recursive definition:

A(0, x) = x + 1
A(n + 1, 0) = A(n, 1)
A(n + 1, x + 1) = A

(
n,A(n + 1, x)

)

regular in the measure µ[n, x] ≡ (n, x) which is into the lexicographical order
<lex of natural numbers. This is because either the first argument decreases
or it stays the same and the second decreases.

Note also that the above clausal definition of the function A is from prim-
itive recursive functions. Primitive recursive functions are effectively com-
putable and thus so is the function A.

5.1.3 The Ackermann-Péter function is not primitive recursive. We
will now show that A is not a primitive recursive function. First of all, the
function A is connected to the fast increasing functions An as follows:

∀xA(n, x) = An(x). (1)

The property is proved by induction on n. In the base case we clearly have
A(0, x) = x + 1 = A0(x). In the inductive case take any x and continue by
(inner) induction on x. In the base case we have:

A(n + 1, 0) = A(n, 1) outer IH= An(1)
3.4.2(1)

= An+1(0).

In the inductive case we have:

A(n + 1, x + 1) = A(n,A(n + 1, x)) IH’s= AnAn+1(x)
3.4.2(2)

= An+1(x + 1).

Suppose now that A is a primitive recursive function. For some m and k
we then have

A(n, x) < Am+3 max(k, n, x) (2)

since

A(n, x)
Thm. 3.4.5≤ Ak

m max(n, x)
3.4.3(3)

< Am+1(k + max(n, x))
3.4.3(1)

≤

≤ Am+1(2 ·max(k, n, x))
3.4.3(1),3.4.2(4)

< Am+1A2 max(k, n, x)
3.4.3(1)

≤

≤ Am+1Am+2 max(k, n, x)
3.4.2(2)

= Am+2(max(k, n, x) + 1)
3.4.3(2)

≤
≤ Am+3 max(k, n, x).

We now get a contradiction for n = m + 3 and x ≥ max(k, n):

Am+3(x) = An(x)
(1)
= A(n, x)

(2)
< Am+3 max(k, n, x) = Am+3(x).

84

Universal Function for Primitive Recursive Functions is not Prim-
itive Recursive

We will define in Par. 5.1.6 a universal function for the class primitive recur-
sive functions and show that it is effectively computable but not primitive
recursive. For that we need to assign indices to primitive recursive functions.

5.1.4 Primitive recursive function symbols. The class PRn of n-ary
primitive recursive (PR) function symbols is defined inductively as follows:

– S ∈ PR1, Z ∈ PR1, and In
i ∈ PRn for 1 ≤ i ≤ n,

– if h ∈ PRm and g1, . . . , gm ∈ PRn then Compn
m(h, g1, . . . , gm) ∈ PRn,

– if g ∈ PRn and h ∈ PRn+2 then Recn+1(g, h) ∈ PRn+1.

We set PR =
⋃

n≥1 PRn.
We interprete n-ary PR-function symbols by n-ary functions. The in-

terpretation fN of a PR-function symbol f is defined by induction on the
structure of PR-function symbols as follows:

– SN is the successor function x + 1,
– ZN is the zero function Z(x) = 0,
– (In

i)N is the identity function In
i (~x) = xi,

–
(
Compn

m(h, g1, . . . , gm)
)N is the n-ary function defined by composition:

(
Compn

m(h, g1, . . . , gm)
)N (~x) = hN

(
gN1 (~x), . . . , gNm (~x)

)
, (1)

–
(
Recn(g, h)

)N is the n-ary function defined by primitive recursion:
(
Recn(g, h)

)N (0, ~y) = gN (~y) (2)
(
Recn(g, h)

)N (x + 1, ~y) = hN
(
x,

(
Recn(g, h)

)N (x, ~y), ~y
)
. (3)

It is easy to see that the primitive recursive functions are denoted exactly by
PR-symbols, i.e.

PRIMREC =
⋃

n≥1

{fN | f ∈ PRn}

In the sequel we abbreviate fN to f .

5.1.5 Arithmetization of primitive recursive function symbols. We
arithmetize PR-function symbols with the following pair constructors:

S = 0, 0 (successor)
Z = 1, 0 (zero)
I n

i = 2, n, i (identities)
Compn

m(h, gs) = 3, n, m, h, gs (composition)
g, gs = 4, g, gs (arguments)
Recn(g, h) = 5, n, g, h. (primitive recursion)

85

The arities of constructors are as shown in their definitions. We postulate that
the binary constructor g, gs groups to the right and has the same precedence
as the pairing function x, y.

We assign to every PR-function symbol f its code pfq inductively on the
structure of PR-function symbols:

pSq = S (1)
pZq = Z (2)
pIn

i q = I n
i (3)

pCompn
m(h, g1, . . . , gm)q = Compn

m(phq, pg1q, . . . , pgmq) (4)
pRecn(g, h)q = Recn(pgq, phq). (5)

5.1.6 Universal function for primitive recursive functions. We define
the binary function {e}p(x) by the following recursive definition:

{S}p(x) = x + 1
{Z}p(x) = 0
{I n

i }p(x) = [x]ni
{Compn

m(h, gs)}p(x) = {h}p

({gs}p(x)
)

{g, gs}p(x) = {g}p(x), {gs}p(x)
{Recn(g, h)}p(0, y) = {g}p(y)
{Recn(g, h)}p(x + 1, y) = {h}p

(
x, {Recn(g, h)}p(x, y), y

)
.

The definition is regular in the measure µ[e, x] ≡ (e, x) which is into the
lexicographical order <lex of natural numbers. This is because all recursive
applications except the one in the last clause the first argument goes down. In
the recursive application of the last clause the first argument stays the same
and the second argument goes down since x, y < x + 1, y by the property
1.3.2(3) of the pairing function.

Note also that the above clausal definition of the function {e}p(x) is
from primitive recursive functions. Primitive recursive functions are effec-
tively computable and thus so is the function {e}p(x).

We claim that {e}p(x) is a universal function for the class of primitive
recursive functions, i.e.

PRIMREC =
⋃

n≥1

{λx1, . . . , xn.{e}p(x1, . . . , xn) | e ∈ N}. (1)

Indices of functions w.r.t. to the binary function {e}p(x) are called primitive
recursive (PR) indices.

For the proof of the inclusion ⊆ in (1) it suffices to show that for every
PR-function symbol f its code pfq is the PR-index of the primitive recursive
function f , i.e.

∀~x f(~x) = {pfq}p(~x).

86

The property is proved by induction on the structure of PR-function symbols.
So take any n-ary PR-function symbol f , any n-tuple ~x, and continue by the
case analysis of f . If f ≡ Compn

m(h, g1, . . . , gm) then we have

Compn
m(h, g1, . . . , gm)(~x)

5.1.4(1)
= h

(
g1(~x), . . . , gm(~x)

) IH=

= {phq}p

({pg1q}p(~x), . . . , {pgmq}p(~x)
) def=

= {phq}p

({pg1q, . . . , pgmq}p(~x)
) def=

= {Compn
m(phq, pg1q, . . . , pgmq)}p(~x)

5.1.5(4)
=

= {pCompn
m(h, g1, . . . , gm)q}p(~x).

If f ≡ Recn(g, h) then ~x ≡ z, ~y for some z and a non-empty ~y. We prove

Recn(g, h)(z, ~y) = {pRecn(g, h)q}p

(
z, (~y)

)

by (inner) induction on z. In the base case we have

Recn(g, h)(0, ~y)
5.1.4(2)

= g(~y) outer IH= {pgq}p(~y) def=

= {Recn(pgq, phq)}p

(
0, (~y)

) 5.1.5(5)
= {pRecn(g, h)q}p

(
0, (~y)

)
.

In the inductive case we have

Recn(g, h)(z + 1, ~y)
5.1.4(3)

= h
(
z,Recn(g, h)(z, ~y), ~y

) inner IH=

= h
(
z, {pRecn(g, h)q}p

(
z, (~y)

)
, ~y

) 5.1.5(5)
=

= h
(
z, {Recn(pgq, phq)}p

(
z, (~y)

)
, ~y

) outer IH,3.3.16(3)
=

= {phq}p

(
z, {Recn(pgq, phq)}p

(
z, (~y)

)
, ~y

) def=

= {Recn(pgq, phq)}p

(
z + 1, (~y)

) 5.1.5(5)
= {pRecn(g, h)q}p

(
z + 1, (~y)

)
.

The remaining cases are straightforward and left to the reader.
The reverse inclusion ⊇ in (1) is proved as follows. We explicitly define

the unary function Ue:

Ue(x) = {e}p(x)

for every e. We first prove by complete induction on e that Ue are primitive
recursive functions. If e = S then we have an explicit derivation

Ue(x) = x + 1.

If e = Z then we have an explicit derivation

Ue(x) = 0.

87

If e = I n
i then we have an explicit derivation

Ue(x) = [x]ni .

If e = Compn
m(e1, e2) for some e1 and e2 then the functions Ue1 and Ue2 are

primitive recursive by IH and we derive Ue as a primitive recursive function
by composition:

Ue(x) = Ue1 Ue2(x).

If e = Recn(e1, e2) for some e1 and e2 then the functions Ue1 and Ue2 are
primitive recursive by IH and we derive Ue as a primitive recursive unction
by course of values recursive definition:

Ue(0, y) = Ue1(y)
Ue(x + 1, y) = Ue2(x,Ue(x, y), y).

If neither of the above cases applies we have an explicit derivation Ue(x) = 0.
Now suppose that the number e is an index of the n-ary function f , i.e.

∀x1 . . . ∀xn f(x1, . . . , xn) = {e}p(x1, . . . , xn).

We can derive f as a primitive recursive function by the following explicit
definition:

f(x1, . . . , xn) = Ue(x1, . . . , xn).

This proves the inclusion ⊇ in (1).

5.1.7 Universal function for primitive recursive functions is not
primitive recursive. Suppose that {e}p(x) is a primitive recursive func-
tion. Then also the explicitly defined unary function f(x) = {x}p(x) + 1 is
primitive recursive. Let e be one of its indices. We obtain contradiction by

f(e) def= {e}p(e) + 1 index= f(e) + 1.

We thus have in the function {e}p(x) an effectively computable function
which is not primitive recursive.

5.1.8 The graph of {e}p(x) is not primitive recursive. We claim that
the graph {e}p(x) = y of the function {e}p(x) is not primitive recursive. Sup-
pose that the predicate is primitive recursive. Then the predicate R(x) ex-
plicitly defined by

R(x) ↔ {x}p(x) 6= 1 (1)

is primitive recursive. Let e be a primitive recursive index of the characteristic
function R∗ of the predicate R. By 5.1.6(1) we have

R∗(x) = {e}p(x). (2)

We obtain a contradiction as follows:

{e}p(e) 6= 1
(1)⇔ R(e) ⇔ R∗(e) = 1

(2)⇔ {e}p(e) = 1.

88

5.2 Recursive Functions

5.2.1 Partial recursive functions. The class of partial recursive functions
is generated from the successor function x + 1 and from the predecessor
function x .− 1 by explicit and recursive definitions of partial functions. A
recursive function is a partial recursive function which is total.

We denote by REC and PREC respectively the class of recursive func-
tions and the class partial recursive functions. We denote by REC(F) and
PREC(F) respectively recursive functions and partial recursive functions in
the class F . Clearly we have REC = REC(∅) and PREC = PREC(∅).

5.2.2 Theorem. Recursively closed classes F are primitively recursively
closed.

Proof. The class F is closed under explicit definitions and therefore, by
Thm. 2.2.3, it contains the identity functions In

i and the zero function Z,
and it is closed under composition of functions. Thus it suffices to show the
closure under the operator of primitive recursion. Let the function f is ob-
tained from the functions g, h ∈ F by primitive recursion:

f(0, ~y) = g(~y)
f(x + 1, ~y) = h(x, f(x, ~y), ~y).

We can derive f in F by the following recursive definition:

f(x, ~y) = Ds

(
x, h(x .− 1, f(x .− 1, ~y), ~y), g(~y)

)

regular in the first argument. ut

5.2.3 Theorem. Recursively closed classes F are closed under explicit def-
initions of predicates with bounded formulas, under definitions of functions
with bounded minimalization, and under the iteration of functions.

Proof. It follows directly from Thm. 5.2.2 by Thm. 3.1.20, Thm. 3.1.20, and
Thm. 3.1.24. ut

5.2.4 Theorem. Recursively closed classes F are closed under generalized
explicit definitions and generalized regular recursive definitions of functions.

Proof. Directly from Thm. 5.2.2 by Thm. 3.1.6 and Thm. 3.3.14. ut

5.2.5 Theorem. Primitive recursive functions are a proper subclass of re-
cursive functions.

Proof. We have PRIMREC ⊆ REC by Thm. 5.2.2. The Ackermann-Péter
function A introduced in the previous section is recursive by Thm. 5.2.4 but
not primitive recursive by Par. 5.1.3. Consequently PRIMREC ⊂ REC. ut

89

5.2.6 Theorem. Primitive recursive predicates are a proper subclass of re-
cursive predicates.

Proof. We have PRIMREC∗ ⊆ REC∗ by Thm. 5.2.5. The universal function
{e}p(x) for primitive recursive functions is recursive by Thm. 5.2.4 and so is
its graph {e}p(x) = y by Thm. 5.2.3. By Par. 5.1.8. the graph of {e}p(x) is
not primitive recursive and hence PRIMREC∗ ⊂ REC∗. ut

5.2.7 Operator of minimalization. For every n ≥ 1 the operator of (un-
bounded) minimalization takes an (n + 1)-ary function g and yields an n-ary
function f satisfying:

f(~x) ³ y ↔ g(y, ~x) ³ 1 ∧ ∀z < y∃v(g(z, ~x) ³ v ∧ v 6= 1). (1)

The partial function f defined by (1) is such that f(~x) is the smallest number
y such that g(y, ~x) ³ 1 and for every z < y we have g(z, ~x)↓. The application
f(~x) is undefined if there is no such number.

In the sequel we abbreviate (1) to

f(~x) ' µy[g(y, ~x) ' 1].

The minimalization (1) is regular if g is total and ∀~x∃y g(y, ~x) = 1. Clearly,
regular minimalizations yield (total) functions. In the sequel we abbreviate
the regular minimalization (1) to

f(~x) = µy[g(y, ~x) = 1].

5.2.8 Theorem. Recursively closed classes F are closed under the operator
of minimalization.

Proof. Let f be defined by the minimalization f(~x) ' µy[g(y, ~x) ' 1] of
g ∈ F . We recursively define in F an auxiliary partial function h by:

h(y, ~x) ' Ds

(
g(y, ~x) =∗ 1, y, h(y + 1, ~x)

)
.

The partial function h satisfies:

h(y, ~x) ³ z ↔ y ≤ z ∧ g(z, ~x) ³ 1 ∧
∀z1

(
y ≤ z1 < z → ∃v(g(z, ~x) ³ v ∧ v 6= 1)

)
.

Consequently f(~x) ' h(0, ~x) and thus we can take the last identity as explicit
definition of f ∈ F . ut

5.2.9 Definitions by minimalization. Definitions of partial functions by
(unbounded) minimalization are of a form

f(~x) ³ y ↔ φ[~x, y] ∧ ∀z < y ¬φ[~x, z], (1)

90

where φ[~x, y] is a bounded formula with at most the indicated variables free
and without any application of f . The function f defined by (1) is such that
f(~x) is the smallest number y such that φ[~x, y] holds. The application f(~x)
is undefined if there is no such number.

In the sequel we abbreviate (1) to

f(~x) ' µy

[
φ[~x, y]

]
.

The minimalization (1) is regular if ∀~x∃yφ[~x, y]. Clearly, definitions by reg-
ular minimalization define (total) functions. In the sequel we abbreviate the
regular minimalization (1) to

f(~x) = µy

[
φ[~x, y]

]
.

5.2.10 Theorem. Every class F closed under explicit definitions of predi-
cates and the operator of minimalization is closed under definitions of partial
functions with minimalization.

Proof. Suppose that f is defined by the minimalization f(~x) ' µy

[
φ[~x, y]

]
from the functions and predicates from F . We can explicitly define f in F by

R(y, ~x) ↔ φ[~x, y]
f(~x) ' µy[R∗(y, ~x) = 1]. ut

5.2.11 Theorem. Recursively closed classes F are closed under definitions
of partial functions with minimalization.

Proof. It follows directly from Thm. 5.2.10 by Thm. 5.2.3 and Thm. 5.2.8.
ut

5.2.12 Kleene’s T-predicates. For every n ≥ 1 we define the (n + 2)-ary
predicate Tn(e, ~x, y) explicitly as a primitive recursive predicate:

Tn(e, ~x, y) ↔ Cdf n(e) ∧ ∃k ≤ y∃z ≤ y
(
y = k, z ∧ Rdk e

(((
p(~x)q(n)

)))
= pzq

)
.

From the next lemma we will see that the predicate Tn(e, ~x, y) holds if e is
the code of some n-ary defined recursive function symbol λn.τ and y = k, z
for some k and z such that (λn.τ)(~x) B≤k z. The reader will note that we
have also p(~x)q(n) = px1q, . . . , pxnq in the definition of Tn.

The predicates Tn(e, ~x, y) are called the Kleene’s T-predicates. In the
sequel we will often abbreviate T1(e, x, y) to T(e, x, y).

By U(y) below we denote the second projection of the pairing function
which is primitive recursive by Par. 3.2.6. That is, the function U(y) satisfies

U(0) = 0
U(v, w) = w.

91

5.2.13 Lemma. For every n ≥ 1, we have

(λn.τ)(~x) B≤k y ↔ Tn(pλn.τq, ~x, k, y). (1)

Proof. Property (1) follows from

(λn.τ)(~x) B≤k y
Thm. 3.3.9⇔

Rdk
(
p(λn.τ)(~x)q

)
= pyq 3.3.18(2)(4)⇔

Rdk pλn.τq
(((
p(~x)q(n)

)))
= pyq 3.3.17(1)⇔

Cdf n(pλn.τq) ∧ Rdk pλn.τq
(((
p(~x)q(n)

)))
= pyq def⇔

Tn(pλn.τq, ~x, k, y). ut

5.2.14 Lemma. For every n ≥ 1, we have

(λn.τ)(~x) ³ y ↔ ∃k Tn(pλn.τq, ~x, k, y). (1)

Proof. Directly from Thm. 2.3.14 and Lemma 5.2.13 since we have

(λn.τ)(~x) ³ y ⇔ ∃k (λn.τ)(~x) B≤k y ⇔ ∃k Tn(pλn.τq, ~x, k, y). ut

5.2.15 Lemma. For every n ≥ 1, we have

(λn.τ)(~x) ' U µy[Tn(pλn.τq, ~x, y)]. (1)

Proof. We first prove the implication

U µy[Tn(pλn.τq, ~x, y)] ³ y → (λn.τ)(~x) ³ y. (2)

So suppose that U µy[Tn(pλn.τq, ~x, y)] ³ y. The minimalization is regular
and thus, from the definition of Tn and U , we obtain Tn(pλn.τq, ~x, k, y) for
some k. Now we apply 5.2.14(1) and get (λn.τ)(~x) ³ y.

Suppose now that (λn.τ)(~x) ³ y. By 5.2.14(1) we have Tn(pλn.τq, ~x, k, y)
for some k and thus there is a number z such that U µy[Tn(pλn.τq, ~x, y)] ³ z
holds. By 5.2.15(2) (λn.τ)(~x) ³ z and thus z = y from the uniqueness prop-
erty of the graphs of terms. ut

5.2.16 Lemma. Partial function is recursive iff if it is denoted by some
defined recursive function symbol.

Proof. Let G be the class of all partial functions denoting by defined recursive
function symbols. We wish to prove that PREC = G.

The inclusion ⊆ is proved by showing that the class G is recursively closed.
The initial recursive functions x+1 and x .−1 are in G since they are denoted
by the defined R-function symbols λ1.(x1 + 1) and λ1.(x1

.− 1), respectively.

92

Suppose now that an n-ary partial function f is obtained by an explicit or re-
cursive definition f(~x) ' ρ[f ; ~x] from partial functions from G. Let h1, . . . , hk

be all partial functions applied in ρ other than f , x + 1, x .− 1, and D. We
obtain a recursive term τ [fn; ~x] from the term ρ by replacing in it all func-
tions symbols h1, . . . , hk ∈ G by the corresponding defined recursive function
symbols denoting these partial functions and by replacing every constant n
by the monadic numeral n. It should be obvious that the functional equation
f(~x) ' τ [f ; ~x] defines the same partial function f . The partial function f is
thus denoted by the defined R-function symbol λn.τ and hence f ∈ G.

The converse inclusion that every λn.τ denotes a partial recursive function
is proved by a straightforward induction on the construction defined recursive
function symbols. ut

5.2.17 Normal form theorem (Kleene). For every n-ary partial recur-
sive function f there exists a number e such that

f(~x) ' U µy[Tn(e, ~x, y)]. (1)

Proof. By Lemma 5.2.16, we have f = λn.τ for some defined R-function sym-
bol λn.τ . Property (1) follows from 5.2.15(1) by taking pλn.τq for e. ut

5.2.18 Recursive indices. For every n ≥ 1 by ϕ
(n)
e we denote an n-ary

partial function defined by

ϕ(n)
e (~x) '

{
(λn.τ)(~x) if e = pλn.τq for some λn.τ ,
undefined otherwise.

(1)

In other words, if e is the code of an n-ary defined R-function symbol λn.τ

then ϕ
(n)
e = λn.τ ; otherwise ϕ

(n)
e = ∅(n).

We say that a number e is a recursive index (index for short) of an n-ary
partial function f if f = ϕ

(n)
e . The index e of the n-ary partial function f

is said to be proper (well-formed) if e = pλn.τq for some λn.τ . Note that in
such case we have

ϕ
(n)
pλn.τq(~x) ' τ [λn.τ ; ~x]. (2)

In the sequel we will often abbreviate ϕ
(1)
e (~x) to ϕe(~x).

5.2.19 Theorem. For every n ≥ 1, the ϕ
(n)
e is a partial recursive function

such that

ϕ(n)
e (~x) ' U µy[Tn(e, ~x, y)]. (1)

93

Proof. We consider two cases. If e = pλn.τq for some λn.τ then ϕ
(n)
e = λn.τ

is a partial recursive function by Lemma 5.2.16 and the property (1) follows
from Lemma 5.2.15. Otherwise, the partial function ϕ

(n)
e is the nowhere de-

fined partial function ∅(n) which is trivially partial recursive. Note that we
have also ¬Tn(e, ~x, y) for all numbers ~x and y. Consequently, the right hand
side of (1) is undefined for all ~x. ut

5.2.20 Partial enumeration functions. For every n ≥ 1, the (n + 1)-ary
partial enumeration function ψ(n) is defined by

ψ(n)(e, ~x) ' ϕ(n)
e (~x). (1)

In the sequel we will often abbreviate ψ(1)(e, ~x) to ψ(e, ~x).

5.2.21 Enumeration theorem (Kleene). For every n ≥ 1, the ψ(n) is
a partial recursive function enumerating (with repetitions) the class of n-ary
partial recursive functions.

Proof. From 5.2.19(1) and the definition of ψ(n) we get

ψ(n)(e, ~x) ' U µy[Tn(e, ~x, y)]. (1)

We can take (1) as a derivation of ψ(n) as a partial recursive function. It
remains to show that ψ(n) enumerates n-ary partial recursive functions, i.e.

PREC(n) = {λ~x.ψ(n)(e, ~x) | e ∈ N}. (2)

Suppose that f is an n-ary partial recursive function. Then for some number
e we have by the normal form theorem the following:

f(~x)
5.2.17(1)' U µy[Tn(e, ~x, y)]

5.2.19(1)' ϕ(n)
e (~x)

5.2.20(1)' ψ(n)(e, ~x).

This proves the inclusion ⊆ in (2). The reversed inclusion is a straightforward
consequence of the first part of the theorem. ut

5.2.22 Corollary. Partial function is recursive iff it has an index.

Proof. If f is an n-ary partial recursive function then by the enumeration
theorem and 5.2.20(1) we have f = ϕ

(n)
e for some e. The reverse direction

follows from Thm. 5.2.19. ut

5.2.23 Total extensions of the partial enumeration functions are not
recursive. In this paragraph we are concerned with the existence of non-
recursive functions. We already know that there are denumerable many recur-
sive functions and therefore, since there are non-denumerably many functions
over N, most functions over N are not recursive. Can we find a concrete such
function?

94

We give here a positive answer to this question by showing for every n ≥ 1
that the partial enumeration function ψ(n) cannot be extended to a (total)
recursive function. We prove this fact for the case when n = 1 and left the
proof the general result to the reader.

The proof uses a diagonal argument. So let f(e, x) be a (total) binary
function which is an extension the partial enumeration function ψ(e, x), i.e.

ψ(e, x) ³ y → f(e, x) = y. (1)

We claim that the function f is not recursive. Suppose by contradiction that
the function is recursive. Then the unary function g(x) explicitly defined by

g(x) = f(x, x) + 1 (2)

is recursive. Let e be an index of g. Note that we then have

g(e) index= ϕe(e)
5.2.20(1)' ψ(e, e) (3)

and thus ψ(e, e) is defined. We further obtain

f(e, e)
(1)' ψ(e, e)

(3)' g(e)
(2)
= f(e, e) + 1.

We thus have f(e, e) ' f(e, e) + 1 and since f is total f(e, e) = f(e, e) + 1.
Contradiction.

We have shown that total extensions of the partial enumeration function
ψ(e, x) are not recursive functions. In particular, its completion which is a
binary function defined by

f(e, x) =

{
y if ψ(e, x) ³ y

0 otherwise

is not recursive.

5.2.24 Graphs of the partial enumeration functions are not recur-
sive. We claim that, for every n ≥ 1, the graph ψ(n)(e, ~x) ³ y of the partial
enumeration function ψ(n) is not recursive. For simplicity we prove this for
the case when n = 1 and left the general case as an exercise.

Suppose by contradiction that the predicate ψ(e, x) ³ y is recursive. Then
the unary predicate R(x) explicitly defined by

R(x) ↔ ψ(x, x) 6³ 1 (1)

is recursive. Let e be an index of the characteristic function R∗ of R. We
obtain a contradiction as follows:

ψ(e, e) ³ 1
5.2.20(1)⇔ ϕe(e) ³ 1 index⇔ R∗(e) = 1 ⇔ R(e)

(1)⇔ ψ(e, e) 6³ 1.

95

5.2.25 Indices of identity functions. The binary function pIn
i q yields an

index of the n-ary identity function In
i (~x) = xi, i.e.

ϕ
(n)
pIn

i q(~x) = In
i (~x). (1)

The function pIn
i q is defined explicitly as a primitive recursive function:

pIn
i q = λn.xi.

Property (1) follows from

ϕ
(n)
pIn

i q(~x)
def' ϕ

(n)
λn.xi

(~x) ' ϕ
(n)
pλn.xiq(~x)

5.2.18(2)' xi = In
i (~x).

In the sequel we abbreviate pI1
1q to pIq.

5.2.26 Indices of constant functions. The binary function pCn
mq yields

an index of the n-ary constant function Cn
m(~x) = m, i.e.

ϕ
(n)
pCn

mq(~x) = Cn
m(~x). (1)

The function pCn
mq is defined explicitly as a primitive recursive function:

pCn
mq = λn. pmq.

Property (1) follows from

ϕ
(n)
pCn

mq(~x)
def' ϕ

(n)
λn.pmq(~x) ' ϕ

(n)
pλn.mq(~x)

5.2.18(2)' m = Cn
m(~x).

In the sequel we abbreviate pC1
mq to pCmq and pC0q to pZq.

5.2.27 Indices of nowhere defined partial functions. We wish to define
an unary function p∅(n)q yielding a proper index of the n-ary nowhere defined
partial functions ∅(n), i.e.

ϕ
(n)

p∅(n)q(~x) ' ∅(n)(~x). (1)

First note that λn.fn(x1, . . . , xn) is a defined recursive function symbol denot-
ing ∅(n). For that purpose we define an auxiliary binary function (xi, . . . ,xn)
by the following course of values recursive definition with measure n .− i as a
primitive recursive function:

(xi, . . . ,xn) = xn ← i = n
(xi, . . . ,xn) = xi, (xi+1, . . . ,xn) ← i < n.

The function p∅(n)q is then defined explicitly as a primitive recursive function:

p∅(n)q = λn. fn(x1, . . . ,xn).

Property (1) follows from

p∅(n)q def= λn. fn(x1, . . . ,xn)
3.3.18(4)

= pλn.fn(x1, . . . , xn)q.

In the sequel we abbreviate p∅(1)q to p∅q.

96

5.2.28 Turning recursive indices into proper. The binary function e(n)

takes an index e of an n-ary partial recursive function and yields a proper
index of the same partial function, i.e. we have

Cdf n(e(n)) (1)

ϕ
(n)

e(n)(~x) ' ϕ(n)
e (~x). (2)

The function e(n) is defined explicitly as a primitive recursive function:

e(n) = e ← Cdf n(e)
e(n) = p∅(n)q ← ¬Cdf n(e).

5.2.29 Unary composition. The binary function e1 ◦ e2 takes indices e1

and e2 of unary partial recursive functions f1 and f2 respectively and yields
an index of its unary composition: f(x) = f1 f2(x), i.e. we have

ϕe1◦e2(x) ' ϕe1 ϕe2(x). (1)

The function e1 ◦ e2 is defined explicitly as a primitive recursive function:

e1 ◦ e2 = λ1. e
(1)
1

(((
e
(1)
2 (x1)

)))
.

Property (1) is proved as follows. By 5.2.28(1) there are unary defined
recursive function symbols f1 and f2 such that

pf1q = e
(1)
1 ∧ pf2q = e

(1)
2 (2)

holds. We then have

e1 ◦ e2
def,(2)

= λ1. pf1q
(((
pf2q(x1)

))) 3.3.18(4)
= pλ1.f1 f2(x1)q. (3)

Property (1) follows now from

ϕe1◦e2(x)
(3)' ϕpλ1.f1 f2(x1)q(x)

(2)' f1 f2(x)
(1)' ϕpf1q ϕpf2q(x)

(2)'

' ϕ
e
(1)
1

ϕ
e
(1)
2

(x)
5.2.28(2)' ϕe1 ϕe2(x).

5.2.30 Composition. Unary composition is generalized to arbitrary com-
position as follows. For every n, m ≥ 1, there is an (m + 1)-ary primitive
recursive function Cn

m(e0, e1, . . . , em) such that

ϕ
(n)
Cn

m(e0,e1,...,em)(~x) ' ϕ(m)
e0

(
ϕ(n)

e1
(~x), . . . , ϕ(n)

em
(~x)

)
. (1)

The (m+1)-ary function Cn
m(e0, e1, . . . , em) is defined explicitly as a primitive

recursive function

Cn
m(e0, e1, . . . , em) = λn. e(m)

(((
e
(n)
1 (x1, . . . ,xn), . . . , e(n)

m (x1, . . . ,xn)
)))
.

Property (1) is proved similarly as the property 5.2.29(1).

97

5.2.31 Parametric function. The binary parametric function e/x takes
an index e of a binary partial recursive function f and a number x and yields
an index of the unary partial recursive function g defined by g(y) ' f(x, y),
i.e. we have

ϕe/x(y) ' ϕ(2)
e (x, y). (1)

The parametric function is defined explicitly as a primitive recursive function:

e/x = C1
2(e, pCxq, pIq).

Property (1) follows from

ϕe/x(y)
def' ϕC1

2(e,pCxq,pIq)(y)
5.2.30(1)' ϕ(2)

e

(
ϕpCxq(y), ϕpIq(y)

) 5.2.26(1),5.2.25(1)'
' ϕ(2)

e

(
Cx(y), I(y)

) ' ϕ(2)
e (x, y).

5.2.32 S-m-n theorem (Kleene). For every m,n ≥ 1, there exists an
(m + 1)-ary primitive recursive function sm

n (e, ~x) such that

ϕ
(n)
sm

n (e,~x)(~y) ' ϕ(m+n)
e (~x, ~y). (1)

Proof. The (m + 1)-ary function sm
n (e, ~x) is defined explicitly as a primitive

recursive function

sm
n (e, x1, . . . , xm) = Cn

m+n(e, pCn
x1

q, . . . , pCn
xm

q, pIn
1 q, . . . , pIn

nq).

Property (1) is proved similarly as the property 5.2.31(1) of the parametric
function. ut

5.2.33 Corollary. For every m,n ≥ 1, to every (m + n)-ary partial recur-
sive function f(~x, ~y) there exists an m-ary primitive recursive function s(~x)
such that

ϕ
(n)
s(~x)(~y) ' f(~x, ~y). (1)

Proof. Define s explicitly by s(~x) = sm
n (pfq, ~x), where pfq is an index of f ,

and use the s-m-n theorem. ut

5.2.34 Remark. In the sequel, both the theorem and the corollary will be
referred to simply as the s-m-n theorem. The reader will note that we have

s1
1(e, x) = e/x.

98

5.2.35 Self-reproducing function. In this paragraph we will solve the
following question. Does exist a recursive function which produces its own
description? More precisely, we wish to find a unary recursive function ϕe(x)
with yields its own index e for every input x, i.e.

ϕe(x) = e. (1)

Let g be defined explicitly as a primitive recursive function:

g(y) = y ◦ pCyq. (2)

Let us denote by pgq the index of g. We set e = g(pgq) and obtain (1) from

ϕe(x)
def' ϕg(pgq)(x)

(2)' ϕpgq◦pCpgqq(x)
5.2.29(1)' ϕpgq ϕpCpgqq(x)

5.2.29(1)'
' ϕpgq Cpgq(x) ' ϕpgq(pgq)

index' g(pgq) def= e.

5.2.36 Second recursion theorem (Kleene). For every n ≥ 1, there
exists a unary primitive recursive function rn(e) such that

ϕ
(n)
rn(e)(~x) ' ϕ(n+1)

e (rn(e), ~x). (1)

Proof. First note that there is a primitive recursive function kn(e) satisfying

ϕ
(n+1)
kn(e) (y, ~x) ' ϕ(n+1)

e (s1
n(y, y), ~x). (2)

Indeed, the property (2) is equivalent to

ϕ
(n+1)
kn(e) (y, ~x) ' ϕ(n+1)

e

(
s1

n

(
In+1
1 (y, ~x), In+1

1 (y, ~x)
)
, In+1

2 (y, ~x), . . . , In+1
n+1 (y, ~x)

)

and thus it suffices to define kn(e) by

kn(e) = Cn+1
n+1

(
e, Cn+1

2 (ps1
nq, pIn+1

1 q, pIn+1
1 q), pIn+1

2 q, . . . , pIn+1
n+1q

)
,

where ps1
nq is an index of the binary primitive recursive function s1

n.
We now define rn(e) explicitly as a primitive recursive function by

rn(e) = s1
n

(
kn(e), kn(e)

)
.

Property (1) follows from

ϕ
(n)
rn(e)(~x)

def' ϕ
(n)
s1

n(kn(e),kn(e))(~x)
5.2.32(1)' ϕ

(n+1)
kn(e) (kn(e), ~x)

(2)'

' ϕ(n+1)
e

(
s1

n

(
kn(e), kn(e)

)
, ~x

) def' ϕ(n+1)
e (rn(e), ~x). ut

99

5.2.37 Corollary. For every (n+1)-ary partially recursive function f(e, ~x)
there is number e such that

ϕ(n)
e (~x) ' f(e, ~x). (1)

Proof. Define e by e = rn(pfq), where pfq is an index of f , and use the
previous theorem. ut

5.2.38 Remark. In the sequel, both the theorem and the corollary will be
referred to simply as the second recursion theorem.

5.2.39 Theorem. Recursive functions are generated from the successor
function and the predecessor function by explicit definitions and regular re-
cursive definitions of functions.

Proof. Let us denote by G the class of functions generated from x + 1 and
x .− 1 by explicit definitions and regular recursive definitions of functions.
The inclusion G ⊆ REC is obvious.

The converse is proved as follows. By Thm. 3.3.12 the class G is primitively
recursively closed and thus it contains all primitive recursive functions and
predicates. We now show that G is closed under regular minimalization of
functions. Let f be the function obtained from a function g ∈ G by regular
minimalization:

f(~x) = µy[g(y, ~x) = 1].

Consider the following recursive definition of a function h ∈ G:

h(y, ~x) = y ← ∀z < y g(z, ~x) 6= 1 ∧ g(y, ~x) = 1
h(y, ~x) = h(y + 1, ~x) ← ∀z < y g(z, ~x) 6= 1 ∧ g(y, ~x) 6= 1
h(y, ~x) = h(y .− 1, ~x) ← ∃z < y g(z, ~x) = 1.

The definition is regular in the measure |f(~x)− y| which is into the standard
well-order < of natural numbers since we have

∀z ≤ y g(z, ~x) 6= 1 ⇒ f(~x) > y ⇒ |f(~x)− (y + 1)| < |f(~x)− y|
∃z < y g(z, ~x) = 1 ⇒ f(~x) < y ⇒ |f(~x)− (y .− 1)| < |f(~x)− y|.

By a straightforward induction on y, ~x with measure |f(~x)− y| we can prove
that h(y, ~x) = f(~x) holds. Now we can take the identity f(~x) = h(0, ~x) as an
explicit definition of f in G.

Now we are in position to prove REC ⊆ G. By Thm. 5.2.17 every n-ary
recursive function f is obtained by one minimalization of the Kleene’s T-
predicate Tn:

f(~x) = U µy[Tn(e, ~x, y)]. (1)

The minimalization is regular and thus we can take (1) as a derivation of f
in G since G contains the primitive recursive function U and the primitive
recursive predicate Tn. ut

100

5.3 µ-Recursive Functions

We have defined in Par. 5.2.1 the class of partial recursive functions by means
of explicit and recursive definitions in the style of Herbrand-Gödel-Kleene.
This kind of definitions is traditionally considered by mathematicians to be
of meta-mathematical character in that it mentions terms of some language.
While definitions based on languages are completely natural to computer
scientists who are used deal with programming languages, mathematicians
prefer inductive characterizations with minimal reliance on a language. The
characterization of Kleene [Kle36, Kle52] by µ-recursive functions is such.

5.3.1 Primitive recursion of partial functions. The operator of prim-
itive recursion of partial functions takes an n-ary partial function g and an
(n + 2)-ary partial function h and yields the (n + 1)-ary partial function f
defined by

f(0, ~y) ' g(~y) (1)
f(x + 1, ~y) ' h(x, f(x, ~y), ~y). (2)

It should be clear that there is a unique partial function f satisfying the
identities (1) and (2).

5.3.2 Theorem. Recursively closed classes F are closed under primitive
recursion of partial functions.

Proof. Let f be a partial function obtained by primitive recursion 5.3.1(1)(2)
of g, h ∈ F . We can derive f in F by the following recursive definition:

f(x, ~y) ' Ds

(
x, h(x .− 1, f(x .− 1, ~y), ~y), g(~y)

)
. ut

5.3.3 Partial µ-recursive functions. The class of partial µ-recursive
functions is generated from the successor function x + 1, the zero func-
tion Z(x) = 0, and the identity functions In

i (~x) = xi by the operators of
composition, primitive recursion, and minimalization of partial functions. A
µ-recursive function is a partial µ-recursive function which is total.

We denote by µREC and µPREC respectively µ-recursive functions and
partial µ-recursive functions.

5.3.4 Theorem. Partial recursive functions are exactly partial µ-recursive
functions.

Proof. The class PREC is closed under explicit definitions of partial func-
tions and thus, by Thm. 2.2.3, it contains the zero function and the identity
functions, and it is closed under composition of partial functions. Partial re-
cursive functions are closed under primitive recursion of partial functions by

101

Thm. 5.3.2 and under the operator of minimalization by Thm. 5.2.8. The
class PREC is thus µ-recursively closed and hence µPREC ⊆ PREC.

The converse is proved as follows. First note that the class µPREC is prim-
itively recursively closed and thus it contains all primitive recursive functions
and predicates. By Thm. 5.2.17 every n-ary partial recursive function f is
obtained by one minimalization of the Kleene’s T-predicate Tn:

f(~x) ' U µy[Tn(e, ~x, y)]. (1)

The class µPREC contains the primitive recursive function U and the prim-
itive recursive predicate Tn, and thus we can derive f in µPREC by

g(~x) ' µy[Tn(e, ~x, y)] (2)
f(~x) ' U g(~x)

since g ∈ µPREC by Thm. 3.1.20 and Thm. 5.2.10. ut

5.3.5 Theorem. Recursive functions are generated from the successor func-
tion, the zero function, and the identity functions by the operators of compo-
sition, primitive recursion, and regular minimalization of functions.

Proof. Let us denote by G the class generated from the successor function,
the zero function, and the identity functions by the operators of composition,
primitive recursion, and regular minimalization of functions. The inclusion
G ⊆ REC follows from Thm. 5.3.4. The reverse inclusion is proved similarly
as in the proof of Thm. 5.3.4 by noting that the minimalization in 5.3.4(1)
(and therefore in 5.3.4(2) as well) is regular if f is total. ut

5.3.6 Discussion. The class of µ-recursive functions could be defined in two
ways. An easy way is to assume primitive recursion and define µ-recursive
functions as in Par. 5.3.3. This approach makes the initial development of
µ-recursive functions easier and it is used by many authors (see, for instance,
[BJ74, Dav58, Her65, Kle52]).

Problems occur when one wants to apply the results of the theory of com-
putable functions to mathematical logic and formal (Peano) arithmetic. The
language of formal arithmetic contains symbols for addition + and multipli-
cation · but there is no direct provision definitions by primitive recursion. One
has to work hard to show that recursive functions can be formally represented
by formulas of Peano arithmetic.

In order to pave the way for an easy representation of µ-recursive functions
in formal arithmetic many authors (see, for instance, [Sho67]) start with
simpler definitions of µ-recursive functions which do not assume the closure
under primitive recursion. With a suitable choice of initial functions it is
possible to use the power of regular minimalization and prove the closure of
µ-recursive functions under primitive recursion. We will take this approach

102

below, but it is possible to skip our alternative development of µ-recursive
functions and take Par. 5.3.3 as the definition of µ-recursive functions.

The most difficult part in this development of µ-recursive functions is a
temporary coding of course of values sequences. This is needed to show the
closure of µ-recursive functions under primitive recursion (see Thm. 5.3.27).
After that we can use our pairing and indexing into lists.

One obtains the Cantor’s pairing function J as a µ-recursive function
easily but the problem is with a µ-recursive definition of the indexing func-
tion (x)i. Hence, the most often used approach is to index the codes of fi-
nite sequences via Gödel’s β-function (see, for instance, [Sho67]) which was
introduced in his celebrated proof of incompleteness of formal arithmetic.
The β-function relies on the so called Chinese remainder theorem which is a
non-trivial theorem concerned with the simultaneous solution of systems of
congruences.

In order to make the coding of finite sequences easier many authors have
adopted the use of binary (or in general p-ary for primes p) concatenation
(see, for instance, [BJ74, Smu61]).

We have chosen to code in the proof of Thm. 5.3.27 finite sequences as
numbers in a base p = 2k+1. For that we need a µ-recursive derivation of the
exponentiation function 2x. The function can be derived by regular minimal-
ization from its graph 2x = y.

The introduction of the graph of exponentiation as a Σ0-predicate (rudi-
mentary predicate) has a long history. The problem was first formulated by
Smullyan in [Smu61] (see also [HP93, Smu92]) and was positively solved by
Bennett [Ben62] in his Ph.D. thesis which has greatly influenced the develop-
ment of Σ0-predicates. Many Σ0-derivations of 2x = y were discovered since
then but we believe that ours which is given in Thm. 5.3.25 is the simplest
one. Σ0-predicates are those which can be obtained by explicit definitions
(with bounded quantification) from x + y and x · y.

In the development of the class of µ-recursive functions we also use a
clever trick of Joan Robinson [Rob49] and define the addition function from
the successor and multiplication functions.

We cannot refrain here from pointing out the irony in this controversy
of mathematical versus computer science approaches. What seems perfect-
ly natural to a computer scientist, i.e. definitions made by mentioning a
language of symbols seems to be contrieved to a mathematician who prefers
to use terms. On the other hand, a computer scientist instictively dislikes
the mathematical definition of recursive functions via µ-recursion because he
immediately sees the impossibility of feasible computations with such def-
initions. What is an effective process to mathematicians is a horribly in-
nefficient one to computer scientists. Computer scientists have developed a
good feeling for making their definitions as efficient as they wish by careful
formulation of recursive definitions.

103

5.3.7 Alternative definition of µ-recursive functions. The class of µa-
recursive functions is generated from the identity functions In

i (~x) = xi, the
multiplication function x · y, and from the characteristic function x <∗ y of
the less than predicate x < y by composition and regular minimalization of
functions.

5.3.8 Remark. By Thm. 2.2.10 and Par. 2.2.11(ii), µa-recursive functions
are closed under explicit definitions of functions of a form

f(~x) = τ [~x], (1)

where the term τ [~x] is composed only from variables by applications of func-
tions.

µa-Recursive functions are closed under definitions of functions with reg-
ular minimalization of a form

f(~x) = µy[τ [~x, y] = 1], (2)

where the term τ [~x, y] is composed only from variables by applications of
functions, because we can define f as

g(y, ~x) = τ [~x, y]
f(~x) = µy[g(y, ~x) = 1].

Finally, µa-recursive functions are closed under definitions of functions
with regular minimalization of a form

f(~x) = µy[R(~τ [~x, y])], (3)

where the terms ~τ [~x, y] are composed only from variables by applications of
functions. To see this, it suffices to define f alternatively by

f(~x) = µy[R∗(~τ [~x, y]) = 1].

5.3.9 Successor function x + 1 is µa-recursive. We have ∀x∃y x < y
where the number x + 1 is the least such. Hence, we define the successor
function x + 1 as a µa-recursive function by regular minimalization:

x + 1 = µy[x < y].

5.3.10 Unary constant functions are µa-recursive. We clearly have
∀x∃y x < x + 1 and 0 is the least such number y. Hence, we define the zero
function Z = C0 as a µa-recursive function by regular minimalization:

Z(x) = µy[x < x + 1].

We can now define all unary constant functions Cm(x) = m as µa-recursive
functions by a series of explicit definitions:

Cm+1(x) = Cm(x) + 1.

104

5.3.11 Remark. By Thm. 2.2.10 and Par. 2.2.11(ii), µa-recursive functions
are closed under explicit definitions of functions of the form 5.3.8(1), where
the term τ [~x] is composed only from variables and constants by applications
of functions.

We can admit also constants in definitions of µa-recursive functions by
bounded minimalization of the forms 5.3.8(2)(3). The proof uses similar ar-
guments as those in Par. 5.3.8.

5.3.12 Boolean functions are µa-recursive. The boolean functions ¬∗x
and x ∧∗ y are µa-recursive by explicit definitions:

¬∗x = x <∗ 1
x ∧∗ y = ¬∗¬∗(x · y).

The remaining boolean functions are defined similarly as µa-recursive.

5.3.13 Predicates x ≤ y and x = y are µa-recursive. The binary pred-
icates x ≤ y and x = y are µa-recursive by explicit definitions of their char-
acteristic functions:

x≤∗ y = ¬∗(y <∗ x)
x =∗ y = x≤∗ y ∧∗ y ≤∗ x.

5.3.14 Discrimination function D is µa-recursive. The graph of the
discrimination function D satisfies the following obvious property:

D(x, y, z) = v ↔ x = 0 ∧ v = z ∨ 0 < x ∧ v = y.

We define D as a µa-recursive function by regular minimalization:

D(x, y, z) = µv[(x =∗ 0 ∧∗ v =∗ z ∨∗ 0 <∗ x ∧∗ v =∗ y) = 1].

5.3.15 Theorem. µa-Recursive functions are closed under explicit defini-
tions of functions and under generalized explicit definitions of functions.

Proof. µa-Recursive functions contain unary constant functions and the func-
tion D and so the first part of the theorem follows from Thm. 2.2.10 (see also
Par. 2.2.11(i)). The second part follows from Thm. 2.4.19. ut

5.3.16 Remark. By Thm. 2.2.7, µa-recursive functions are closed under
explicit definitions of predicates with quantifier-free formulas.

µa-Recursive functions are closed also under definitions of functions with
regular minimalization of a form

f(~x) = µy

[
φ[~x, y]

]
,

where the formula φ[~x, y] is quantifier-free, because we can define f as

105

R(~x, y) ↔ φ[~x, y]
f(~x) = µy[R(~x, y)].

5.3.17 Lemma. µa-Recursive functions are closed under the operator of
bounded minimalization.

Proof. Let the (n+1)-ary function f be defined by bounded minimalization:

f(z, ~x) = µy≤z[g(y, ~x) = 1]

from a µa-recursive function g. We clearly have

∀z∀~x∃y(y ≤ z ∧ g(y, ~x) = 1 ∨ y > z)

and so the auxiliary (n+1)-ary function h is defined by regular minimalization
as a µa-recursive function:

h(z, ~x) = µy[y ≤ z ∧ g(y, ~x) = 1 ∨ y > z].

Note that h(z, ~x) yields the smallest y ≤ z such that g(y, ~x) = 1 or z + 1 if
there is none. We now define f by explicit definition

f(z, ~x) = h(z, ~x) ← h(z, ~x) ≤ z
f(z, ~x) = 0 ← h(z, ~x) > z

as a µa-recursive function. ut

5.3.18 Theorem. µa-Recursive functions are closed under explicit defini-
tions of predicates with bounded formulas and under definitions of functions
with bounded minimalization.

Proof. µa-Recursive functions contain the predicate ≤ and so the theorem
follows from Thm. 2.2.12 and Thm. 2.2.13 by Thm. 5.3.15 and Lemma 5.3.17.

ut

5.3.19 Addition x + y is µa-recursive. We use the following observation
by Joan Robinson [Rob49]. If z > 0 then we have

x + y = z ⇔ (x + y) · z + x · y · z2 + 1 = z2 + x · y · z2 + 1 ⇔
⇔ (x · z + 1) · (y · z + 1) = (x · y + 1) · z2 + 1.

The addition function can be thus derived as a µa-recursive function by reg-
ular minimalization of its graph:

x + y = µz[z = 0 ∧ x = 0 ∧ y = 0 ∨
z > 0 ∧ (x · z + 1) · (y · z + 1) = (x · y + 1) · z · z + 1].

106

5.3.20 Modified subtraction x .−y is µa-recursive. The binary modified
subtraction function x .− y is µa-recursive by bounded minimalization:

x .− y = µz≤x[x = y + z].

5.3.21 Predicate x | y of divisibility is µa-recursive. The binary pred-
icate x | y of divisibility holding if x divides y is µa-recursive by explicit
definition:

x | y ↔ ∃z ≤ y y = x · z.

5.3.22 The predicate of beeing a power of two is µa-recursive. The
predicate Pow2(x) of x being a power of two, i.e. Pow2(x) ↔ ∃y x = 2y, is
µa-recursive by explicit definition:

Pow2(x) ↔ x > 0 ∧ ∀y ≤ x(y | x → y = 1 ∨ 2 | y).

5.3.23 Integer division x÷ y is µa-recursive. We define the integer di-
vision x÷ y as a µa-recursive function by bounded minimalization:

x÷ y = µq≤x[x < (q + 1) · y].

5.3.24 Remainder function x mod y is µa-recursive. We define the re-
mainder function x mod y as a µa-recursive function by explicit definition:

x mod y = x .− (x÷ y) · y ← y > 0.

5.3.25 Theorem. The exponentiation function 2x is µa-recursive.

Proof. See the paragraph 5.2.13 in [Vod00]. ut

5.3.26 Bounded indexing function is µa-recursive. For the closure of
µa-recursive functions under primitive recursion we will need to recover digits
of numbers represented in the notation with the base 2k for a given k ≥ 1. As
is well-known, any number x can be uniquely written in such a representation
as x =

∑
i di · 2k·i with di < 2k for all di. We can recover the i-th digit di of

x by a ternary bounded indexing function (x)[k]
i = di which can be explicitly

defined as a µa-recursive function by:

(x)[k]
i = x÷ 2k·i mod 2k.

5.3.27 Theorem. µa-Recursive functions are closed under primitive recur-
sion.

Proof. Let the (n + 1)-ary function f be defined by primitive recursion from
µa-recursive functions g and h:

107

f(0, ~y) = g(~y)
f(x + 1, ~y) = h(x, f(x, ~y), ~y).

We would like to define as µa-recursive the graph f(x, ~y) = z of f . We cannot
do this directly but we will able to derive as µa-recursive the (n + 3)-ary
predicate f(x, ~y) k= z which can be called the bounded graph of f because it
is defined to satisfy:

f(x, ~y) k= z ↔ f(x, ~y) = z ∧ ∀i≤ x f(i, ~y) < 2k.

Here the number 2k strictly bounds f up to x. The reader will note that the
symbol f on the left-hand-side is purely formal. Suppose that we have derived
the predicate as µa-recursive. For given numbers x and ~y there is clearly a
number k such that 2k strictly bounds f up to x. For every such k there is
a unique z such that f(x, ~y) k= z < 2k holds. We can thus introduce as µa-
recursive by regular minimalization the (n + 1)-ary function k(x, ~y) yielding
the smallest such k:

k(x, ~y) = µk[∃z < 2k f(x, ~y) k= z].

The function f can be then derived as µa-recursive by bounded minimaliza-
tion:

f(x, ~y) = µz<2k(x,~y) [f(x, ~y)
k(x,~y)

= z].

It remains to derive the bounded graph of f as µa-recursive. If 2k strictly
bounds f up to x we can store the values needed in the computation of f(x, ~y)
in the course of values sequence s satisfying

s mod 2k·(x+1) =
∑

i≤x

f(i, ~y) · 2k·i < 2k·(x+1).

For that we define an auxiliary (n + 3)-ary predicate Seq(k, s, x, ~y) explicitly
as µa-recursive by:

Seq(k, s, x, ~y) ↔ (s)[k]
0 = g(~y) ∧ ∀i < x (s)[k]

i+1 = h(i, (s)[k]
i , ~y).

Clearly, Seq(k, s, x, ~y) holds if s the course of values sequence for f(x, ~y)
provided f(i, ~y) < 2k holds for all i ≤ x. We then have

f(x, ~y) = z ↔ ∃k∃s(Seq(k, s, x, ~y) ∧ (s)[k]
x = z)

and thus the following explicit definition derives the bounded graph of f as
a µa-recursive predicate:

f(x, ~y) k= z ↔ ∃s < 2k·(x+1)(Seq(k, s, x, ~y) ∧ (s)[k]
x = z). ut

108

5.3.28 Theorem. µa-Recursive functions are primitively recursively closed.

Proof. µa-Recursive functions contain the successor function x + 1 and the
zero function Z by Par. 5.3.9 and Par. 5.3.10, respectively, and are closed
under primitive recursion by Thm. 5.3.27. ut

5.3.29 Theorem. Recursive functions are exactly µa-recursive functions.

Proof. It is easy to see that µa-recursive functions are a subclass of recursive
functions. The converse is proved as follows. By Thm. 5.2.17 every n-ary
recursive function f is obtained one regular minimalization of the Kleene’s
T-predicate Tn:

f(~x) = U µy[Tn(e, ~x, y)].

By Thm. 5.3.28 the primitive recursive function U and the primitive recursive
predicate Tn are µa-recursive. We can derive f as a µa-recursive function by

g(~x) = µy[Tn(e, ~x, y)]
f(~x) = U g(~x)

since g is µa-recursive by Thm. 3.1.20 and Thm. 5.2.10. ut

5.3.30 Theorem. Partial recursive functions is the smallest class contain-
ing the identity functions, the multiplication function, and the characteristic
function of the less than predicate x < y, and closed under composition and
minimalization of partial functions.

Proof. The proof is similar to the proof of Thm. 5.3.4. But now the proof
uses Thm. 5.3.28. ut

5.4 Inside Recursive Functions

5.5 Exercises

Beyond Primitive Recursion

5.5.1 Exercise. Prove that the graph A(n, x) = y of the Ackermann-Péter
function is a primitive recursive predicate.

5.5.2 Exercise. A primitive recursive index e is said to be proper if it is
the code of some PR-function symbol.

(i) Define the primitive recursive function Ar(e) which yields the arity of
the PR-function symbol coded by a proper PR-index e.

(ii) Show that the predicate Prf (e) holding of proper PR-indices is primitive
recursive.

109

5.5.3 Exercise. Show that there is a binary primitive recursive function
pCn

mq such that for every n ≥ 1 the application pCn
mq yields the proper

PR-index of the n-ary constant function Cn
m.

5.5.4 Exercise. Find a proper PR-index of the case discrimination function
D(x, y, z).

5.5.5 Exercise. Primitive recursive (PR) terms are formed from variables
x1, x2, x3, . . . and constants n by applications of simple conditionals and PR-
function symbols.

We arithmetize PR-terms with following pair constructors:

xi = 0, i (variables)
n = 1, n (constants)
Ds(t1, t2, t3) = 2, t1, t2, t3 (conditional)
f(((ts))) = 3, f, ts. (PR-functions)

The arities of constructors are as shown in their definitions. We assign to
every PR-term τ its code pτq inductively on the structure of PR-terms:

pxiq = xi

pnq = n

pDs(τ1, τ2, τ3)q = Ds(pτ1q, pτ2q, pτ3q)
pf(τ1, . . . , τn)q = pfq(pτ1q, . . . , pτkq).

Show that the predicate Prt(t) holding of the codes of PR-terms is primitive
recursive.

5.5.6 Exercise. Show that there is a binary primitive recursive function
λn. t with the following property. If n ≥ 1 and t is the code of a PR-term
τ [x1, . . . , xn] with all its free variables indicated then λn. t is the proper PR-
index of the n-ary function f explicitly defined by

f(x1, . . . , xn) = τ [x1, . . . , xn].

In other words, we have

Prf (λn. pτq) ∧Ar(λn. pτq) = n

{λn. pτq}p(x1, . . . , xn) = τ [x1, . . . , xn].

5.5.7 Exercise. Find proper PR-indices of the boolean functions.

5.5.8 Exercise. Find proper PR-indices of addition x + y, modified sub-
traction x .− y, multiplication x · y, and exponentiation xy.

5.5.9 Exercise. Find proper PR-indices of the characteristic functions of
the binary predicates x ≤ y and x = y.

110

5.5.10 Exercise. Show that there is a binary primitive recursive function
µn[e]]] with the following property. If n ≥ 2 and e is the proper PR-index of
an n-ary function g then µn[e]]] is the proper PR-index of the n-ary function
f obtained from g by bounded minimalization:

f(x1, x2, . . . , xn) = µy≤x1 [g(y, x2, . . . , xn) = 1].

In other words, we have

Prf (µn[e]]]) ∧Ar(µn[e]]]) = n

{µn[e]]]}p

(
x1, x2, . . . , xn

)
= µy≤x1 [{e}p

(
y, x2, . . . , xn

)
= 1].

5.5.11 Exercise. Find proper PR-indices of integer division x ÷ y and re-
mainder function x mod y.

5.5.12 Exercise. Show that there is a primitive recursive function Iter(e)
with the following property. If e is the proper index of a unary function
g(x)then then Iter(e) is the proper PR-index of its iteration gn(x).

Partial Recursive Functions

µ-Recursive Functions

111

112

6. Computable Functions

We present the analysis of A. Turing of what it means for a function over N
to be effectively computable. The analysis leads to the definition of a Turing
computable partial function as such which is computed by a certain kind of
a mechanical machine. We will prove in Thm. 6.2.14 that the Turing com-
putable partial functions coincide with the partial recursive ones and we will
discuss in Sect. 6.3 the reasons for the identification of effective computability
with Turing computability.

6.1 Turing Machines

6.1.1 Analysis of effective computability by Turing. Turing in [Tur36]
has analysed what it means for a (human) computer to compute effectively
the value of a function for given arguments. During the computation, which
takes only a finite amount of time, the computer uses a finite number of dis-
tinct symbols. He can at one time observe only a finite number of occurrences
of symbols, although he can use a potentially infinite supply of clean sheets
of paper. He can also remember, but only a finite number, of previously ob-
served symbols. During the computation he can use only a finite number of
instructions. The computer’s mind can be during the computation only in a
finite number of states. The instructions specify the conditions under which
the computer performs an atomic action.

6.1.2 Turing machines. The analysis of computability by a computer from
the preceding paragraph lead Turing to the definition of computing machines,
now called a Turing machines , which could do the effective computations
instead of the human computer. A Turing machine is at any given time in
one of finitely many states . One of the states is designates as initial and one
as terminal .

The machine is supplied with a linear tape which is potentially infinite in
both directions and it is divided into squares. Each square can store (hold)
at any given time one of the finitely many tape symbols. One of the symbols
is blank and initially the tape contains only finitely many non-blank symbols.

The Turing machine scans at a given time just one square and if its
state is not terminal then, depending on the state of the machine and on

the currently scanned symbol, it changes the scanned symbol to a possibly
different symbol, possibly changes its state, and possibly moves to scan the
square immediately to the left or to the right.

A Turing machine can be mathematically defined by two states b and e
denoting respectively its initial and terminal states and by a binary transition
function δ. The transition function is a partial mapping from the cartesian
product Q× S into the cartesian product Q× S ×∆, i.e.

δ : Q× S 7→ Q× S ×∆

and it is finite in the following sense. Each of the sets

– the set of states Q,
– the set of tape symbols S,
– the set of movements ∆ = {H, J, I},
are finite and we have b ∈ Q, e ∈ Q, 0 ∈ S, 1 ∈ S. We require also that
〈e, s〉 6∈ dom(δ) for all s ∈ S.

The tape symbol 0 is blank and the contents of a tape will always look
as follows:

0∞w1s2ss3w20∞ (1)

where the underlined tape symbol s is the currently scanned one, the symbol
s2 is inscribed in the square immediately to the left and the symbol s3 in the
square immediately to the right. Words w1 and w2 are finite and are over the
set S. Both ends of the tape are inscribed with infinitely many blanks: 0∞.

The transition function δ controls the operations of the Turing machine
A as follows. If A is in the state q scanning the symbol s on (1) then in the
next step A will overwrite the symbol s with the symbol s1, go to the new
state q1, and move, if d = J, one square left with the new tape situation

0∞w1s2s1s3w20∞,

move, if d = I, one square rigth with the new tape situation

0∞w1s2s1s3w20∞,

or stay, if d = H, scanning the same square with the tape situation:

0∞w1s2s1s3w20∞.

The machine A is started in the initial state b and stops when it reaches
after finitely many steps the terminal state e.

The finiteness of the transition function means that the function can be
concretely presented as a finite table of quintuples 〈q, s, q1, s1, d〉 where the
states and tape symbols are presented by different concrete symbols, say by
decimal numerals.

114

6.1.3 Partially Turing computable functions. Turing machines can be
used to compute word functions over their tape alphabets. We will use them
for computation of partial functions over natural numbers in the monadic
representation. We say that a Turing machine A computes the n-ary partial
function f if for all numbers x1, x2, . . . , xn−1, xn the machine A starting with
the tape:

0∞01x101x2 . . .01xn−101xn0∞

terminates with the tape:

0∞01y0∞

iff f(x1, x2, . . . , xn−1, xn) ³ y. Note that an argument xi or the result y is
represented on the tape by a block 01xi or 01y, respectively, with the blank
symbol 0 called the block separator .

A partial function f is partially Turing computable if there is a Turing
machine computing f ; f is Turing computable if it is partially Turing com-
putable and total.

6.2 Equivalence of Turing Machines and Recursiveness

Turing Computability Implies Recursiveness

6.2.1 p-ary representation of N. We can turn the functions over word do-
mains given by a p-element alphabet (p ≥ 2) into functions over natural num-
bers by means of p-ary representation of natural numbers. For that purpose
we define p functions S

(p)
0 , S

(p)
1 , . . . , S

(p)
p−1, called p-ary successor functions, as

follows:

S
(p)
i (x) = p · x + i.

It is not difficult to see that every natural number x has a unique repre-
sentation as a p-ary numeral :

S
(p)
i0

S
(p)
i1

. . . S
(p)
in−2

S
(p)
in−1

(0), (1)

where n ≥ 0 and in−1 6= 0. We customarily write the p-ary numeral (1) as

(in−1 in−2 . . . i1 i0)p (2)

and called the numbers ij in (2) the p-ary digits of the number x in p-ary
representation. We clearly have

x =
∑

j<n

ij · pj .

115

The reader will note that the binary representation of natural numbers is a
special case of p-ary representation with p = 2. The binary successor functions
are S

(2)
0 (x) = 2 · x + 0 = 2 · x and S

(2)
1 (x) = 2 · x + 1. As an example we give

here the binary representation of the first eight non-zero numbers:

1 = (1)2 = S
(2)
1 (0) = 2 · 0 + 1

2 = (1 0)2 = S
(2)
0 S

(2)
1 (0) = 2 · (2 · 0 + 1) + 0

3 = (1 1)2 = S
(2)
1 S

(2)
1 (0) = 2 · (2 · 0 + 1) + 1

4 = (1 0 0)2 = S
(2)
0 S

(2)
0 S

(2)
1 (0) = 2 · (2 · (2 · 0 + 1) + 0) + 0

5 = (1 0 1)2 = S
(2)
1 S

(2)
0 S

(2)
1 (0) = 2 · (2 · (2 · 0 + 1) + 0) + 1

6 = (1 1 0)2 = S
(2)
0 S

(2)
1 S

(2)
1 (1) = 2 · (2 · (2 · 0 + 1) + 1) + 0

7 = (1 1 1)2 = S
(2)
1 S

(2)
1 S

(2)
1 (1) = 2 · (2 · (2 · 0 + 1) + 1) + 1

8 = (1 0 0 0)2 = S
(2)
0 S

(2)
0 S

(2)
0 S

(2)
1 (0) = 2 · (2 · (2 · (2 · 0 + 1) + 0) + 0) + 0.

6.2.2 p-ary size. For every p ≥ 2, the p-ary size function |x|p yields the
length of x in the p-ary representation, i.e.

|(in−1 . . . i0)p|p = n.

The function is defined by course of values recursion as a primitive recursive
function:

|0|p = 0
|p · x + i|p = |x|p + 1 ← i < p ∧ x 6= 0.

6.2.3 p-ary concatenation. For every p ≥ 2, the binary function x #p y,
called p-ary concatenation function, yields a number whose p-ary represen-
tation is obtained from p-ary representations of x and y by appending the
p-ary digits of y after the p-ary digits of x, i.e.

(in−1 . . . i0)p #p (jm−1 . . . j0)p = (in−1 . . . i0 jm−1 . . . j0)p.

The function is defined by course of values recursion on y as a primitive
recursive function:

x #p 0 = x
x #p (p · y + i) = p · (x #p y) + i ← i < p ∧ y 6= 0.

6.2.4 Arithmetization of Turing machines. Let A be a Turing ma-
chine given by the transition function δ : Q× S 7→ Q× S ×∆, initial state
b, and terminal state e. Assume further that Q = {q0, q1, . . . , qn−1} ⊂ N,
S = {s0, s1, . . . , sp−1}, and ∆ = {H, J,I} ⊂ N.

In the subsequent paragraphs we will show how to arithmetize computa-
tion of the Turing machine A.

116

6.2.5 Arithmetization of the transition function. We arithmetize the
transition function δ : Q× S 7→ Q× S ×∆ of the Turing machine A by the
binary function m(q, s), called also transition function, satisfying:

〈q, si〉 ∈ dom(δ) ↔ m(q, i) > 0 (1)
δ(q, si) = 〈q1, sj , d〉 → m(q, i) = q1, j, d. (2)

It should clear that there is a unique primitive recursive function m satisfying
(1) and (2).

6.2.6 Arithmetization of tape words. We arithmetize the empty word
over S by 0. Finite non-empty words

sin−1 . . . si0

over S with either sin−1 or si0 non-blank are arithmetized in two different
ways. Words with sin−1 6≡ 0 are left words and they are arithmetized in the
p-ary notation as

psin−1 . . . si0q(l) = (in−1 . . . i0)p =
∑

j<n

ij · pj .

Words with si0 6≡ 0 are right words and they are arithmetized in the ‘reversed’
p-ary notation as

psin−1 . . . si0q(r) = (i0 . . . in−1)p =
∑

j<n

ij · pn−j .

Note that we have

psin−1 . . . si0q(r) = psi0 . . . sin−1q(l).

The empty word is both left and right at the same time.

6.2.7 Arithmetization of configurations. The current configuration of
the Turing machine A is completely determined by the current state q of
the machine and by the current content of the tape which can be uniquely
written as 0∞ w1 w2 0∞, where w1 is a left word, w2 is a right word, and
the currently scanned square is the first symbol of the (infinite) word w2 0∞.
Such a configuration is arithmetized by the number c = q, l, r, where l codes
the left word w1 and r the right word w2.

6.2.8 Arithmetization of one computation step. We arithmetize one
computation step of the Turing machine A by a unary function M(c) which
takes the current configuration of A coded by c and yields a new configuration
coded by M(c) obtained from the previous one by one computation step. The
function is defined explicitly as a primitive recursive function:

117

M(q, l, s + p · r) = q1, l, s1 + p · r ← s < p ∧m(q, s) = q1, s1, H
M(q, l, s + p · r) = q1, l1, s2 + p · (s1 + p · r) ←

s < p ∧m(q, s) = q1, s1, J ∧ l = p · l1 + s2 ∧ s2 < p
M(q, l, s + p · r) = q1, p · l + s1, r ← s < p ∧m(q, s) = q1, s1, I.

Note that the function M(c) yields 0 if the computation with the configura-
tion coded by c is undefined.

6.2.9 Arithmetization of computation. We arithmetize computation of
the Turing machine A by a unary partial function M∗(c), called the unbound-
ed iteration of M , which takes the current configuration of A coded by c and
yields a final configuration coded by M∗(c) obtained from the previous one
by computation of A. The function is defined explicitly as a partial recursive
function:

M∗(c) ' Ds(H(c) 6=∗ e,M∗M(c), c).

6.2.10 Auxiliary function and predicate. The function p1xq(r) yields
the code of a right word of the length x containing only 1’s. The function is
defined by primitive recursive definition as primitive recursive:

p10q(r) = 0
p1x+1q(r) = p · p1xq(r) + 1.

The predicate Ones(w) holds if w is the code a right word consisting only
from 1’s, i.e. if w = p1xq(r) for some x. The predicate is defined by course of
values recursion as a primitive recursive predicate:

Ones(0)
Ones(p · w + 1) ← Ones(w).

6.2.11 Encoding input. The binary encoding function Enc(n, x) takes an
n-tuple x = x1, . . . , xn and yields the code of the initial tape configuration
of the Turing machine A with the initial state b and the tape of the form
0∞01x10 . . .01xn0∞, i.e.

Enc(n, x1, . . . , xn) = b, 0, p01x10 . . .01xnq(r).

For that purpose we need an auxiliary binary function Enc1(n, x) which yields
the code of the right word 1x10 . . .01xn , where x = x1, . . . , xn, i.e.

Enc1(n, x1, . . . , xn) = p1x10 . . .01xnq(r).

The function Enc1(n, x) is defined by primitive recursion on n with substi-
tution in parameter as a primitive recursive function:

Enc1(1, x1) = p1x1q(r)

Enc1(n + 2, x1, x) = p · Enc1(n + 1, x) #p p1x1q(r).

118

The encoding function is then defined explicitly as primitive recursive:

Enc(n, x) = b, 0, p · Enc1(n, x).

6.2.12 Decoding output. The decoding partial function Dc(c) is defined
if c is the code of a final tape configuration of the Turing machine A; in such
case it yields the result of computation stored on that tape, i.e.

Dc(c) ³ y ↔ c = e, 0, p01yq(r),

or equivalently

Dc(c) ³ y ↔ ∃r(c = e, 0, p · r ∧Ones(r) ∧ y = |r|p).
The decoding partial function is defined explicitly from one minimalization
as a partial recursive function:

Dc(c) '
∣∣µr[c = e, 0, p · r ∧Ones(r)]

∣∣
p
.

6.2.13 Theorem. Partially Turing computable functions are partial recur-
sive.

Proof. Let f be an n-ary partial function computed by the Turing machine
A given by the transition function δ : Q× S 7→ Q× S ×∆, initial state b,
and terminal state e. We may assume without loss of generality that the sets
Q and ∆ are as in Par. 6.2.4 because we can always systematically modify
the transition fuction δ whereby we obtain an equivalent Turing machine
computing the same partial function f . Using the notation of the previous
paragraphs we can derive f as a partial recursive function by the following
explicit definition:

f(~x) ' Dc M∗Enc
(
n, (~x)

)
. ut

Recursiveness Implies Turing Computability

See the paragraphs 6.1.5 - 6.1.11 in [Vod00].

Equivalence of Turing Computability and Recursiveness

6.2.14 Theorem. Partial recursive functions coincide with partially Turing
computable functions.

Proof. See the corollary 6.1.12 in [Vod00]. ut

6.3 Turing-Church Theses and Computable Functions

6.3.1 Turing-Church Theses. See the paragraph 6.1.13 in [Vod00].

119

6.3.2 Partially computable functions. A partial function f is partially
computable if it is Turing computable, i.e. if there is a Turing machine com-
puting f . A computable function is a partially computable function which is
total.

6.3.3 Remark. By Thm. 6.2.14 partially computable functions are exactly
partial recursive functions.

6.4 Other Models of Computation

Herbrand-Gödel-Kleene Recursive Functions

Church’s λ-Definable Functions

Post’s Normal Systems

Markov Systems

Register Machines

6.5 Exercises

Turing Machines

Equivalence of Turing Machines and Recursiveness

Turing-Church Theses and Computable Functions

Other Models of Computation

120

7. Beyond Computability

7.1 Decidable and Undecidable Predicates

7.1.1 Decidable predicates. We say that an n-ary predicate R is decidable
if the truth value of R(~x) can be effectively calculated for all numbers ~x,
i.e. if its characteristic function R∗ is effectively computable. By Turing’s
Thesis decidable predicates are exactly the computable and hence recursive
predicates. Are there any undecidable predicates?

We already know that the graphs ψ(n)(e, ~x) ³ y of the partial enumer-
ation functions are not recursive. We give below some further examples of
non-decidable problems. All problems we are interested in are concerned the
computation of partial recursive functions.

In the sequel we will often abbreviate ψ(n)(e, ~x) to ϕ
(n)
e (~x).

7.1.2 The halting problem. Given n ≥ 1, we consider the problem of
deciding, for any λn.τ and ~x, whether the reduction of a term (λn.τ)(~x)
halts and yields a result after finitely many steps, or equivalently, whether
ϕ

(n)
pλn.τq(~x) is defined. This is called the halting problem.

Its arithmetization is the (n+1)-ary predicate W
(n)
e (~x) in e and ~x, called

the halting predicate, defined by

W (n)
e (~x) ↔ ϕ(n)

e (~x)↓ .

In the sequel we will abbreviate W (1) to W .

7.1.3 The halting problem is undecidable. We claim that the halting
predicates W (n) are not recursive. We give here two differrent proofs of this
fact. Each of them uses a diagonal argument. The first one directly; the second
indirectly through the partial enumeration functions (see Par. 5.2.23).

First proof. Assume that the predicate W (n) is recursive. Then the (n+1)-ary
partial function f defined by

f(e, ~x) '
{
⊥ if ϕ

(n)
e (~x)↓

0 if ϕ
(n)
e (~x)↑

is recursive since it can be derived from W (n) as a partial recursive function
by the following explicit definition:

f(e, ~x) ' if W
(n)
e (~x) then ∅(n)(~x) else 0.

Consequently, the n-ary partial function g explicitly defined by

g(x1, . . . , xn) ' f(x1, x1, . . . , xn)

is recursive as well. Let e be an index of g. We obtain a contradiction as
follows (~e ≡ e, . . . , e):

W (n)
e (~e) ⇔ ϕ(n)

e (~e)↓ index⇔ g(~e)↓ def⇔ f(e,~e)↓ def⇔ ¬W (n)
e (~e).

Second proof. Consider an (n + 1)-ary function f defined by

f(e, ~x) =

{
ϕ

(n)
e (~x) if ϕ

(n)
e (~x)↓,

0 if ϕ
(n)
e (~x)↑.

But f(e, ~x) is the completion of the partial enumeration function ψ(n)(e, ~x)
of which we know from Par. 5.2.23 that it is not recursive. Recall that this
fact has been proved by a diagonal argument.

Now if the predicate W (n) were recursive then f would be recursive since
it could be defined explicitly as a recursive function by

f(e, ~x) ' if W
(n)
e (~x) then ϕ

(n)
e (~x) else 0.

7.1.4 The diagonal halting problem is undecidable. Consider a unary
predicate K defined by

K(x) ↔ ϕx(x)↓ .

The predicate is called the diagonal halting predicate. It solves the problem of
deciding, for any λ1.τ , whether the computation of λ1.τ with the argument
pλ1.τq halts and yields a result after finitely many steps, or equivalently,
whether ϕpλ1.τq(pλ1.τq) is defined. This is called the diagonal halting prob-
lem.

We claim that the diagonal halting problem is undecidable; that is, that
the predicate K is not recursive. We give here two differrent proofs of un-
decidability of the diagonal halting problem. The first one uses the standard
diagonal argument; the second the method of reduction.

First proof. Assume that the predicate K is recursive. Then f defined by

f(x) '
{
⊥ if ϕx(x)↓
0 if ϕx(x)↑

122

is a partial recursive function since it can be derived from K as a partial
recursive function by the following explicit definition:

f(x) ' if K(x) then ∅(x) else 0.

Let e be an index of f . We obtain a contradiction as follows:

K(e) def⇔ ϕe(e)↓ index⇔ f(e)↓ def⇔ ¬K(e).

Second proof. We show that the halting problem can be reduced to the diago-
nal halting problem by showing that if we could effectively solve the diagonal
halting problem we could use this to get an effective method for solving the
halting problem. More specifically, we claim that there is a recursive (in fact
primitive recursive) function f satisfying

We(x) ↔ K f(e, x). (1)

For if the diagonal halting problem were decidable then we could take (1) as
an explicit definition of W as a recursive predicate which, by Par. 7.1.3, it is
not.

It remains to show that such recursive function f does exist. We define f
explicitly as a primitive recursive function

f(e, x) = e ◦ pCxq

and derive (1) as follows:

K f(e, x) def⇔ K(e ◦ pCxq) def⇔ ϕe◦pCxq(e ◦ pCxq)↓ 5.2.29(1)⇔
ϕe ϕpCxq(e ◦ pCxq)↓ 5.2.26(1)⇔ ϕe Cx(e ◦ pCxq)↓ ⇔ ϕe(x)↓ ⇔ We(x).

7.1.5 Remark. In the previous paragraph we have used two different meth-
ods for demonstrating undecidability of the diagonal halting problem. The
first one uses the direct method which is based on a diagonal argument and
leads to contradiction. The second one is indirect and it takes a problem al-
ready known to be undecidable (in this case the halting problem) and reduces
it to the problem in question (in this case the diagonal halting problem). The
latter method is called the method of reduction and will be our basic ma-
chinery in demonstrating undecidability of further problems.

7.1.6 Reducibility of predicates. An n-ary predicate R is reducible to
an m-ary predicate Q if for all numbers ~x we have

R(~x) ↔ Q(f1(~x), . . . , fm(~x)) (1)

for some recursive functions f1, . . . , fm.
It is easy to see that if we have

123

R(~x) ↔ Q(τ1[~x], . . . , τm[~x]), (2)

where τ1, . . . , τm are terms applying only recursive functions, then the pred-
icate R is reducible to the predicate Q. For it suffices to define m-recursive
functions f1, . . . , fm explicitly by f1(~x) = τ1[~x], . . . , fm(~x) = τm[~x], whereby
we obtain that (1) holds. For this reason we say that R reducible to Q if (2)
holds.

7.1.7 Reducibility lemma. If the predicate R is reducible to Q and Q is
a recursive predicate then so is R.

Proof. Directly from Thm. 5.2.3. ut

7.1.8 Corollary. If the halting predicate W (n) is reducible to Q then Q is
not recursive.

Proof. Directly from the reducibility lemma and Par. 7.1.3. ut

7.1.9 Existence of programs with undecidable halting problems. In
this paragraph we will consider the following problem. Given a program λn.τ
decide for any numbers ~x whether the computation of λn.τ with the input ~x
halts and terminate after finitely many steps. This is called the halting prob-
lem for the program λn.τ . Natural questions arise. Is there any program whose
halting problem decidable? Can we find a program whose halting problem
undecidable?

The arithmetization of the problem is, for a given number e0, the n-ary
predicate W

(n)
e0 (~x) in ~x. The first question can be restated as follows. Can we

find a number e0 such the predicate W
(n)
e0 is recursive? The answer is simple.

If e0 is arbitrary index of an n-ary recursive function then the predicate
W

(n)
e0 (~x) holds for every ~x and hence it is trivially a recursive predicate. The

second question, i.e. whether there is a number e0 such the predicate W
(n)
e0

is not recursive, is much harder.
We claim that the partial enumeration functions have undecidable halting

problems. Indeed, let e0 be an index of the (n + 1)-ary partial enumeration
function ψ(n). First note that we have

W (n+1)
e0

(e, ~x) ⇔ ϕ(n+1)
e0

(e, ~x)↓ index⇔ ψ(n)(e, ~x)↓ ⇔ ϕ(n)
e (~x)↓ ⇔ W (n)

e (~x)

and thus

W (n)
e (~x) ↔ W (n+1)

e0
(e, ~x).

We have shown that the predicate W (n) is reducible to the predicate W
(n+1)
e0 .

By Thm. 7.1.8, the predicate W
(n+1)
e0 is not recursive.

124

We already knew that there are non-recursive predicates W
(n)
e0 for n > 1.

Can we find a number e0 such the unary predicate We0 is not recursive? To
see this, consider a unary partial recursive function f defined by

f(x) ' ϕx(x).

Let e0 be an index of f . We have

We0(x) ⇔ ϕe0(x)↓ ⇔ f(x)↓ ⇔ ϕx(x)↓ ⇔ K(x).

Thus the predicate K can be reduced to the predicate We0 . By Par. 7.1.4, the
predicate K is not recursive and thus, by Thm. 7.1.7, so is the predicate We0 .
In other words the halting problem of the partial function f is undecidable.

7.1.10 The input problem is undecidable. In this paragraph we will
consider the following problem. Given n ≥ 1 and n fixed numbers ~x0 decide,
for any λn.τ , whether the computation of λn.τ with the input ~x0 halts and
terminate after finitely many steps. This is called the input problem for ~x0.
Its arithmetization is the unary predicate W

(n)
e (~x0) in e.

We claim that the input problem is undecidable; that is, the predicates
W

(n)
e (~x0) are not recursive. We give here two differrent proofs of this fact.

Both reduce the halting problem to the input problem by providing a recur-
sive (in fact primitive recursive) function k satisfying

We(x) ↔ W
(n)
k(e,x)(~x0). (1)

First proof. Consider an (n + 2)-ary partial function f defined by

f(e, x, ~y) '
{

0 if ϕe(x)↓,
⊥ if ϕe(x)↑. (2)

The f is a partial recursive function since it could be defined explicitly by

f(e, x, ~y) ' I2
1

(
0, ϕe(x)

)
.

By the s-m-n theorem there is a primitive recursive function k(e, x) such that

ϕ
(n)
k(e,x)(~y) ' f(e, x, ~y). (3)

If We(x) then ϕ
(n)
k(e,x)(~y) = 0 for all ~y, i.e. ϕ

(n)
k(e,x) = Cn

0 ; otherwise ϕ
(n)
k(e,x)(~y)

is undefined for all ~y, i.e. ϕ
(n)
k(e,x) = ∅(n). Thus we have for all ~y

We(x) ↔ ϕ
(n)
k(e,x)(~y)↓ .

From this we get (1).

125

Second proof. Now we consider, for given numbers e and x, n-ary partial
functions fe,x defined by

fe,x(~y) '
{

0 if ϕe(x)↓,
⊥ if ϕe(x)↑.

From the definition we obtain that fe,x is total iff We(x) holds. The partial
function fe,x is recursive since it could be defined explicitly by

fe,x(~y) ' I2
1

(
0, ϕe(x)

)
,

or equivalently, by

fe,x(~y) ' I2
1

(
Cn

0 (~y), ϕe Cn
x (~y)

)
.

Consider now a binary function k(e, x) defined explicitly as a primitive re-
cursive function:

k(e, x) = Cn
2

(
pI2

1q, pCn
0 q, Cn

1 (e, pCn
x q)

)
.

It is easy to see that k(e, x) is the index of fe,x, i.e. fe,x = ϕk(e,x). Clerly, we
have for all ~y

We(x) ↔ ϕ
(n)
k(e,x)(~y)↓ .

From this we get (1).

7.1.11 The uniform halting problem is undecidable. Given n ≥ 1,
we consider the problem of deciding, for any λn.τ , whether the reduction
of a term (λn.τ)(~x) halts and yields a result after finitely many steps for
all numbers ~x. In other words, we consider the problem of deciding, for any
λn.τ , whether the ’program’ λn.τ computes an n-ary (total) function, or
equivalently, whether the partial function ϕpλn.τq is total. This is called the
uniform halting problem.

Its arithmetization is the unary predicate Totn(e), called the uniform
halting predicate, defined by

Totn(e) ↔ ∀~xϕ(n)
e (~x)↓ .

In the sequel we usually ommit the subscript n in Totn(e) for the case n = 1.
We claim that the uniform halting problem is undecidable; that is, the

predicates Totn are not recursive. We use again the method of reduction.
Consider the (n + 2)-ary partial function f defined by 7.1.10(2) and the
primitive recursive function k such that 7.1.10(3) holds. It easy to see that
ϕ

(n)
k(e,x) is total iff We(x) holds. From this we get

We(x) ↔ Totn k(e, x).

126

7.1.12 Further examples of undecidable problems. We now give fur-
ther examples of undecidable problems. The demonstration of their undecid-
ability is left to the reader as an exercise. We consider the following problems:

(i) Given n ≥ 1, the problem of deciding, for any e1 and e2, whether
ϕ

(n)
e1 = ϕ

(n)
e2 . This is called the equivalence problem.

(ii) Given n ≥ 1 and an n-ary partial recursive function f , the problem of
deciding, for any e, whether ϕ

(n)
e = f .

(iii) Given n ≥ 1, the problem of deciding, for any y and e, whether
y ∈ rng(ϕ(n)

e).
(iv) Given n ≥ 1 and a number y0, the problem of deciding, for any e, whether

y0 ∈ rng(ϕ(n)
e). This is called the output problem.

(v) Given n ≥ 1, the problem of deciding, for any e, whether rng(ϕ(n)
e) is

infinite.
(vi) Given n ≥ 1, the problem of deciding, for any e, whether ϕ

(n)
e is a constant

function.
(vii) Given n ≥ 1, the problem of deciding, for any e, whether ϕ

(n)
e is the

characteristic function of an n-ary recursive predicate.

Further examples of undecidable problems are given in Sect. 7.5.

7.1.13 Theorem (Rice). For every n ≥ 1 and F , if ∅ ⊂ F (n) ⊂ PREC(n)

then the problem ϕ
(n)
e ∈ F (n) is undecidable.

Proof. By the method of reduction. First note that from assumptions we
obtain that there is an n-ary partial recursive function f such that

f ∈ F (n) ↔ ∅(n) 6∈ F (n). (1)

Consider an (n + 2)-ary partial function g defined by

g(e, x, ~y) '
{

f(~y) if ϕe(x)↓,
⊥ if ϕe(x)↑.

The g is a partial recursive function since it could be defined explicitly by

g(e, x, ~y) ' I2
1

(
f(~y), ϕe(x)

)
.

By the s-m-n theorem there is a primitive recursive function k(e, x) such that

ϕ
(n)
k(e,x)(~y) ' g(e, x, ~y).

It is easy to see that we have

We(x) → ϕ
(n)
k(e,x) = f (2)

¬We(x) → ϕ
(n)
k(e,x) = ∅(n). (3)

127

By combining the properties (1), (2), and (3) we can conclude that

We(x) ↔ ϕ
(n)
k(e,x) ∈ F (n) ↔ f ∈ F (n).

Now, if f ∈ F (n) then we have

We(x) ↔ ϕ
(n)
k(e,x) ∈ F (n).

Otherwise, if f 6∈ F (n) then we have

¬We(x) ↔ ϕ
(n)
k(e,x) ∈ F (n).

In either case we have found an undecidable problem which can be reduced
to the problem ϕ

(n)
e ∈ F (n) which is undecidable by Lemma 7.1.7. ut

7.1.14 Extensional and non-trivial predicates. We say that an unary
predicate R is extensional if the following holds for every e1 and e2:

ϕe1 = ϕe2 → R(e1) ↔ R(e2).

The predicate R is non-trivial if ∅ ⊂ R ⊂ N.

7.1.15 Corollary of the Rice’s theorem. Every extensional non-trivial
predicate is not recursive.

Proof. Consider a class F of unary partial functions defined as

f ∈ F ↔ ∃e(f = ϕe ∧R(e)
)
.

Clearly F ⊆ PREC(1). By extensionality of R we get

R(e) ↔ ϕe ∈ F (1)

and thus, since R is non-trivial, we obtain ∅ ⊂ F ⊂ PREC(1). By the Rice’s
theorem, the problem ϕe ∈ F is undecidable and thus, by (1), the predicate
R is not recursive. ut

7.1.16 Remark. In the sequel, both the theorem and the corollary will be
referred to simply as the Rice’s theorem.

7.1.17 Application of the Rice’s theorem. As an example we give here
an alternative proof of undecidability of the uniform halting problem for
unary partial recursive functions. It is easy to see that the predicate Tot(e)
is extensional and non-trivial. Now it suffices to apply the corollary of the
Rice’s theorem.

128

7.2 Semidecidable Predicates

7.2.1 Semidecidable predicates. In this section we study an important
class of predicates which are in general undecidable but if they hold then we
can effectively confirm this.

We say that an n-ary predicate R is (positively) semidecidable if there
is an algorithm which, when applied to the input ~x, gives a result iff R(~x)
holds. Note that for any ~x we are able to confirm effectively that R(~x) holds
by computing the algorithm for the input ~x. However, we are not able to
refute R(~x) by this computation because it goes forever. By Turing’s Thesis
semidecidable predicates are exactly predicates which are domains of partially
computable functions. This leads to the following definition.

7.2.2 Semicomputable predicates. An n-ary predicate R is a (positively)
semicomputable predicate if it is the domain of an n-ary partially computable
function f , i.e. the following holds for all ~x: R(~x) ↔ f(~x)↓.

7.2.3 Theorem. Computable predicates are semicomputable predicates.

Proof. If R is an n-ary computable predicate then it is clearly the domain of
the n-ary partially computable function f defined by f(~x) ' µy[R(~x)]. ut

7.2.4 Normal form theorem (Kleene). For every n-ary semicomputable
predicate R there exists a number e such that

R(~x) ↔ ∃y Tn(e, ~x, y). (1)

Proof. If R is an n-ary semicomputable predicate then R(~x) ↔ f(~x)↓ for
a partially computable function f . By the normal form theorem there is a
number e such that f(~x)↓ ↔ ∃y Tn(e, ~x, y) and hence (1) holds. ut

7.2.5 Indices of semicomputable predicates. If e is an index of the n-
ary partially computable function f then the number e is called the index of
the semicomputable predicate defined by R(~x) ↔ f(~x)↓. Note that we then

have R(~x) ↔ W
(n)
e (~x) since f(~x)↓ index⇔ ϕ

(n)
e (~x)↓ ⇔ W

(n)
e (~x).

7.2.6 Theorem. For every n ≥ 1 and e, the W
(n)
e is a semicomputable

predicate such that

W (n)
e (~x) ↔ ∃y Tn(e, ~x, y). (1)

Proof. By definition W
(n)
e (~x) ↔ ϕ

(n)
e (~x)↓ and since, by Thm. 5.2.19, the par-

tial function ϕ
(n)
e is computable, we have that the predicate W

(n)
e semicom-

putable. By Thm. 5.2.19 again we have ϕ
(n)
e (~x)↓ ↔ ∃y Tn(e, ~x, y) and hence

(1) holds. ut

129

7.2.7 Enumeration of classes of predicates. Given a number n ≥ 1 and
a class F , we say that an (n + 1)-ary predicate Q(e, ~x) enumerates the class
of n-ary predicates of F if the following holds for every n-ary predicate R:

R ∈ F (n)
∗ ↔ ∃e∀~x(

R(~x) ↔ Q(e, ~x)
)
.

7.2.8 Enumeration theorem (Kleene). The (n + 1)-ary predicate W (n)

is semicomputable enumerating the class of n-ary semicomputable predicates.

Proof. The predicate W (n) is semicomputable since it is the domain of the
partial enumeration function ψ(n):

W (n)
e (~x) ⇔ ϕ(n)

e (~x)↓ ⇔ ψ(n)(e, ~x)↓ .

We have to show that W (n) enumerates the class of n-ary semicomputable
predicates. If R is an n-ary semicomputable predicate then by the normal
form theorem there is a number e such that R(~x) ↔ ∃y Tn(e, ~x, y). Now it
suffices to apply 7.2.6(1) whereby we obtain that R = W

(n)
e . The reverse

direction that every W
(n)
e is a semicomputable predicate follows from the

first part of Thm. 7.2.6. ut

7.2.9 Corollary. A predicate is semicomputable iff it has an index.

Proof. Directly from the enumeration theorem. ut

7.2.10 Theorem (Post). A predicate R is computable iff both R and its
complement Rc are semicomputable predicates.

Proof. If R is a computable predicate then its complement Rc is computable
and thus, by Thm. 7.2.3, both predicates are semicomputable.

Vice versa, if R and Rc are n-ary semicomputable predicates then, by the
normal form theorem, there are numbers e1 and e2 such that

R(~x) ↔ ∃y Tn(e1, ~x, y)
Rc(~x) ↔ ∃y Tn(e2, ~x, y).

Consider an n-ary computable function f defined by regular minimalization:

f(~x) = µy[Tn(e1, ~x, y) ∨ Tn(e2, ~x, y)].

We derive R as a computable predicate by the following explicit definition:

R(~x) ↔ Tn(e1, ~x, f(~x)). ut

7.2.11 Complements of halting problems are not semidecidable. If
the complement of the halting predicate W (n) were semicomputable then, by
the Post’s theorem, the halting predicate W (n) would be computable which,
by Par. 7.1.3, it is not. The same argument can be applied to the diagonal
halting predicate K; that is, its complement Kc is not a semicomputable
predicate.

130

7.2.12 Theorem. Semicomputable predicates are not closed under comple-
ments.

Proof. Directly from the Post’s theorem and Par. 7.2.11. ut

7.2.13 Reducibility lemma. If the predicate R is reducible to Q and Q is
a semicomputable predicate then so is R.

Proof. Suppose that R is an n-ary predicate reducible to an m-ary semi-
computable predicate Q, i.e. we have R(~x) ↔ Q

(
f1(~x), . . . , fm(~x)

)
for some

recursive functions f1, . . . , fm. By definition, the predicate Q is the domain
of an m-ary partially computable function f . We then have

Q
(
f1(~x), . . . , fm(~x)

) ↔ f
(
f1(~x), . . . , fm(~x)

)↓
and thus the predicate R is the domain of the n-ary partially computable
function g explicitly defined by g(~x) ' f

(
f1(~x), . . . , fm(~x)

)
. ut

7.2.14 Corollary. If the complement ¬W (n) of the halting predicate is re-
ducible to Q then Q is not semicomputable.

Proof. Directly from the reducibility lemma and Par. 7.2.11. ut

7.2.15 Auxiliary predicate. For every n ≥ 1, we define the (n + 2)-ary
predicate Sn(e, ~x, k) explicitly as a primitive recursive predicate by

Sn(e, ~x, k) ↔ Cdf n(e) ∧Nm Rdk e
(((
p(~x)q(n)

)))
.

It is easy to see that the predicate satisfies

Sn(e, ~x, k1) ∧ k1 ≤ k2 → Sn(e, ~x, k2)
∃k Sn(e, ~x, k) ↔ ∃y Tn(e, ~x, y).

The predicate Sn(e, ~x, k) can be read as the computation of ϕ
(n)
e (~x) converges

in ≤ k steps. In the sequel we will often abbreviate S1(e, x, k) to S(e, x, k).

7.2.16 The uniform halting problem is not semidecidable. We claim
that the uniform halting problem is not semidecidable; that is, that the pred-
icates Totn are not semicomputable. We use the method of reduction by
providing a computable function k satisfying

¬We(x) ↔ Totn k(e, x) (1)

Consider the (n + 3)-ary partial function f defined by

f(e, x, t, ~y) '
{
⊥ the computation of ϕe(x) converges in ≤ t steps,
0 otherwise.

131

The f is computable since it can be defined from S as a partially computable
function by the following explicit definition:

f(e, x, t, ~y) ' if S(e, x, t) then ∅(n)(~y) else 0.

By the s-m-n theorem there is a computable (in fact primitive recursive)
function k(e, x) such that (~y ≡ y1, . . . , yn):

ϕ
(n)
k(e,x)(~y) ' f(e, x, y1, ~y).

It is easy to see that

We(x) → ϕ
(n)
k(e,x) is finite

¬We(x) → ϕ
(n)
k(e,x) = Z.

From this the property (1) follows. By the corollary of Thm. 7.2.13, the
predicate Totn is not semicomputable.

7.2.17 Theorem (Rice-Shapiro). For every n ≥ 1 and every class F of
n-ary partially computable functions, if the problem ϕ

(n)
e ∈ F is semidecidable

then the following holds for every n-ary partially computable function f :

f ∈ F iff there is a finite θ ⊆ f such that θ ∈ F . (1)

Proof. Take any n-ary partially computable function f ∈ F . We wish to find
a finite θ ⊆ f such that θ ∈ F holds. Consider the (n + 3)-ary partially com-
putable function g defined by

g(e, x, t, ~y) '
{
⊥ the computation of ϕe(x) converges in ≤ t steps,
f(~y) otherwise.

By the s-m-n theorem there is a primitive recursive function k(e, x) such that
ϕ

(n)
k(e,x)(~y) ' g(e, x, y1, ~y). It is easy to see that ϕ

(n)
k(e,x) ⊆ f and

We(x) → ϕ
(n)
k(e,x) is finite

¬We(x) → ϕ
(n)
k(e,x) = f.

Now if ϕ
(n)
k(e,x) were not in F then we would have

¬We(x) ↔ ϕ
(n)
k(e,x) ∈ F (n)

and thus the predicate ¬We(x) would be semicomputable which it is not. So
it must be the case ϕ

(n)
k(e,x) ∈ F and it suffices to take ϕ

(n)
k(e,x) for θ.

132

Vice versa, if θ ∈ F is finite such that θ ⊆ f for an n-ary partially com-
putable function f we wish to show that f ∈ F . Consider the (n + 2)-ary
partially computable function g defined by

g(e, x, ~y) '
{

f(~y) if θ(~y)↓ or ϕe(x)↓,
⊥ otherwise.

By the s-m-n theorem there is a primitive recursive function k(e, x) such that
ϕ

(n)
k(e,x)(~y) ' g(e, x, ~y). It is easy to see that we have

We(x) → ϕ
(n)
k(e,x) = f

¬We(x) → ϕ
(n)
k(e,x) = f | dom(θ) = θ.

Now if f were not in F then we would have

¬We(x) ↔ ϕ
(n)
k(e,x) ∈ F (n)

and thus the predicate ¬We(x) would be semicomputable which it is not. So
it must be the case f ∈ F . ut

7.2.18 Application of the Rice-Shapiro’s theorem. We apply the pre-
vious theorem to show that the equivalence problem ϕ

(n)
e = g for n-ary par-

tially computable functions is not semidecidable. Let F be the set of all n-ary
partially computable functions ϕ

(n)
e such that ϕ

(n)
e ∈ F ↔ ϕ

(n)
e = g. Clearly

F = {g}. It is easy to see that F does not satisfy the property 7.2.17(1).
Indeed, either g is finite and then the (←)-direction of the property does not
hold, or the domain of g is infinite and then the F violates (→)-direction of
the property. Thus, by the Rice-Shapiro’s theorem, the problem ϕ

(n)
e ∈ F is

not semidecidable and so is the equivalence problem ϕ
(n)
e = g.

7.2.19 Alternative characterization of semidecidable predicates. In
the next theorem we give two characterization of semicomputable predicates.
The first one is by existential projections of decidable predicates; the second
by predicates which can be effectivelly enumerate by recursive functions.

7.2.20 Σ1-predicates. An n-ary predicate R is a Σ1-predicate if R is the
existential projection of an (n+1)-ary recursive predicate Q, i.e. the following
holds for all ~x:

R(~x) ↔ ∃y Q(y, ~x).

7.2.21 Recursively enumerable predicates. An n-ary predicate R is a
recursively enumerable predicate if it is empty or if it can be enumerated by
a unary recursive function f , i.e. the following holds for all ~x:

R(~x) ↔ ∃y f(y) = (~x).

133

7.2.22 Theorem. The following classes are equivalent:

(i) semicomputable predicates,
(ii) Σ1-predicates,
(iii) recursively enumerable predicates.

Proof. If R is an n-ary semicomputable predicate then by the normal form
theorem there is a number e such that R(~x) ↔ ∃y Tn(e, ~x, y). Let Q be an
(n + 1)-ary predicate defined explicitly as a primitive recursive predicate by
Q(y, ~x) ↔ Tn(e, ~x, y). We then have R(~x) ↔ ∃y Q(y, ~x) and thus R is a Σ1-
predicate.

Let R be an n-ary Σ1-predicate, i.e. we have R(~x) ↔ ∃y Q(y, ~x) for some
recursive predicate Q. If R is empty then there is nothing to prove. Otherwise,
there are numbers ~x0 such that R(~x0) holds. We define a unary function f
explicitly as a recursive function by:

f(z) = (~x) ← z = y, (~x) ∧Q(y, ~x)
f(z) = (~x0) ← ¬∃y∃~x(

z = y, (~x) ∧Q(y, ~x)
)
.

We claim that f enumerates R, i.e. that we have R(~x) ↔ ∃z f(z) = (~x). If
R(~x) holds then we have Q(y, ~x) for some y and it suffices to take z = y, (~x).
Vice versa, if f(z) = (~x) then we have to show that R(~x) holds. Consider two
cases. Either there is a number y such that z = y, (~x) and Q(y, ~x) holds and
then also R(~x) holds. If there is no such number then f(z) = (~x0) = (~x) and
we have R(~x) by the selection of ~x0.

Let R be an n-ary recursively enumerable predicate. If R is empty then
it is trivially semicomputable since it is the domain of the nowhere defined
partially computable function ∅(n). Otherwise, there is a unary recursive func-
tion f enumerating R, i.e. R(~x) ↔ ∃y f(y) = (~x). Consider the n-ary partial-
ly computable function g defined by g(~x) ' µy[f(y) = (~x)]. We clearly have
R(~x) ↔ g(~x)↓ and thus R is a semicomputable predicate. ut

7.2.23 The uniform halting problem is not semidecidable (2nd
proof). We give here an alternative proof of the fact that the uniform halt-
ing predicates Totn are not semicomputable predicates. The proof is based
on the characterization of semicomputable predicates by recursive enumer-
ability.

So suppose, by contradiction, that the predicate Totn is semicomputable.
Then by Thm. 7.2.22 there is a recursive function k enumerating Totn, i.e. we
have Totn(e) ↔ ∃y k(y) = e. Consider (n+1)-ary partially computable func-
tion f explicitly defined by f(y, ~x) ' ϕ

(n)
k(y)(~x). The f is total since k(y) are

indices of (total) computable functions for all y. Consequently, the n-ary func-
tion g explicitly defined by g(x1, . . . , xn) = f(x1, x1, . . . , xn) is computable.
Then there is a number y0 such that k(y0) is an index of g. We obtain a
contradiction as follows (~y0 ≡ y0, . . . , y0):

g(~y0)
def= f(y0, ~y0)

def' ϕ
(n)
k(y0)

(~y0) + 1
index' g(~y0) + 1.

134

7.2.24 Σ1-formulas. Σ1-formulas are formulas constructed from atomic
formulas: τ1 < τ2, τ1 ≤ τ2, τ1 > τ2, τ1 ≥ τ2, τ1 = τ2, τ1 6= τ2, and Q(~τ) by
propositional connectives ∧ and ∨, by bounded quantification, and by ex-
istential quantification. The terms of bounded formulas are composed from
variables and constant symbols by applications of (total) functions.

7.2.25 Explicit definitions of predicates with Σ1-formulas. Explicit
definitions of predicates with Σ1-formulas are of a form

R(~x) ↔ φ[~x], (1)

where φ is a Σ1-formula with at most the indicated n-tuple of variables free
and without any application of the predicate symbol R.

7.2.26 Lemma. If Q, Q1, and Q2 are semicomputable predicates and every
term below contains only applications of computable functions then each of
the following definition defines a semicomputable predicate:

R(~x) ↔ Q(~τ [~x]) (1)
R(~x) ↔ ∃y Q(y, ~x) (2)
R(~x) ↔ Q1(~x) ∧Q2(~x) (3)
R(~x) ↔ Q1(~x) ∨Q2(~x) (4)
R(~x) ↔ ∃y ≤ τ [~x] Q(y, ~x) (5)
R(~x) ↔ ∀y ≤ τ [~x] Q(y, ~x). (6)

Proof. Suppose that the n-ary predicate R is defined by (1) from an m-ary
semicomputable predicate Q. By definition the predicate Q is the domain of
an m-ary partially computable function f . We then have Q(~τ) ↔ f(~τ)↓ and
thus the predicate R is the domain of the n-ary partially computable function
g explicitly defined by g(~x) ' f(~τ [~x]).

Suppose that the n-ary predicate R is defined by the existential projection
(2) of an (n + 1)-ary semicomputable predicate Q. By Thm. 7.2.22 we have

Q(y, ~x) ↔ ∃z Q1(z, y, ~x) (7)

for some recursive predicate Q1. We further have

R(~x)
(2)⇔ ∃y Q(y, ~x)

(7)⇔ ∃y∃z Q1(z, y, ~x)
(∗)⇔ ∃w Q1(T (w),H(w), ~x). (8)

The step marked by (∗) is called contraction of quantifiers. Consider now an
(n + 1)-ary recursive predicate R1 explicitly defined by

R1(w, ~x) ↔ Q1(T (w), H(w), ~x).

From (8) we can see that R(~x) ↔ ∃w R1(w, ~x) holds. The predicate R thus
is a Σ1-predicate and hence, by Thm. 7.2.22, a semicomputable predicate.

135

Suppose that the n-ary predicate R is defined by disjunction (4) of n-ary
semicomputable predicates Q1 and Q2. By Thm. 7.2.22 we have

Q1(~x) ↔ ∃y P1(y, ~x) (9)
Q2(~x) ↔ ∃y P2(y, ~x) (10)

for some recursive predicates P1 and P2. We further have

R(~x)
(4)⇔ Q1(~x) ∨Q2(~x)

(9), (10)⇔ ∃y P1(y, ~x) ∨ ∃y P1(y, ~x) ⇔
⇔ ∃y1∃y2

(
P1(y1, ~x) ∨ P2(y2, ~x)

)
.

(11)

Consider now an (n + 2)-ary recursive predicate P explicitly defined by

P (y2, y1, w, ~x) ↔ P1(y1, ~x) ∨ P2(y2, ~x).

From (11) we can see that R(~x) ↔ ∃y1∃y2 P (y2, y1, ~x). Now it suffices to apply
(2) and Thm. 7.2.22 and we obtain that R is a semicomputable predicate.

Suppose that the n-ary predicate R is defined by the universal bound-
ed quantification (6) of an (n + 1)-ary semicomputable predicate Q. By
Thm. 7.2.22 we have

Q(y, ~x) ↔ ∃z Q1(z, y, ~x) (12)

for some recursive predicate Q1. We further have

R(~x)
(6)⇔ ∃y ≤ τ Q(y, ~x)

(12)⇔ ∃y ≤ τ∃z Q1(z, y, ~x) ⇔
⇔ ∃z∃y ≤ τ Q1((z)y, y, ~x).

(13)

Consider now an (n + 1)-ary recursive predicate R1 explicitly defined by

R1(z, ~x) ↔ ∃y ≤ τ Q1((z)y, y, ~x).

From (13) we can see that R(~x) ↔ ∃z R1(z, ~x) holds. The predicate R thus
is a Σ1-predicate and hence, by Thm. 7.2.22, a semicomputable predicate.

The remaining cases are similar and left to the reader. ut

7.2.27 Theorem. Semicomputable predicates are closed under explicit de-
finitions of predicates with Σ1-formulas.

Proof. We show that semicomputable predicates are closed under explicit
definitions of n-ary predicates with Σ1-formulas of a form R(~x) ↔ φ[~x] by
induction on the structure of φ.

If φ is one of τ1 ≤ τ2, τ1 < τ2, τ1 ≥ τ2, τ1 > τ2, τ1 = τ2, or τ1 6= τ2 then R is
computable and hence, Thm. 7.2.3, a semicomputable predicate. If φ ≡ Q(~τ)
then the claim follows from Lemma 7.2.26.

136

If φ ≡ φ1 ∧ φ2 we obtain two auxiliary n-ary semicomputable predicates
Q1(~x) ↔ φ1[~x] and Q2(~x) ↔ φ2[~x] by IH. We have R(~x) ↔ Q1(~x) ∧Q2(~x)
and it suffices to use Lemma 7.2.26.

If φ ≡ ∃y ≤ τ ψ we use IH and define an (n+1)-ary semicomputable pred-
icate Q by: Q(y, ~x) ↔ ψ[y, ~x]. We have R(~x) ↔ ∃y ≤ τ Q(y, ~x) and it suffices
to use Lemma 7.2.26.

If φ ≡ ∃y ψ we use IH and define an (n+1)-ary semicomputable predicate
Q by explicit definition: Q(y, ~x) ↔ ψ[y, ~x]. We have R(~x) ↔ ∃y Q(y, ~x) and
it suffices to use Lemma 7.2.26.

The remaining cases are similar and left to the reader. ut

7.2.28 Arithmetic Σ1-formulas and Σ1-definable predicates. Arith-
metic Σ1-formulas are Σ1-formulas containing only applications of the suc-
cessor function x + 1, addition x + y, and multiplication x · y. Predicates
defined by arithmetic Σ1-formulas are called Σ1-definable predicates.

7.2.29 Lemma. If the graph of a function is a Σ1-definable predicate then
so is its complement.

Proof. Suppose that an arithmetic Σ1-formula φ[~x, y] defines the graph of an
n-ary function f . We have

f(~x) 6³ y
(∗)⇔ ∃z(z 6= y ∧ f(~x) ³ z) ⇔ ∃z(z 6= y ∧ φ[~x, z]).

Thus the last formula is an arithmetic Σ1-formula defining the complement
of the graph of f . Note that in the step marked by (∗) the assumption about
totality of f is crucial; the lemma does not generalise to partial functions. ut

7.2.30 Lemma. Graphs of recursive functions are Σ1-definable predicates.

Proof. Recall that by Thm. 5.3.29 recursive functions are exactly µa-recursive
functions. The latter is the class of functions generated from the identity
functions In

i (~x) = xi, the multiplication function x · y, and from the charac-
teristic function x <∗ y of the less than predicate x < y by composition and
regular minimalization of functions. So it suffices to show that the graphs of
µa-recursive functions are Σ1-definable predicates.

We prove the claim by induction on construction of µa-recursive functions.
That the graphs of the initial µa-recursive functions are Σ1-definable can be
seen from the following equivalences:

In
i (~x) ³ y ↔ y = xi

x1 · x2 ³ y ↔ y = x1 · x2

(x1 <∗ x2) ³ y ↔ x1 < x2 ∧ y = 1 ∨ x1 ≥ x2 ∧ y = 0.

Suppose now that a µa-recursive function f is obtained by the compo-
sition f(~x) = h(g1(~x), . . . , gm(~x)) of µa-recursive functions. By IH there are

137

arithmetic Σ1-formulas φh[~z, y], φg1 [~x, z1], . . . , φgm [~x, zm] defining the graphs
of the corresponding functions. We then have (~z ≡ z1, . . . , zm):

f(~x) ³ y ⇔ ∃~z(
m∧

i=1

gi(~x) ³ zi ∧ h(~z) ³ y) ⇔ ∃~z(
m∧

i=1

φgi
[~x, zi] ∧ φh[~z, y])

and therefore the last formula is an arithmetic Σ1-formula defining the graph
of the function f .

Suppose finally that a µa-recursive function f is obtained by the reg-
ular minimalization f(~x) = µy[g(y, ~x) = 1] of a µa-recursive function g. By
IH there is an arithmetic Σ1-formula φ[y, ~x, z] defining the graph of g. By
Lemma 7.2.29, there is an arithmetic Σ1-formula φc[y, ~x, z] defining the com-
plement of the graph of g. We have

f(~x) ³ y ⇔ g(y, ~x) ³ 1 ∧ ∀z < y g(z, ~x) 6³ 1 ⇔ φ[y, ~x, 1] ∧ ∀z < y φc[z, ~x, 1]

and therefore the last formula is an arithmetic Σ1-formula defining the graph
of the function f . ut

7.2.31 Theorem. Semicomputable predicates are exactly Σ1-definable pred-
icates.

Proof. By Thm. 7.2.27 every Σ1-definable predicate is semicomputable. Vice
versa, if R(~x) is an n-ary semicomputable predicate then, by Thm. 7.2.22, it
is the existential projection of some (n + 1)-ary recursive predicate Q(y, ~x).
By Lemma 7.2.30, the graph of the characteristic function Q∗ of Q is
Σ1-definable, i.e. we have Q∗(y, ~x) = z ↔ φ[y, ~x, z] for some arithmetic Σ1-
formula φ[y, ~x, z]. Note that we then have

R(~x) ⇔ ∃y Q(y, ~x) ⇔ ∃y Q∗(y, ~x) = 1 ⇔ ∃y φ[y, ~x, 1]

and thus the arithmetic Σ1-formula ∃y φ[y, ~x, 1] defines the predicate R. ut

7.3 Arithmetical Hierarchy

See the section 7.2 in [Vod00].

7.4 Degrees of Unsolvability

7.5 Exercises

Decidable and Undecidable Predicates

7.5.1 Exercise. Show without the use of the Rice’s theorem that the fol-
lowing problems are undecidable:

138

(i) Given n ≥ 1, the problem of deciding, for any e, whether ϕ
(n)
e has a

non-empty domain.
(ii) Given n ≥ 1, the problem of deciding, for any e, whether the domain of

ϕ
(n)
e is empty.

(iii) Given n ≥ 1, the problem of deciding, for any e, whether ϕ
(n)
e has an

infinite domain.
(iv) Given n ≥ 1, the problem of deciding, for any e1 and e2, whether

dom(ϕ(n)
e1) = dom(ϕ(n)

e2).

Semidecidable Predicates

Arithmetical Hierarchy

Degrees of Unsolvability

139

140

GKP89

[Ack28] W. Ackermann. Zum Hilbertschen Aufbau der reellen Zahlen. Mathema-
tische Annalen, 99:118–133, 1928.

[Ben62] J. H. Bennett. On Spectra. PhD thesis, Princeton University, 1962.
[BJ74] G. S. Boolos and R. C. Jeffrey. Computability and Logic. Cambridge Uni-

versity Press, 1974.
[Dav58] M. Davis. Computability and Unsolvability. McGraw-Hill, 1958.
[GKP89] R. L. Graham, D. F. Knuth, and O. Patashnik. Concrete Mathematics.

Addison Wesley, 1989.
[Her65] H. Hermes. Enumerability, Decidability, Computability. Springer Verlag,

1965.
[HP93] P. Hájek and P. Pudlák. Metamathematics of First-Order Arithmetic.

Springer Verlag, 1993.
[Kle36] S. C. Kleene. General recursive functions of natural numbers. Mathema-

tische Annalen, 112:727–742, 1936.
[Kle52] S. C. Kleene. Introduction to Metamathematics. Wolters-Noordhoff and

North-Holland, 1952.
[KV01] J. Komara and P. J. Voda. Metamathematics of Computer Pro-

gramming, 2001. Unpublished manuscript. Available through WWW from
http://dent.ii.fmph.uniba.sk/∼komara/meta.ps.gz.

[Pét35] R. Péter. Konstruktion nichtrekursiver Funktionen. Mathematische An-
nalen, 111:42–60, 1935.

[Pét36] R. Péter. Über die mehrfache Rekursion. Mathematische Annalen, 113:489–
527, 1936.

[Pét67] R. Péter. Recursive Functions. Academic Press, 1967.
[Rob49] J. Robinson. Definability and decision problems in arithmetic. Journal of

Symbolic Logic, 14:98–114, 1949.
[Ros82] H. E. Rose. Subrecursion: Functions and Hierarchies. Number 9 in Oxford

Logic Guides. Clarendon Press, Oxford, 1982.
[Sho67] J. R. Shoenfield. Mathematical Logic. Addison-Wesley, 1967.
[Smu61] R. M. Smullyan. Theory of Formal Systems. Princeton University Press,

1961.
[Smu92] R. M. Smullyan. Gödel’s Incompleteness Theorems. Oxford Logic Guides.

Oxford University Press, 1992.
[Tai61] W. W. Tait. On nested recursion. Mathematische Annalen, 143:236–250,

1961.
[Tur36] A. M. Turing. On computable numbers, with an application to the Ent-

scheidungsproblem. In Proc. London Math. Soc., volume 42 of 2, pages 230–265,
1936.

[Vod95] P. J. Voda. Subrecursion as a basis for a feasible programming language.
In L. Pacholski and J. Tiuryn, editors, Proceedings of CSL’94, number 933 in
LNCS, pages 324–338. Springer Verlag, 1995.

[Vod00] P. J. Voda. Theory of Recursive Functions & Computability (from
Computer Programmer’s View), 2000. Available through WWW from
http://dent.ii.fmph.uniba.sk/∼voda/text.ps.gz.

142

Index of Notation

N . . . 1.2.1
τ, ρ . . . 1.2.2
τ1 ≡ τ2 . . . 1.2.2
‖τ‖ . . . 1.2.2
Ds(τ1, τ2, τ3) . . . 1.2.2
if τ1 6= 0 then τ2 else τ3 . . . 1.2.2
~x . . . 1.2.2
~τ . . . 1.2.2
τ [f ; ~x] . . . 1.2.3
τ [g; ~ρ] . . . 1.2.3
τ [λ̇~y.ρ[~y]; ~x] . . . 1.2.3
φ, ψ, χ . . . 1.2.4
φ1 ≡ φ2 . . . 1.2.2
> . . . 1.2.4
⊥ . . . 1.2.4
¬φ . . . 1.2.4
φ1 ∧ φ2 . . . 1.2.4
φ1 ∨ φ2 . . . 1.2.4
φ1 → φ2 . . . 1.2.4
φ1 ↔ φ2 . . . 1.2.4
∃xφ . . . 1.2.4
∀xφ . . . 1.2.4
τ1 6= τ2 . . . 1.2.4
∀φ . . . 1.2.4
∃x≤ τ φ . . . 1.2.4
∀x≤ τ φ . . . 1.2.4
∃x < τ φ . . . 1.2.4
∀x < τ φ . . . 1.2.4∧

i φi . . . 1.2.4∨
i φi . . . 1.2.4

∃~xφ . . . 1.2.4
∀~xφ . . . 1.2.4
x .− y . . . 1.2.5
x÷ y . . . 1.2.6

x mod y . . . 1.2.6
S(x) . . . 1.2.7
x + 1 . . . 1.2.7
x .− 1 . . . 1.2.7
In
i (~x) . . . 1.2.8

I(x) . . . 1.2.8
Cn

m(~x) . . . 1.2.9
Cm(x) . . . 1.2.9
Z(x) . . . 1.2.9
D(x, y, z) . . . 1.2.10
¬∗x . . . 1.2.11
x ∧∗ y . . . 1.2.11
x ∨∗ y . . . 1.2.11
x→∗ y . . . 1.2.11
x↔∗ y . . . 1.2.11
gn(x) . . . 1.2.12, 3.1.23
Rc(~x) . . . 1.2.13
R∗(~x) . . . 1.2.13
x =∗ y . . . 1.2.13
x 6=∗ y . . . 1.2.13
x≤∗ y . . . 1.2.13
x <∗ y . . . 1.2.13
x≥∗ y . . . 1.2.13
x >∗ y . . . 1.2.13
(x, y) . . . 1.3.2, 1.3.8
|x|p . . . 1.3.6
J(x, y) . . . 1.3.7
H(x) . . . 1.3.9
T (x) . . . 1.3.9
σ(n) . . . 1.3.11
C(n) . . . 1.3.11
〈f〉(x) . . . 1.3.14
〈R〉(x) . . . 1.3.14
(~τ) . . . 1.3.15

∅(n) . . . 1.4.1
f(~x) ³ y . . . 1.4.2
f1 ⊆ f2 . . . 1.4.4⋃

i fi . . . 1.4.4
τ ³ v . . . 1.4.5
τ ↓ . . . 1.4.5
τ ↑ . . . 1.4.5
τ1 ' τ2 . . . 1.4.7
F ,G,H, I . . . 2.1.1
P . . . 2.1.1
F (n) . . . 2.1.1
F∗ . . . 2.1.1
O(f1, . . . , fn) . . . 2.1.2
µy≤z[g(y, ~x) = 1] . . . 2.2.8
µy≤τ [~x][φ[~x, y]] . . . 2.2.9
x ≺ y . . . 2.3.15
x Â y . . . 2.3.15
L . . . 2.3.8
fn . . . 2.3.8
λn.τ . . . 2.3.8
gn

i . . . 2.3.8
I(gn

i) . . . 2.3.9
~x . . . 2.3.10
τ Bk ρ . . . 2.3.11
τ B≤k ρ . . . 2.3.11
τ B ρ . . . 2.3.11
τ [[f]µ,≺

~x ; ~x] . . . 2.3.17
Γ τ

ρ . . . 2.3.21
δρ . . . 2.3.23
dλn.τ (z) . . . 2.3.23
α, β . . . 2.4.6

D~~δ
~ρ(φ1, β1, . . . , φm, βm) . . . 2.4.6

α ³ v . . . 2.4.6
case . . . φ ⇒~y β . . . end . . . 2.4.7
otherwise . . . 2.4.7
let τ = y in β[y] . . . 2.4.16
α? . . . 2.4.17
‖α‖ . . . 2.4.22
Γα

β . . . 2.4.22
φ ← ψ . . . 2.4.23
PRIMREC . . . 3.1.2
PRIMREC(F) . . . 3.1.2
xy . . . 3.1.16
Ro(x) . . . 3.2.4

∑
i<x C(i) · C(z .− i) . . . 3.2.5

(x)i . . . 3.2.8
L(x) . . . 3.2.9
f . . . 3.2.10
x⊕ y . . . 3.2.15
g(n, i, x) . . . 3.3.1
xi . . . 3.3.2
0 . . . 3.3.2
S(t) . . . 3.3.2
Pr(t) . . . 3.3.2
Ds(t1, t2, t3) . . . 3.3.2
t1 • t2 . . . 3.3.2
e[[[ts]]] . . . 3.3.2
fn . . . 3.3.2
λn. τ . . . 3.3.2
gn

i . . . 3.3.2
pτq . . . 3.3.2
Nm(t) . . . 3.3.3
pxq . . . 3.3.3
Dc(t) . . . 3.3.3
Dcs(ts) . . . 3.3.3
t1 • t2 . . . 3.3.4
t[[[e; rs]]] . . . 3.3.5
Pn(t) . . . 3.3.6
Dn(t1, t2, t3) . . . 3.3.6
Rdg(t) . . . 3.3.7
Tp(n, x) . . . 3.3.16
[x]ni . . . 3.3.16
x #n y . . . 3.3.16
Nms(ts) . . . 3.3.17
Tm(t, rs, n) . . . 3.3.17
Cdf n(e) . . . 3.3.17
Ar(e) . . . 3.3.17
pxq(n) . . . 3.3.18
t •n rs . . . 3.3.18
e(ts) . . . 3.3.18
An(x) . . . 3.4.2
x <lex y . . . 5.1.1
A(n, x) . . . 5.1.2
Compn

m(h, g1, . . . , gm) . . . 5.1.4
Recn(g, h) . . . 5.1.4
PRn . . . 5.1.4
PR . . . 5.1.4
fN . . . 5.1.4

144

S . . . 5.1.5
Z . . . 5.1.5
I n

i . . . 5.1.5
Compn

m(h, gs) . . . 5.1.5
g, gs . . . 5.1.5
Recn(g, h) . . . 5.1.5
pfq . . . 5.1.5
{e}p(x) . . . 5.1.6
Ue(x) . . . 5.1.6
REC . . . 5.2.1
PREC . . . 5.2.1
REC(F) . . . 5.2.1
PREC(F) . . . 5.2.1
µy[g(y, ~x) ' 1] . . . 5.2.7
µy[g(y, ~x) = 1] . . . 5.2.7
µy[φ[~x, y]] . . . 5.2.9
Tn(e, ~x, y) . . . 5.2.12
T(e, ~x, y) . . . 5.2.12
U(y) . . . 5.2.12
ϕ

(n)
e (~x) . . . 5.2.18

ϕe(x) . . . 5.2.18
ψ(n)(e, ~x) . . . 5.2.20
ψ(e, x) . . . 5.2.20
pIn

i q . . . 5.2.25
pIq . . . 5.2.25
pCn

mq . . . 5.2.26
pCmq . . . 5.2.26
pZq . . . 5.2.26
p∅(n)q . . . 5.2.27
p∅q . . . 5.2.27
e(n) . . . 5.2.28
e1 ◦ e2 . . . 5.2.29
Cn

m(e0, e1, . . . , em) . . . 5.2.30
e/x . . . 5.2.31
sm

n (e, x1, . . . , xm) . . . 5.2.32
kn(e) . . . 5.2.36
rn(e) . . . 5.2.36
µREC . . . 5.3.3
µPREC . . . 5.3.3
x | y . . . 5.3.21
Pow2(x) . . . 5.3.22
(x)[k]

i . . . 5.3.26

f(x, ~y) k= z . . . 5.3.27
k(x, ~y) . . . 5.3.27

Seq(k, s, x, ~y) . . . 5.3.27
b, e . . . 6.1.2
δ : Q× S 7→ Q× S ×∆ . . . 6.1.2
0,1 . . . 6.1.2
H,J, I . . . 6.1.2
0∞ . . . 6.1.2
1x . . . 6.1.3
S

(p)
i . . . 6.2.1

(in−1 in−2 . . . i1 i0)p . . . 6.2.1
|x|p . . . 6.2.2
x #p y . . . 6.2.3
m(q, s) . . . 6.2.5
pwq(l) . . . 6.2.6
pwq(r) . . . 6.2.6
M(c) . . . 6.2.8
M∗(c) . . . 6.2.9
p1xq(r) . . . 6.2.10
Ones(w) . . . 6.2.10
Enc1(n, x) . . . 6.2.11
Enc(n, x) . . . 6.2.11
Dc(c) . . . 6.2.12
W

(n)
e (~x) . . . 7.1.2

We(x) . . . 7.1.2
K(x) . . . 7.1.4
Totn(e) . . . 7.1.11
Tot(e) . . . 7.1.11

145

Index

atom, 4

blank symbol, 113
body of clause, 46
boolean function, 3
bounded
– minimalization, 19
bounded formula, 18
bounded quantifier, 2
– strict, 2
bounded recursion, 31

Cantor G., 6
case discrimination function, 3
Catalan function, 9
chain of functions, 13
characteristic function, 3
characterization theorem
– definitions of functions with bounded

minimalization, 21
– explicit definitions of partial

functions, 20
– explicit definitions of predicates with

bounded formulas, 20
– generalized explicit definitions of

functions, 45
– generalized regular recursive

definitions of functions, 45
class
– inductively generated, 15
– of functions, 15
clausal definition
– explicit, 47
– of function, 47
– predicate form, 48
– recursive, 47
clausal form, 47
clause, 46
– body of, 46
– head of, 46
– initial, 47

– non-terminal, 46
– terminal, 46
closure under operations, 15
complement, 3
completeness condition, 41
completion
– of partial function, 12
composition, 17
condition of regularity, 33
conditional
– generalized, 41
– operator, 17
– simple, 1
conjunction
– boolean function, 3
– propositional connective, 2
constant
– function, 2
constructor
– pair, 40
continuous graph, 23
contraction
– of function, 11
– of predicate, 11
– of redex, 26
convergence, 14

decidable predicate, 121
default clause, 48
defined function symbol, 25
definition
– explicit of function, 18
– explicit of partial function, 17
– explicit of predicate
– – with bounded formula, 18
– generalized explicit of function, 45
– generalized regular recursive, 45
– of functions with bounded

minimalization, 19
– recursive of function, 24
denotational semantics, 27

146

destructor of pattern, 39
disjointness condition, 41
disjunction
– boolean function, 3
– propositional connective, 2
divergence, 14

effective computability, 113
enumeration
– of binary trees, 8
equivalence
– boolean function, 3
– propositional connective, 2
existential
– quantifier, 2
explicit
– definition of function, 18
– definition of partial function, 17
– definition of predicate
– – with bounded formula, 18
– generalized definition of function, 45
extensionality
– of terms, 14

falsehood, 2
formula, 2
– bounded, 18
– universal closure, 2
function, 1
– boolean, 3
– characteristic, 3
– equation, 22
– graph, 3
– increasing, 75
– initial, 15
– limited by h, 77
– operator, 15
– partial, 12
– partially Turing computable, 115
– total, 12

generalized conditional, 41
– assignment, 44
– dichotomy discrimination, 42
– discrimination on constants, 43
– equality tests, 42
– monadic discrimination, 43
– negation discrimination, 42
– pair constructor discrimination, 44
– pair discrimination, 43
– trichotomy discrimination, 42
generalized term, 40
– translation of, 44
governing condition, 32

graph
– continuous, 23
– monotone, 22
– of function, 3
– of partial function, 12
– of terms, 13

head of clause, 46

identity function, 2
implication
– boolean function, 3
– propositional connective, 2
increasing function, 75
index, 16
induction
– on construction of functions, 16
– pair, 4
inductively generated class, 15
initial
– functions, 15
– state, 113
initial clause, 47
input variable, 38
integer division, 2
intensionality
– of terms, 14
interpretation, 13
– standard of recursive terms, 25
– – total, 25
iteration of function, 3

language of recursive terms, 25
limited functions, 77

measure, 31
mention of terms, 14
minimalization
– bounded
– – definition, 19
– – operator, 19
modified subtraction, 2
monadic
– successor function, 2
monadic pattern, 39
monotone
– graph, 22

negation
– boolean function, 3
– propositional connective, 2
noetherian relation, 30
non-strict identity, 14
non-terminal clause, 46

147

numeral
– pair, 5

operational semantics, 27
operator
– of bounded minimalization, 19
– of composition, 17
– of conditional, 17
– over functions, 15
oracle
– function symbol, 25
– partial function, 25
output variable, 38

pair
– induction, 4
– numeral, 5
– recursion, 5
– representation, 5
– size function, 5
pair constructor, 40
– tag, 40
pair constructor pattern
– constant, 40
– functional, 40
pair pattern, 39
pairing
– function, 4
– function Cantor’s, 6
– function suitable, 8
– property, 4
parameterless
– pair recursion, 5
partial
– denotation, 13
– function, 12
pattern, 38
– destructor of, 39
– monadic, 39
– pair, 39
– pair constructor
– – constant, 40
– – functional, 40
– recognizer of, 38
– uniqueness condition, 38
precedence, 2
predecessor function, 2
predicate
– decidable, 121
predicate form of clausal definition, 48
predicates, 3
projection, 4
– functions, 8

propositional connectives, 2

quantifier
– bounded, 2
– existential, 2
– universal, 2

recognizer of pattern, 38
recursion
– bounded, 31
– pair, 5
– regular, 33
– theorem I, 23
recursive
– definition of function, 24
recursive function symbol
– defined, 25
– oracle, 25
– recursor, 25
recursive term, 25
– closed, 25
– standard interpretation
– – total, 25
– standard interpretation of, 25
recursor, 25
redex, 26
reduction, 26
regular
– generalized recursive definition, 45
– recursion, 33
– recursive definition, 35
relation
– noetherian, 30
– well-founded, 30
remainder, 2
representation
– pair, 5

S-expression, 4
simple conditional, 1
size of term, 1
solution of function equation, 22
special lambda notation, 2
state, 113
substitution
– in terms, 1
successor function, 2

tape, 113
term, 1
– closed, 1
– generalized, 40
– recursive, 25
– simple conditional, 1

148

– special lambda notation, 2
– substitution, 1
terminal
– state, 113
terminal clause, 46
total
– function, 12
– term, 14
transition
– function, 114
translation of generalized terms, 44
true, 2
Turing A., 113
Turing computable function, 115
Turing machine, 113

unfolding, 46
unfolding invariant, 47
universal
– quantifier, 2
universal closure, 2
use of terms, 14

variable
– input, 38
– output, 38

well-founded relation, 30
well-order, 30

zero function, 3

149

