
1.4 Pairing Function and Arithmetization 17

1.4 Pairing Function and Arithmetization

Cantor Pairing Function

1.4.1 Pairing function. The modified Cantor pairing function is a p.r.
function by the following explicit definition:

⟨x, y⟩ =
x+y
∑
i=0

i + 1 + x,

Figure 1.1 shows the initial segment of values of this modified pairing function
of Cantor in tabular form.

⟨x, y⟩ 0 1 2 3 4 5 6 ⋯
0 1 2 4 7 11 16 22 ⋯
1 3 5 8 12 17 23 30 ⋯
2 6 9 13 18 24 31 39 ⋯
3 10 14 19 25 32 40 49 ⋯
4 15 20 26 33 41 50 60 ⋯
5 21 27 34 42 51 61 72 ⋯
6 28 35 43 52 62 73 85 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Fig. 1.1 The modified Cantor pairing function

1.4.2 Basic properties of the pairing function. We have

⟨x1, x2⟩ = ⟨y1, y2⟩→ x1 = y1 ∧ x2 = y2 (1)

x < ⟨x, y⟩ ∧ y < ⟨x, y⟩ (2)

x = 0 ∨ ∃y∃z x = ⟨y, z⟩. (3)

Property (1) is called the pairing property and it says that the function is an
injection. Property (2) is needed for induction and/or recursion. From (2) we
get that 0 ≠ ⟨x, y⟩ for every x and y. This means that 0 is not in the range
of the pairing function and plays the role of the atom nil of Lisp. From this
and (3) we can see that the pairing function is onto the set N∖ {0}, i.e. that
0 is the only atom.

1.4.3 Ordering properties of the pairing function. We have

⟨x1, x2⟩ ≤ ⟨y1, y2⟩↔ x1 + x2 < y1 + y2 ∨ x1 + x2 = y1 + y2 ∧ x1 ≤ y1
⟨x1, x2⟩ < ⟨y1, y2⟩↔ x1 + x2 < y1 + y2 ∨ x1 + x2 = y1 + y2 ∧ x1 < y1.



18 1 Primitive Recursive Functions

1.4.4 Pair representation of natural numbers. The class of pair nu-
merals consists of terms obtained from 0 by finitely many pairing operations.
It can be easily proved by complete induction that every natural number x
can be uniquely presented as a pair numeral. We call this the pair represen-
tation of natural numbers. Pair numerals can be visualized as finite binary
trees.

Zeroes are leaves and a pair numeral ⟨τ1, τ2⟩ is a tree with two sons τ1 and
τ2. Figure 1.2 enumerates the finite binary trees corresponding to the pair
numerals. We will denote by ∣x∣p the number of nodes of the tree correspond-
ing to the pair numeral τ = x. In other words, ∣x∣p is the number of pairing
operations needed to construct the pair numeral τ = x.

In order to obtain a simple recursive characterization of subelementary
complexity classes (such as PTIME) one should use a pairing function such
that ∣x∣p = Ω(lg(x)). The systemCL uses such a function but for the purposes
of this text this requirement is not important and we use a much simpler
pairing function which does not satisfy the requirement.

1.4.5 Projection functions. From the basic properties of the pairing func-
tion we can see that every non-zero number x can be uniquely written in the
form x = ⟨y, z⟩ for some y, z. The numbers y and z are called the first and
the second projection of x, respectively.

The first projection function π1 and second projection π2 are unary func-
tions satisfying

π1(0) = 0 π2(0) = 0
π1⟨x, y⟩ = x π2⟨x, y⟩ = y.

The projection functions are p.r. functions by bounded minimalization:

π1(x) = µy < x[∃z < xx = ⟨y, z⟩] π2(x) = µz < x[∃y < xx = ⟨y, z⟩].

Arithmetization of Tuples

1.4.6 Tuples. In this section we introduce a particular encoding of ordered
n-tuples of natural numbers based on our pairing function ⟨x, y⟩. Our aim is
to assign to each element (x1, . . . , xn) of the Cartesian product Nn a number
⌜(x1, . . . , xn)⌝n, called the code of (x1, . . . , xn), so that different codes are
assigned to different n-tuples. Moreover we would like to have decoding ef-
fective. This means we can effectively decide whether a number is the code of
an n-tuple and if it is, find that tuple. We will use this encoding throughout
the rest of this text.

1.4.7 Arithmetization. Encoding of Cartesian products Nn, where n ≥ 0,
is defined inductively on n as follows:



1.4 Pairing Function and Arithmetization 19

0r 1 = ⟨0, 0⟩r
�� @@

2 = ⟨0, 1⟩r
�� @@r

�� @@

3 = ⟨1, 0⟩r
�� @@r

�� @@

4 = ⟨0, 2⟩r
�� @@r

�� @@r
�� @@

5 = ⟨1, 1⟩r
�� @@r

�� @@
r

��@@

6 = ⟨0, 3⟩r
�� @@r

�� @@r
�� @@

7 = ⟨0, 3⟩r
�� @@r

�� @@r
�� @@

8 = ⟨1, 2⟩r
�� @@r

�� @@
r

��@@r
�� @@

9 = ⟨2, 1⟩r
�� @@r

�� @@r
�� @@

r
��@@

10 = ⟨3, 0⟩r
�� @@r

�� @@r
�� @@

11 = ⟨0, 4⟩r
�� @@r

�� @@r
�� @@r

�� @@

12 = ⟨1, 3⟩r
�� @@r

�� @@
r

�� @@r
�� @@

13 = ⟨2, 2⟩r
�� @@r

�� @@r
�� @@

r
��@@

14 = ⟨3, 1⟩r
�� @@r

�� @@r
��@@

r
��@@

15 = ⟨4, 0⟩r
�� @@r

�� @@r
�� @@r

�� @@

16 = ⟨0, 5⟩r
�� @@r

�� @@r
�� @@

r
��@@

17 = ⟨1, 4⟩

r
�� @@

r
�� @@r

��@@r
�� @@r

�� @@

18 = ⟨2, 3⟩

r
�� @@r

�� @@

r
�

�
�

@
@
@r
�� @@r

��@@

19 = ⟨3, 2⟩

r
�� @@r

�� @@

r
�� @@r

��@@r
�� @@

20 = ⟨4, 1⟩

r
�� @@r

�� @@r
�� @@

r
�� @@r

��@@

21 = ⟨5, 0⟩r
�� @@r

�� @@r
�� @@

r
��@@

22 = ⟨0, 6⟩r
�� @@r

�� @@r
�� @@r

�� @@

Fig. 1.2 Pair representation of natural numbers



20 1 Primitive Recursive Functions

⌜∅⌝0 = 0
⌜x⌝1 = x

⌜(x1, x2, . . . , xn)⌝n = ⟨x1, ⌜(x2, . . . , xn)⌝n−1⟩ if n ≥ 2.

The reader will note that the code of an 1-tuple x is the number itself and the
code of the empty tuple ∅ is the number 0. Note also that ⌜(x, y)⌝2 = ⟨x, y⟩.

The reader will also note that these encodings may overlap. Consider, for
instance, the number 2. We have 2 = ⟨0,1⟩ and 1 = ⟨0,0⟩. Therefore

2 = ⟨0,1⟩ = ⌜(0,1)⌝2

2 = ⟨0,1⟩ = ⟨0, ⟨0,0⟩⟩ = ⟨0, ⌜(0,0)⌝2⟩ = ⌜(0,0,0)⌝3.

Hence, the number 2 is the code both of the ordered pair (0,1) ∈ N2 and the
ordered triple (0,0,0) ∈ N3.

1.4.8 Notational conventions. We will adopt the following conventions
for the pairing function ⟨x, y⟩. We postulate that the pairing operator groups
to the right, i.e. ⟨x, y, z⟩ abbreviates ⟨x, ⟨y, z⟩⟩. If τ⃗ ≡ (τ1, . . . , τn) is an n-tuple
of terms then the term ⟨τ⃗⟩ stands for ⟨τ1, . . . , τn⟩ when n ≥ 2, for τ1 when
n = 1, and for 0 when n = 0. Note that we then have

⌜(x1, . . . , xn)⌝n = ⟨x1, . . . , xn⟩

for every n and every element (x1, . . . , xn) of Nn.

1.4.9 Predicate holding of the codes of tuples. For n ≥ 2, we have

∃x1 . . .∃xn x = ⟨x1, . . . , xn⟩↔ πn−2
2 (x) ≠ 0.

Consequently, the binary predicate Tuple(n,x), which holds when x is the
code of an n-tuple, is primitive recursive by the following explicit definition

Tuple(n,x)↔ n = 0 ∧ x = 0 ∨ n = 1 ∨ n ≥ 2 ∧ πn−2
2 (x) ≠ 0.

1.4.10 Projection function for tuples. The ternary projection function
[x]ni selects the i-th element of the n-tuple coded by x, i.e.

[⟨x1, . . . , xn⟩]ni = xi

for every i = 1, . . . , n. We clearly have

x = ⟨x1, . . . , xn⟩→
n−1
⋀
i=1

xi = π1 πi−1
2 (x) ∧ xn = πn−1

2 (x)

for n ≥ 2. Thus we can define [x]ni explicitly as a p.r. function by



1.4 Pairing Function and Arithmetization 21

[x]ni =D(i ≠∗ n,π1πi�1
2 (x),πn�1

2 (x)).

The projection function satisfies

[x1]11 = x1

[⟨x1, x⟩]n+21 = x1

[⟨x1, x⟩]n+2i+2 = [x]
n+1
i+1 .

1.4.11 Contraction to unary functions. As a simple application of the
arithmetization of n-tuples we obtain the following natural correspondence
between n-ary and unary functions. If f is an n-ary function then its con-
traction is the unary function ⟨f⟩ such that

⟨f⟩(x) =
⎧⎪⎪⎨⎪⎪⎩

f(x1, . . . , xn) if x = ⟨x1, . . . , xn⟩ for some numbers x1, . . . , xn,

0 if there are no such numbers.

Note that the contraction of an unary function is the function itself.
We can define the contraction of f explicitly by

⟨f⟩(x) =D(Tuple∗(n,x), f([x]
n
1 , . . . , [x]

n
n),0).

Vice versa, we can recover f from its contraction by

f(x1, . . . , xn) = ⟨f⟩(⟨x1, . . . , xn⟩).

Thus a function is primitive recursive if and only if its contraction is.

Arithmetization of Finite Sequences

1.4.12 Finite sequences. Now we consider the problem of the arithmeti-
zation of finite sequences of natural numbers. Mathematically speaking, finite
sequences are just tuples of variable length and so the set of all such sequences
is the infinite union ⋃n∈NNn. We cannot use the method of codings of tuples
of fixed length since such encodings overlap. Our uniform encoding of finite
sequences is based on the fact that the number 0 is the atom, i.e. it is not in
the range of the pairing function ⟨x, y⟩.

1.4.13 Arithmetization. A uniform method for coding of finite sequences
of numbers into N is obtained as follows. We assign the code 0 to the
empty sequence ∅. A non-empty sequence x1, . . . , xn is coded by the number
⟨x1, x2, . . . , xn,0⟩ as shown in Fig. 1.3. The number ⟨x1, x2, . . . , xn,0⟩ is often
called the sequence number of the sequence x1, . . . , xn.



22 1 Primitive Recursive Functions

The reader will note that the assignment of codes is one to one: i.e. every
finite sequence of natural numbers is coded by exactly one natural number,
and vice versa, every natural number is the code of exactly one finite sequence
of natural numbers.

⟨x, 0⟩ ⟨x, y, 0⟩ ⟨x, y, z, 0⟩ ⟨x1, x2, . . . , xn, 0⟩

r
�� @@

x 0

r
�� @@r

�� @@x

y 0

r
�� @@r

�� @@r
�� @@

x

y

z 0

r
�� @@r

�� @@ p p p r
�� @@

x1

x2

xn 0

Fig. 1.3 Arithmetization of finite sequences

1.4.14 Length of sequences. The code x = ⟨x1, x2, . . . , xn,0⟩ of the se-
quence x1, . . . , xn has the length n. The function L(x) yielding the length of
x is introduced by the bounded minimalization as a p.r. function:

L(x) = µn ≤ x[πn
2 (x) = 0].

The function satisfies

L(0) = 0
L ⟨v,w⟩ = L(w) + 1.

1.4.15 Indexing function. The indexing function (x)i yields the (i+1)-st
element of the sequence x, i.e.

(⟨x0, . . . , xi, . . . , xn−1,0⟩)i = xi.

The function is defined explicitly by

(x)i = π1 πi
2(x)

as a primitive recursive function.
The recurrent properties of the indexing function are:

(⟨v,w⟩)0 = v
(⟨v,w⟩)i+1 = (w)i .


