1.1 Primitive Recursive Functions

1.1.1 Basic primitive recursive functions. The zero function Z is such that $\mathrm{Z}(x)=0$; the successor function S satisfies the equation $\mathrm{S}(x)=x+1$. For every $n \geq 1$ and $1 \leq i \leq n$, the n-ary identity function I_{i}^{n} yields its i-th argument, i.e. we have

$$
\mathrm{I}_{i}^{n}\left(x_{1}, \ldots, x_{n}\right)=x_{i}
$$

We usually write shortly I instead of I_{1}^{1} and we have $\mathrm{I}(x)=x$.
1.1.2 Composition. For every $m \geq 1$ and $n \geq 1$, the operator of composition takes an m-ary function h and $m n$-ary functions g_{1}, \ldots, g_{m} and yields an n-ary function f satisfying:

$$
f(\vec{x})=h\left(g_{1}(\vec{x}), \ldots, g_{m}(\vec{x})\right) .
$$

1.1.3 Primitive recursion. For every $n \geq 1$, the operator of primitive recursion takes an n-ary function g and an ($n+2$)-ary function h and yields an $(n+1)$-ary function f such that

$$
\begin{aligned}
f(0, \vec{y}) & =g(\vec{y}) \\
f(\mathrm{~S}(x), \vec{y}) & =h(x, f(x, \vec{y}), \vec{y}) .
\end{aligned}
$$

The first argument is the recursive argument whereas the remaining arguments are parameters. Note that the definition has at least one parameter.
1.1.4 Primitive recursive functions. A sequence of functions f_{1}, \ldots, f_{n} is called a primitive recursive derivation of a function f if
(i) the f is the last element of the sequence, i.e. $f=f_{n}$;
(ii) for every i such that $1 \leq i \leq n$, each function f_{i} is either one of the basic primitive recursive functions or is obtained from some of the previous functions f_{1}, \ldots, f_{i-1} by composition or primitive recursion.
A function is primitive recursive if it has a primitive recursive derivation. A predicate is primitive recursive if its characteristic function is.
1.1.5 Example. Consider the ternary function $h(x, z, y)=z+1$. We have

$$
h(x, z, y)=z+1=\mathrm{S}(z)=\mathrm{SI}_{2}^{3}(x, z, y)
$$

Hence the following composition of the initial p.r. functions S and I_{2}^{3} :

$$
h(x, z, y)=\mathrm{SI}_{2}^{3}(x, z, y)
$$

constitues a p.r. derivation of h as a p.r. function.
1.1.6 Addition is primitive recursive. Below is a p.r. derivation of addition as a p.r. function:

$$
\begin{aligned}
0+y & =\mathrm{I}(y) \\
\mathrm{S}(x)+y & =h(x, x+y, y)
\end{aligned}
$$

Here the auxiliary p.r. function h is from the previous example. The derivation is based on the following property of addition:

$$
\begin{aligned}
0+y & =y \\
x+1+y & =x+y+1 .
\end{aligned}
$$

Exercises

1.1.7 Exercise. Find a p.r. derivation of the multiplication function $x \times y$. Hint. Recall that

$$
\begin{aligned}
0 \times y & =0 \\
(x+1) \times y & =x \times y+y .
\end{aligned}
$$

Solution.

$$
\begin{aligned}
h(x, z, y) & =\mathrm{I}_{2}^{3}(x, z, y)+\mathrm{I}_{3}^{3}(x, z, y) \\
0 \times y & =\mathrm{Z}(y) \\
\mathrm{S}(x) \times y & =h(x, x \times y, y) .
\end{aligned}
$$

Note that the auxiliary function satisfies the identity

$$
h(x, z, y)=z+y
$$

1.1.8 Exercise. Find a p.r. derivation of the exponentiation function x^{y}. Hint. Recall that

$$
\begin{aligned}
x^{0} & =1 \\
x^{y+1} & =x \times x^{y} .
\end{aligned}
$$

Rewrite the recurrences for the binary function $f(y, x)=x^{y}$.
Solution.

$$
\begin{aligned}
\mathrm{C}_{1}(x) & =\mathrm{S} \mathrm{Z}(x) \\
h(y, z, x) & =\mathrm{I}_{3}^{3}(y, z, x) \times \mathrm{I}_{2}^{3}(y, z, x) \\
f(0, x) & =\mathrm{C}_{1}(x) \\
f(\mathrm{~S}(y), x) & =h(y, f(y, x), x) \\
x^{y} & =f\left(I_{2}^{2}(x, y), I_{1}^{2}(x, y)\right) .
\end{aligned}
$$

Note that the auxiliary functions satisfy the identities

$$
\begin{aligned}
\mathrm{C}_{1}(x) & =1 \\
h(y, z, x) & =x \times z .
\end{aligned}
$$

1.1.9 Exercise. Find a p.r. derivation of the factorial function n !.

Hint. Recall that

$$
\begin{aligned}
0! & =1 \\
(n+1)! & =(n+1) \times n!.
\end{aligned}
$$

Rewrite the recurrences for the binary function $f(n, m)=n!$ with the dummy second argument m.
1.1.10 Exercise. Find a 'short' p.r. derivation of the unary constant function $\mathrm{C}_{256}(x)=256$.

