1.2 Explicit Definitions

1.2.1 Constant functions are primitive recursive. We first show, by induction on m, that every unary constant function $\mathrm{C}_{m}(x)=m$ is primitive recursive. In the base case we have $\mathrm{C}_{0}=\mathrm{Z}$ is one of the basic p.r. functions. In the induction step we assume that C_{m} is primitive recursive by IH and define C_{m+1} as primitive recursive by unary composition:

$$
\mathrm{C}_{m+1}(x)=\mathrm{SC}_{m}(x) .
$$

The n-ary constant function $\mathrm{C}_{m}^{n}(\vec{x})=m$ is obtained as primitive recursive by the following composition:

$$
\mathrm{C}_{m}^{n}\left(x_{1}, \ldots, x_{n}\right)=\mathrm{C}_{m} \mathrm{I}_{1}^{n}\left(x_{1}, \ldots, x_{n}\right)
$$

1.2.2 Explicit definitions of functions. Every explicit definition

$$
f\left(x_{1}, \ldots, x_{n}\right)=\tau\left[x_{1}, \ldots, x_{n}\right]
$$

can be viewed as a function operator which takes all functions applied in the term τ and returns as a result the function f satisfying the identity. We suppose here that the term τ does not apply the symbol f and that all its free variables are among the indicated ones.
1.2.3 Theorem Primitive recursive functions are closed under explicit definitions.

Proof. By induction on the structure of terms τ we prove that primitive recursive functions are closed under explicit definitions of n-ary functions:

$$
f(\vec{x})=\tau[\vec{x}] .
$$

If $\tau \equiv x_{i}$ then the function f is the n-ary identity function I_{i}^{n} which is one of the basic primitive recursive functions.

If $\tau \equiv m$ then the function f is the n-ary constant function C_{m}^{n} which is primitive recursive by Par. 1.2.1.

If $\tau \equiv h\left(\rho_{1}, \ldots, \rho_{m}\right)$, where h is an m-ary primitive recursive function, then the n-ary functions g_{1}, \ldots, g_{m} defined explicitly by

$$
g_{1}(\vec{x})=\rho_{1}[\vec{x}] \quad \ldots \quad g_{m}(\vec{x})=\rho_{m}[\vec{x}]
$$

are primitive recursive by IH . The function f is obtained as primitive recursive by the following composition

$$
f(\vec{x})=h\left(g_{1}(\vec{x}), \ldots, g_{m}(\vec{x})\right) .
$$

