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1.3 Primitive Recursive Predicates and Bounded
Minimalization

1.3.1 Case discrimination function is primitive recursive. The case
discrimination function D is defined by

D(x, y, z) = v↔ x ≠ 0 ∧ v = y ∨ x = 0 ∧ v = z.

The function is primitive recursive by the following explicit definition which
uses monadic discrimination on the first argument:

D(0, y, z) = z
D(x + 1, y, z) = y.

1.3.2 Equality predicate is primitive recursive. The characteristic
function x =∗ y of the equality predicate x = y is primitive recursive by the
following explicit definition:

(x =∗ y) = D(x � y + (y � x),0,1).

This is because we have x = y↔ x � y + (y � x) = 0.

1.3.3 Boolean functions are primitive recursive. The boolean func-
tions are defined by

(¬∗x) = y↔ x ≠ 0 ∧ y = 0 ∨ x = 0 ∧ y = 1
(x ∧∗ y) = z ↔ x ≠ 0 ∧ y ≠ 0 ∧ z = 1 ∨ (x = 0 ∨ y = 0) ∧ z = 0
(x ∨∗ y) = z ↔ (x ≠ 0 ∨ y ≠ 0) ∧ z = 1 ∨ x = 0 ∧ y = 0 ∧ z = 0
(x→∗ y) = z ↔ (x = 0 ∨ y ≠ 0) ∧ z = 1 ∨ x ≠ 0 ∧ y = 0 ∧ z = 0
(x↔∗ y) = z ↔ x ≠ 0 ∧ y ≠ 0 ∧ z = 1 ∨ x = 0 ∧ y = 0 ∧ z = 1 ∨

x ≠ 0 ∧ y = 0 ∧ z = 0 ∨ x = 0 ∧ y ≠ 0 ∧ z = 0.

Note that we identify non-zero values with truth and 0 with falsehood.
The functions are primitive recursive by the following explicit definitions:

(¬∗x) = D(x,0,1)
(x ∧∗ y) = D(x,D(y,1,0),0)
(x ∨∗ y) = (¬∗(¬∗x ∧∗ ¬∗y))
(x→∗ y) = (¬∗x ∨∗ y)
(x↔∗ y) = ((x→∗ y) ∧∗ (y→∗ x)).

1.3.4 Bounded minimalization. For every n ≥ 1, the operator of bounded
minimalization takes an (n+1)-ary function g and yields an (n+1)-ary func-
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tion f satisfying:

f(x, y⃗) =
⎧⎪⎪⎨⎪⎪⎩

the least z ≤ x s.t. g(z, y⃗) = 1 holds if ∃z ≤ xg(z, y⃗) = 1;
0 if there is no such number.

This is usually abbreviated to

f(x, y⃗) = µz ≤ x[g(z, y⃗) = 1].

1.3.5 Theorem Primitive recursive functions are closed under the operator
of bounded minimalization.

Proof. Suppose that f is obtained by the bounded minimalization

f(x, y⃗) = µz ≤ x[g(z, y⃗) = 1]

of a primitive recursive function g. Clearly we have

g(f(x, y⃗), y⃗) = 1→ f(x + 1, y⃗) = f(x, y⃗)
g(f(x, y⃗), y⃗) ≠ 1 ∧ g(x + 1, y⃗) = 1→ f(x + 1, y⃗) = x + 1

g(f(x, y⃗), y⃗) ≠ 1 ∧ g(x + 1, y⃗) ≠ 1→ f(x + 1, y⃗) = 0.

We derive f as a p.r. function by the following primitive recursive definition:

f(0, y⃗) = 0

f(x + 1, y⃗) = D((g(f(x, y⃗), y⃗) =∗ 1), f(x, y⃗),D((g(x + 1, y⃗) =∗ 1), x + 1,0)).
⊓⊔

1.3.6 Formulas with bounded quantifiers. Bounded quantifiers are for-
mulas of the form ∀x ≤ τ φ and ∃x ≤ τ φ, where the variable x is not free
in τ . The bounded quantifiers abbreviate the formulas ∀x(x ≤ τ → φ) and
∃x(x ≤ τ ∧ φ), respectively. Strict bounded quantifiers ∀x < τ φ and ∃x < τ φ
are defined similarly.

Bounded formulas are formulas which are built from atomic formulas by
propositional connectives and bounded quantifiers.

1.3.7 Explicit definitions of predicates with bounded formulas. Ex-
plicit definitions of predicates with bounded formulas are of a form

P (x1, . . . , xn)↔ φ[x1, . . . , xn],

where φ is a bounded formula with at most the indicated n-tuple of variables
free and without any application of the predicate symbol P .

Every such definition can be viewed as a function operator which takes
all functions occurring in the formula φ (this also includes the characteristic
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functions of every predicate occurring in φ) and which yields as a result the
characteristic function P∗ of the predicate P .

1.3.8 Theorem Primitive recursive predicates are closed under explicit def-
initions of predicates with bounded formulas.

Proof. We show that the class of primitive recursive predicates is closed under
explicit definitions P (x⃗) ↔ φ[x⃗] of n-ary predicates by induction on the
structure of bounded formulas φ.

If φ ≡ τ = ρ then the characteristic function P∗ of P is primitive recursive
by the following explicit definition: P∗(x⃗) = (τ[x⃗] =∗ ρ[x⃗]).

If φ ≡ R(τ⃗) then, since R∗ is primitive recursive, we define P∗ as primitive
recursive by explicit definition: P∗(x⃗) = R∗(τ⃗[x⃗]).

If φ ≡ ¬ψ then we use IH and define an n-ary p.r. predicate R by explicit
definition: R(x⃗) ↔ ψ[x⃗]. Now we define P∗ as primitive recursive by the
following explicit definition: P∗(x⃗) = (¬∗R∗(x⃗)).

If φ ≡ ψ ∧ χ then we obtain as primitive recursive two auxiliary n-ary
predicates R(x⃗)↔ ψ[x⃗] and Q(x⃗)↔ χ[x⃗] by IH. We define P∗ as primitive
recursive by explicit definition: P∗(x⃗) = (R∗(x⃗) ∧∗ Q∗(x⃗)).

If φ ≡ ∃y ≤ τ ψ[y, x⃗] then we use IH and define an auxiliary (n + 1)-ary
p.r. predicate R by explicit definition: R(y, x⃗)↔ ψ[y, x⃗]. Then we define an
auxiliary witnessing p.r. function f by bounded minimalization:

f(z, x⃗) = µy ≤ z[R∗(y, x⃗) = 1].

The characteristic function P∗ of the predicate P has the following explicit
definition: P∗(x⃗) = R∗(f(τ[x⃗], x⃗), x⃗) as a p.r. function.

The remaining cases are treated similarly. ⊓⊔

1.3.9 Comparison predicates are primitive recursive. The standard
comparison predicates are primitive recursive by explicit definitions:

x ≤ y↔ ∃z ≤ y x = z x ≥ y↔ y ≤ x
x < y↔ y ≰ x x > y↔ y < x.

1.3.10 Definitions by bounded minimalization. Definitions of func-
tions by bounded minimalization are of the form

f(x⃗) =
⎧⎪⎪⎨⎪⎪⎩

the least y ≤ τ[x⃗] s.t. φ[x⃗, y] holds if ∃y ≤ τ[x⃗]φ[x⃗, y];
0 if there is no such number.

Here τ[x⃗] is a term and φ[x⃗, y] a bounded formula with at most the indicated
variables free, both without any application of the symbol f . Every such
definition can be viewed as a function operator taking all functions and the
characteristic functions of all predicates occurring in either the term τ or
formula φ and yielding the function f .
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In the sequel we abbreviate the definition to

f(x⃗) = µy ≤ τ[x⃗][φ[x⃗, y]].

We permit also strict bounds in definitions by bounded minimalization; i.e.
we allow definitions of the form

f(x⃗) = µy < τ[x⃗][φ[x⃗, y]]

as abbreviation for f(x⃗) = µy ≤ τ[x⃗][y < τ[x⃗] ∧ φ[x⃗, y]].

1.3.11 Theorem Primitive recursive functions are closed under definitions
of functions with bounded minimalization.

Proof. Consider an n-ary function f defined by the bounded minimalization

f(x⃗) = µy ≤ τ[x⃗][φ[x⃗, y]]

from primitive recursive functions and predicates. We can define f by the
following series of definitions:

P (y, x⃗)↔ φ[x⃗, y]
g(z, x⃗) = µy ≤ z[P∗(y, x⃗) = 1]
f(x⃗) = g(τ[x⃗], x⃗).

By Thm. 1.3.8 and Thm. 1.3.5, the characteristic function P∗ of P and the
auxiliary function g are primitive recursive, and so is the function f . ⊓⊔

1.3.12 Integer division is primitive recursive. The integer division
function x ÷ y is a p.r. function by the following bounded minimalization:

x ÷ y = µq ≤ x[x < (q + 1)y].

1.3.13 Remainder is primitive recursive. The binary remainder func-
tion xmod y is a p.r. function by the following explicit definition:

xmod y = D(y, x � (x ÷ y)y,0).

Exercises

1.3.14 Exercise. Show that the predicate of divisibility

x ∣ y↔ ∃z y = xz

is primitive recursive.
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Solution.

x ∣ y↔ ∃z ≤ y y = xz.

1.3.15 Exercise. Show that the predicate Prime(x) holding of prime num-
bers is primitive recursive.

1.3.16 Exercise. Show that the integer square root function

⌊
√
x⌋ = y↔ y2 ≤ x < (y + 1)2

is primitive recursive.


