1.3 Primitive Recursive Predicates and Bounded Minimalization

1.3.1 Case discrimination function is primitive recursive. The case discrimination function D is defined by

$$D(x, y, z) = v \leftrightarrow x \neq 0 \land v = y \lor x = 0 \land v = z.$$

The function is primitive recursive by the following explicit definition which uses monadic discrimination on the first argument:

$$D(0, y, z) = z$$
$$D(x + 1, y, z) = y.$$

1.3.2 Equality predicate is primitive recursive. The characteristic function $x =_* y$ of the equality predicate x = y is primitive recursive by the following explicit definition:

$$(x =_* y) = D(x - y + (y - x), 0, 1).$$

This is because we have $x = y \leftrightarrow x - y + (y - x) = 0$.

1.3.3 Boolean functions are primitive recursive. The *boolean* functions are defined by

$$(\neg_* x) = y \leftrightarrow x \neq 0 \land y = 0 \lor x = 0 \land y = 1$$

$$(x \land_* y) = z \leftrightarrow x \neq 0 \land y \neq 0 \land z = 1 \lor (x = 0 \lor y = 0) \land z = 0$$

$$(x \lor_* y) = z \leftrightarrow (x \neq 0 \lor y \neq 0) \land z = 1 \lor x = 0 \land y = 0 \land z = 0$$

$$(x \to_* y) = z \leftrightarrow (x = 0 \lor y \neq 0) \land z = 1 \lor x \neq 0 \land y = 0 \land z = 0$$

$$(x \leftrightarrow_* y) = z \leftrightarrow x \neq 0 \land y \neq 0 \land z = 1 \lor x = 0 \land y = 0 \land z = 1 \lor$$

$$x \neq 0 \land y = 0 \land z = 0 \lor x = 0 \land y \neq 0 \land z = 0.$$

Note that we identify non-zero values with truth and 0 with falsehood.

The functions are primitive recursive by the following explicit definitions:

$$(\neg_* x) = D(x, 0, 1)$$
$$(x \wedge_* y) = D(x, D(y, 1, 0), 0)$$
$$(x \vee_* y) = (\neg_* (\neg_* x \wedge_* \neg_* y))$$
$$(x \rightarrow_* y) = (\neg_* x \vee_* y)$$
$$(x \leftrightarrow_* y) = ((x \rightarrow_* y) \wedge_* (y \rightarrow_* x)).$$

1.3.4 Bounded minimalization. For every $n \ge 1$, the operator of *bounded* minimalization takes an (n+1)-ary function g and yields an (n+1)-ary func-

1.3 Primitive Recursive Predicates and Bounded Minimalization

tion f satisfying:

$$f(x, \vec{y}) = \begin{cases} \text{the least } z \le x \text{ s.t. } g(z, \vec{y}) = 1 \text{ holds} & \text{if } \exists z \le x g(z, \vec{y}) = 1; \\ 0 & \text{if there is no such number.} \end{cases}$$

This is usually abbreviated to

$$f(x, \vec{y}) = \mu z \le x [g(z, \vec{y}) = 1].$$

1.3.5 Theorem *Primitive recursive functions are closed under the operator of bounded minimalization.*

Proof. Suppose that f is obtained by the bounded minimalization

$$f(x, \vec{y}) = \mu z \le x [g(z, \vec{y}) = 1]$$

of a primitive recursive function g. Clearly we have

$$g(f(x, \vec{y}), \vec{y}) = 1 \to f(x+1, \vec{y}) = f(x, \vec{y})$$
$$g(f(x, \vec{y}), \vec{y}) \neq 1 \land g(x+1, \vec{y}) = 1 \to f(x+1, \vec{y}) = x+1$$
$$g(f(x, \vec{y}), \vec{y}) \neq 1 \land g(x+1, \vec{y}) \neq 1 \to f(x+1, \vec{y}) = 0.$$

We derive f as a p.r. function by the following primitive recursive definition:

$$f(0,\vec{y}) = 0$$

$$f(x+1,\vec{y}) = D\Big(\Big(g(f(x,\vec{y}),\vec{y}) =_* 1\Big), f(x,\vec{y}), D\Big(\Big(g(x+1,\vec{y}) =_* 1\Big), x+1, 0\Big)\Big).$$

1.3.6 Formulas with bounded quantifiers. Bounded quantifiers are formulas of the form $\forall x \leq \tau \varphi$ and $\exists x \leq \tau \varphi$, where the variable x is not free in τ . The bounded quantifiers abbreviate the formulas $\forall x(x \leq \tau \rightarrow \varphi)$ and $\exists x(x \leq \tau \land \varphi)$, respectively. Strict bounded quantifiers $\forall x < \tau \varphi$ and $\exists x < \tau \varphi$ are defined similarly.

Bounded formulas are formulas which are built from atomic formulas by propositional connectives and bounded quantifiers.

1.3.7 Explicit definitions of predicates with bounded formulas. *Explicit definitions* of predicates *with bounded formulas* are of a form

$$P(x_1,\ldots,x_n) \leftrightarrow \varphi[x_1,\ldots,x_n],$$

where φ is a bounded formula with at most the indicated *n*-tuple of variables free and without any application of the predicate symbol *P*.

Every such definition can be viewed as a function operator which takes all functions occurring in the formula φ (this also includes the characteristic functions of every predicate occurring in φ) and which yields as a result the characteristic function P_* of the predicate P.

1.3.8 Theorem Primitive recursive predicates are closed under explicit definitions of predicates with bounded formulas.

Proof. We show that the class of primitive recursive predicates is closed under explicit definitions $P(\vec{x}) \leftrightarrow \varphi[\vec{x}]$ of *n*-ary predicates by induction on the structure of bounded formulas φ .

If $\varphi \equiv \tau = \rho$ then the characteristic function P_* of P is primitive recursive by the following explicit definition: $P_*(\vec{x}) = (\tau[\vec{x}] =_* \rho[\vec{x}]).$

If $\varphi \equiv R(\vec{\tau})$ then, since R_* is primitive recursive, we define P_* as primitive recursive by explicit definition: $P_*(\vec{x}) = R_*(\vec{\tau}[\vec{x}]).$

If $\varphi \equiv \neg \psi$ then we use IH and define an *n*-ary p.r. predicate R by explicit definition: $R(\vec{x}) \leftrightarrow \psi[\vec{x}]$. Now we define P_* as primitive recursive by the following explicit definition: $P_*(\vec{x}) = (\neg_* R_*(\vec{x})).$

If $\varphi \equiv \psi \wedge \chi$ then we obtain as primitive recursive two auxiliary *n*-ary predicates $R(\vec{x}) \leftrightarrow \psi[\vec{x}]$ and $Q(\vec{x}) \leftrightarrow \chi[\vec{x}]$ by IH. We define P_* as primitive recursive by explicit definition: $P_*(\vec{x}) = (R_*(\vec{x}) \wedge_* Q_*(\vec{x})).$

If $\varphi \equiv \exists y \leq \tau \psi[y, \vec{x}]$ then we use IH and define an auxiliary (n + 1)-ary p.r. predicate R by explicit definition: $R(y, \vec{x}) \leftrightarrow \psi[y, \vec{x}]$. Then we define an auxiliary witnessing p.r. function f by bounded minimalization:

$$f(z, \vec{x}) = \mu y \le z [R_*(y, \vec{x}) = 1].$$

The characteristic function P_* of the predicate P has the following explicit definition: $P_*(\vec{x}) = R_*(f(\tau[\vec{x}], \vec{x}), \vec{x})$ as a p.r. function. П

The remaining cases are treated similarly.

1.3.9 Comparison predicates are primitive recursive. The standard comparison predicates are primitive recursive by explicit definitions:

$x \le y \leftrightarrow \exists z \le y x = z$	$x \ge y \nleftrightarrow y \le x$
$x < y \leftrightarrow y \nleq x$	$x > y \leftrightarrow y < x.$

1.3.10 Definitions by bounded minimalization. Definitions of functions by *bounded minimalization* are of the form

$$f(\vec{x}) = \begin{cases} \text{the least } y \leq \tau[\vec{x}] \text{ s.t. } \varphi[\vec{x}, y] \text{ holds } & \text{if } \exists y \leq \tau[\vec{x}] \varphi[\vec{x}, y]; \\ 0 & \text{if there is no such number.} \end{cases}$$

Here $\tau[\vec{x}]$ is a term and $\varphi[\vec{x}, y]$ a bounded formula with at most the indicated variables free, both without any application of the symbol f. Every such definition can be viewed as a function operator taking all functions and the characteristic functions of all predicates occurring in either the term τ or formula φ and yielding the function f.

1.3 Primitive Recursive Predicates and Bounded Minimalization

In the sequel we abbreviate the definition to

$$f(\vec{x}) = \mu y \le \tau[\vec{x}] [\varphi[\vec{x}, y]].$$

We permit also strict bounds in definitions by bounded minimalization; i.e. we allow definitions of the form

$$f(\vec{x}) = \mu y < \tau[\vec{x}] [\varphi[\vec{x}, y]]$$

as abbreviation for $f(\vec{x}) = \mu y \le \tau[\vec{x}] [y < \tau[\vec{x}] \land \varphi[\vec{x}, y]].$

1.3.11 Theorem *Primitive recursive functions are closed under definitions of functions with bounded minimalization.*

Proof. Consider an n-ary function f defined by the bounded minimalization

$$f(\vec{x}) = \mu y \le \tau[\vec{x}] |\varphi[\vec{x}, y]|$$

from primitive recursive functions and predicates. We can define f by the following series of definitions:

$$P(y, \vec{x}) \leftrightarrow \varphi[\vec{x}, y]$$

$$g(z, \vec{x}) = \mu y \le z[P_*(y, \vec{x}) = 1]$$

$$f(\vec{x}) = g(\tau[\vec{x}], \vec{x}).$$

By Thm. 1.3.8 and Thm. 1.3.5, the characteristic function P_* of P and the auxiliary function g are primitive recursive, and so is the function f.

1.3.12 Integer division is primitive recursive. The integer division function $x \div y$ is a p.r. function by the following bounded minimalization:

$$x \div y = \mu q \le x [x < (q+1)y]$$

1.3.13 Remainder is primitive recursive. The binary remainder function $x \mod y$ is a p.r. function by the following explicit definition:

$$x \mod y = D(y, x \div (x \div y)y, 0).$$

Exercises

1.3.14 Exercise. Show that the predicate of divisibility

$$x \mid y \leftrightarrow \exists z \, y = xz$$

is primitive recursive.

1 Primitive Recursive Functions

Solution.

$$x \mid y \leftrightarrow \exists z \le y \, y = xz.$$

1.3.15 Exercise. Show that the predicate Prime(x) holding of prime numbers is primitive recursive.

1.3.16 Exercise. Show that the integer square root function

$$\left\lfloor \sqrt{x} \right\rfloor = y \leftrightarrow y^2 \le x < (y+1)^2$$

is primitive recursive.

16