
30 1 Primitive Recursive Functions

1.7 Nested Simple Recursion

1.7.1 Introduction. In this section we will investigate recursive definitions
for which parameters may be arbitrarily substituted for, even with nested
recursive applications. For instance:

f(0, y) = g(y)
f(x + 1, y) = h(x, f(x,σ[x, y, f(x, y)]), y).

The function f is an example of a 1-recursive function in the hierarchy of
multiply recursive functions studied. Péter has proved in [1] that primitive
recursive functions are closed under 1-recursion. The schema of 1-recursion is
usually called nested simple recursion and we will also adopt this convention.

1.7.2 Notation. We will use the special lambda notation τ[λ̇y⃗.ρ[y⃗]; x⃗]
where y⃗ are n variables for the term obtained from τ by the replacement of all
applications f(τ⃗) by terms ρ[τ⃗ ]. Note that we have τ[g; x⃗] ≡ τ[λ̇y⃗.g(y⃗); x⃗].
1.7.3 Nested simple recursion. Let ρ[y⃗] and τ[f ;x, y⃗] are terms in which
no other variables than the indicated ones are free. Suppose that ρ does not
apply f . Consider the (n+1)-ary function f defined by

f(0, y⃗) = ρ[y⃗] (1)

f(x + 1, y⃗) = τ[λ̇x1y⃗.f(x, y⃗);x, y⃗]. (2)

We say that f is defined by nested simple recursion.
We will show at the end of this section in Thm. 1.7.15 that p.r. functions

are closed under nested simple recursion. The proof proceeds in stages. First,
we prove the claim for the schema with with two recursive applications (k = 2)
and one parameter (n = 1). This is proved in Thm. 1.7.11 by reducing the
schema to course of values recursion with parameter substitution. Next, we
extend this result to the schema with arbitrary number of recursive applica-
tions (Thm. 1.7.13). Finally, we prove the claim for the schema with arbitrary
number of parameters (Thm. 1.7.15).

We may assume that the function f is applied in τ at least once because
otherwise there would be nothing to prove. In order to simplify our discussion,
in particular for the cases when k ≥ 2, we transform the equation (2) into
equivalent one by ‘unnesting’ all recursive applications of f in the term τ :

k

⋀
i=1

f(x, σ⃗i[x, y⃗, z⃗i−1]) = zi → f(x + 1, y⃗) = θ[x, z⃗, y⃗]. (3)

Here z⃗i abbreviates z1, . . . , zi and the terms σ1, . . . , σk, θ contain at most the
indicated variables and do not apply f .



1.7 Nested Simple Recursion 31

Nested Simple Recursion: Case k = 2 and n = 1

1.7.4 Introduction. In this subsection we will investigate the schema of
nested simple recursion with two different recursive applications (k = 2) and
one parameter (n = 1):

f(0, y) = ρ[y] (1)

f(x + 1, y) = θ[x, f(x,σ1[x, y]), f(x,σ2[x, y, f(x,σ1[x, y])]), y]. (2)

The closure of p.r. functions under the schema will be shown in Thm. 1.7.11.
Below we will assume that ρ[y], θ[x, z1, z2, y], σ1[x, y], σ2[x, y, z1] are all
primitive recursive. We want to show that f is primitive recursive as well.

1.7.5 The outline of the proof. We will introduce the function f as prim-
itive recursive by arithmetization of its computation trees in which we use
as computational rules the defining axioms 1.7.4(1)(2). The evaluation of the
application f(x, y) can be visualized as a full binary tree of depth x+ 1 with
labels consisting of all applications f(xi, yi) which are needed to compute
the value f(x, y).

Binary trees are coded as follows. The empty tree is coded by the number
0. A non-empty tree is coded by the number ⟨z, l, r⟩, where z is the label of its
root node, and l and r are the codes of its left and right subtree, respectively.
Note that if t is the code of a non-empty tree then the label of its root node
is the first projection of t, i.e. the number π1(t).

We intend to introduce f with the help of its course of values function f .
The function f(x, y) yields the computation tree for the application f(x, y):

f(0, y) = ⟨f(0, y),0,0⟩
f(x + 1, y) = ⟨f(x + 1, y), f(x,σ1[x, y]), f(x,σ2[x, y, f(x,σ1[x, y])])⟩.

We will show that the course of values function is primitive recursive. Hence it
suffices to define f by explicit definition f(x, y) = π1f(x, y) as a p.r. function.

Note that the natural evaluation strategy for calculating f(x, y) corre-
sponds to postorder traversal of the computation tree f(x, y) for f(x, y).
Consider, for instance, the computation tree from Fig. 1.3. The sequence

f(x0, y0), f(x1, y1), f(x2, y2), . . . , f(xi, yi), . . . (1)

of its labels consists of all applications which are needed to compute its root
value. Note that the parameter yi of each application f(xi, yi) depends only
on those values f(xj , yj) which are directly before it (j < i). This means
that the order in which the sequence (1) is sorted corresponds to postorder
traversl of the computation tree. We will extend this indexing schema also
for binary trees (already shown in Fig. 1.3).



32 1 Primitive Recursive Functions

Let us now consider a finite sequence of full binary trees of depth x + 1

t0, t1, t2, . . . , ti, . . . , t2x+1
∸1

where each tree ti+1 satisfies the following condition: the subtree of ti+1 at

position i is a computation tree for f(xi, yi). We will call such trees partial

computation trees for f(x, y). Note that the last tree t2x+1
∸1 is in fact a (full)

computation tree for f(x, y).
This suggests the following method for building the computation tree for

f(x, y). We start by creating a ’dummy’ full binary tree t0 of depth x + 1.
Suppose now that after i < 2x+1-steps we have a partial computation tree ti
for f(x, y), The tree is updated at position i by the value f(xi, yi) whereby
we obtain a new partial computation tree ti+1 for f(x, y). After 2x+1 steps
we obtain a full computation tree for f(x, y).

f(x14, y14)

f(x6, y6)

f(x2, y2)

f(x0, y0) f(x1, y1)

f(x5, y5)

f(x3, y3) f(x4, y4)

f(x13, y13)

f(x9, y9)

f(x7, y7) f(x8, y8)

f(x12, y12)

f(x10, y10) f(x11, y11)

Fig. 1.3 Postorder traversal of a computation tree of depth 4.

1.7.6 Full binary trees. The function Full(n) creates a full binary tree of
the depth n. The function is defined by primitive recursion as a p.r. function:

Full(0) = 0

Full(n + 1) = ⟨0,Full(n),Full(n)⟩.
1.7.7 Local node condition. The application V (x, y, l, r) determines the
correct value f(x, y) from the subtrees l and r of a partial computation tree⟨z, l, r⟩ for f(x, y). The function is primitive recursive by the following explicit
definition (with monadic discrimination):

V (0, y, l, r) = ρ[y]
V (x + 1, y, l, r) = θ[x,π1(l),π1(r), y].

1.7.8 Local update. The 4-ary function U (t, i, x, y) updates the partial
computation tree t for f(x, y) at position i by the correct value f(xi, yi).
The function has the following basic properties



1.7 Nested Simple Recursion 33

i < 2x ∸ 1 → U (⟨z, l, r⟩, i, x, y) = ⟨z,U (l, i, x ∸ 1, σ1[x ∸ 1, y]), r⟩ (1)

j < 2x ∸ 1→ U (⟨z, l, r⟩,2x ∸ 1 + j, x, y) =
⟨z, l,U (r, j, x ∸ 1, σ2[x ∸ 1, y,π1(l)])⟩ (2)

U (⟨z, l, r⟩,2x+1 ∸ 2, x, y) = ⟨V (x, y, l, r), l, r⟩. (3)

Note that both ’recursive’ applications of the function U on the right-hand
side of the conditional equations (1) and (2) are applied to lesser arguments l <⟨z, l, r⟩ and r < ⟨z, l, r⟩ than the one on the left. We will use this observation to
find a course of values recursive definition of U as follows. The transformation
of the specification properties into course of values derivation of U is based
on the following simple properties of the projection functions:

∃z∃l∃r t = ⟨z, l, r⟩↔ π2(t) ≠ 0

t = ⟨z, l, r⟩→ z = π1(t) ∧ l = π1π2(t) ∧ r = π2
2(t)

π1(t + 1) < t + 1 ∧ π1π2(t + 1) < t + 1 ∧ π2
2(t + 1) < t + 1.

Now let ξ be the term

ξ[t, l1, r1, i, x, y] ≡ D(π2(t),
D(i+1 <∗ 2x,

⟨π1(t), l1,π2
2(t)⟩,

D(i+2 <∗ 2x+1,

⟨π1(t),π1π2(t), r1⟩,
⟨V (x, y,π1π2(t),π2

2(t)),π1π2(t),π2
2(t)⟩)),0).

The function U (t, i, x, y) is defined by course of values recursion on t with
substitution in the parameters as a p.r. function by

U (0, i, x, y) = 0

U (t + 1, i, x, y) = ξ[t + 1,U (π1π2(t + 1), i, x ∸ 1, σ1[x ∸ 1, y]),
U (π2

2(t + 1), i ∸ (2x ∸ 1), x ∸ 1, σ2[x ∸ 1, y,π2
1π2(t + 1)]),

i, x, y].
1.7.9 Global update. The 4-ary function Mi(x, y, t) updates the partial
computation tree t for f(x, y) at each position j < i by the correct value



34 1 Primitive Recursive Functions

f(xi, yi). The function is defined by primitive recursion on i as a p.r. function:

M0(x, y, t) = t

Mi+1(x, y, t) = U (Mi(x, y, t), i, x, y).
1.7.10 Course of values function. The binary function f(x, y) returns
the computation tree for f(x, y). The course of values function for f satisfies

f(0, y) = ⟨ρ[y],0,0⟩ (1)

f(x,σ1[x, y]) = l ∧ f(x,σ2[x, y,π1(l)]) = r →

f(x + 1, y) = ⟨θ[x,π1(l),π1(r), y], l, r⟩
(2)

and it is defined explicitly as a p.r. function by

f(x, y) =M2x+1
∸1(x, y,Full(x + 1)).

1.7.11 Theorem Primitive recursive functions are closed under nested sim-

ple recursion for the case k = 2 and n = 1.

Proof. Let f be defined by nested simple recursion from p.r. functions as in
Par. 1.7.4. Let further f be its course of values function as in Par. 1.7.10. We
claim that we have

f(x, y) = π1f(x, y). (†1)

The function f is primive recursive and so is f .
This is proved by induction on x as ∀y(†1). The base case follows from

f(0, y) = ρ[y] = π1⟨g(y),0,0⟩ 1.7.10(1)= π1f(0, y).
In the induction step take any y and we obtain

f(x + 1, y) = θ[x, f(x,σ1[x, y]), f(x,σ2[x, y, f(x,σ1[x, y])]), y] IH=

= θ[x, f(x,σ1[x, y]),π1f(x,σ2[x, y, f(x,σ1[x, y])]), y] IH=

= θ[x,π1f(x,σ1[x, y]),π1f(x,σ2[x, y,π1f(x,σ1[x, y])]), y] 1.7.10(2)=
= π1f(x + 1, y). ⊓⊔

Nested Simple Recursion: Case n = 1

1.7.12 Introduction. In this subsection we will investigate the schema of
nested simple recursion with one parameter (n = 1) with arbitrary number



1.7 Nested Simple Recursion 35

recursive applications:

f(0, y) = ρ[y]
k+1

⋀
i=1

f(x,σi[x, y, z⃗i−1]) = zi → f(x + 1, y) = θ[x, z1, . . . , zk+1, y].
The closure of p.r. functions under the schema will be shown in in Thm. 1.7.13.

1.7.13 Theorem Primitive recursive functions are closed under nested sim-

ple recursion for the case n = 1.

Proof. Similar to the proof of Thm. 1.6.13. ⊓⊔

Nested Simple Recursion: General Case

1.7.14 Introduction. In this subsection we will investigate the schema of
nested simple recursion with arbitrary number of parameters and recursive
applications:

f(0, y⃗) = ρ[y⃗]
k

⋀
i=1

f(x, σ⃗i[x, y⃗, z⃗i−1]) = zi → f(x + 1, y⃗) = θ[x, z⃗, y⃗].
The closure of p.r. functions under the schema will be shown in Thm. 1.7.15.

1.7.15 Theorem Primitive recursive functions are closed under nested sim-

ple recursion.

Proof. Similar to the proof of Thm. 1.6.16. ⊓⊔


