
22 1 Primitive Recursive Functions

1.6 Recursion with Parameter Substitution

1.6.1 Substitution in parameters. Suppose that

ρ[y⃗], τ[x, z⃗, y⃗], ξ1[x, y⃗], σ⃗1[x, y⃗], . . . , ξk[x, y⃗], σ⃗k[x, y⃗]

are terms with all their free variables indicated not applying the symbol f .
Suppose further that ξ1[x, y⃗] ≤ x, . . . , ξk[x, y⃗] ≤ x. Consider the (n+1)-ary
function f defined by

f(0, y⃗) = ρ[y⃗]
f(x + 1, y⃗) = τ [x, f(ξ1[x, y⃗], σ⃗1[x, y⃗]), . . . , f(ξk[x, y⃗], σ⃗k[x, y⃗]), y⃗] .

We say that f is defined by course of values recursion recursion with param-
eter substitution. The special case when ξi[x, y⃗] ≡ x for each i = 1, . . . , k is
called extension by primitive recursion with parameter substitution.

We will show at the end of this section in Thm. 1.6.20 that p.r. functions
are closed under course of values recursion with parameter substitution. The
proof proceeds in stages. First, we prove the claim for the schema of primitive
recursion with parameter substitution with two recursive applications (k =
2) and one parameter (n = 1). This is proved in Thm. 1.6.11 by reducing
the schema to backward recursion. Next, we extend this result to primitive
recursion with arbitrary number of recursive applications (Thm. 1.6.13) and
parameters (Thm. 1.6.16). Finally, we show how to reduce course of values
recursion with parameter substitution to primitive recursion (Thm. 1.6.20).

Primitive Recursion with Parameter Substitution:
Case k = 2 and n = 1

1.6.2 Introduction. In this subsection we will investigate the schema of
primitive recursion with substitution in one parameter (n = 1), where only
two different recursive applications are allowed (k = 2):

f(0, y) = ρ[y] (1)

f(x + 1, y) = τ[x, f(x,σ1[x, y]), f(x,σ2[x, y]), y]. (2)

Its admissibility is proved by reducing it to backward recursion.

1.6.3 The outline of the proof. We introduce the function f as primitive
recursive by the arithmetization of computation trees for f in which we use as
computational rules its defining axioms 1.6.2(1)(2). The computation of the
application f(x, y) can be visualized as a binary tree with labels consisting
of all applications f(xi, yi) which are needed to compute the value f(x, y).



1.6 Recursion with Parameter Substitution 23

Binary trees are coded as follows. The empty tree is coded by the number
0. A non-empty tree is coded by the number ⟨z, l, r⟩, where z is the label of its
root node and l and r are the codes of its left and right subtrees, respectively.
Note that if t is the code of a non-empty tree then the label of its root node
is the first projection of t, i.e. the number π1(t).

We intend to introduce f with the help of its course of values function f .
The function f(x, y) yields the computation tree for the application f(x, y),
i.e. we would like to have

f(0, y) = ⟨f(0, y),0,0⟩
f(x + 1, y) = ⟨f(x + 1, y), f(x,σ1[x, y]), f(x,σ2[x, y])⟩.

The function f can be defined explicitly by f(x, y) = π1f(x, y).

1.6.4 Dyadic representation of natural numbers. The dyadic succes-
sors are unary p.r. functions x1 and x2 explicitly defined by

x1 = 2x + 1 x2 = 2x + 2.

It is not difficult to see that every natural number has a unique representa-
tion as a dyadic numeral which are terms built up from the constant 0 by
applications of dyadic successors. Some examples:

0 = 0 012 = 2(2 × 0 + 1) + 2 = 4
01 = 2 × 0 + 1 = 1 021 = 2(2 × 0 + 2) + 1 = 5
02 = 2 × 0 + 2 = 2 022 = 2(2 × 0 + 2) + 2 = 6

011 = 2(2 × 0 + 1) + 1 = 3 0111 = 2(2(2 × 0 + 1) + 1) + 1 = 7.

1.6.5 Dyadic size. The unary function ∣x∣ yields the number of dyadic
successors in the dyadic representation of x. The dyadic size function satisfies

∣0∣ = 0
∣x1∣ = ∣x∣ + 1
∣x2∣ = ∣x∣ + 1

and it is defined by course of values recursion as a p.r. function by

∣0∣ = 0
∣x + 1∣ = ∣x ÷ 2∣ + 1.

The following property will be needed later:

∣x∣ < n↔ x + 1 < 2n.



24 1 Primitive Recursive Functions

1.6.6 Dyadic concatenation. The binary function x ⋆ y yields a number
which dyadic representation is obtained from the dyadic representations of x
and y by appending the digits of y after the digits of x. The dyadic concate-
nation function x ⋆ y satisfies the identities

x ⋆ 0 = x

x ⋆ y1 = (x ⋆ y)1
x ⋆ y2 = (x ⋆ y)2

and it is defined explicitly as a p.r. function by

x ⋆ y = x2∣y∣ + y.

1.6.7 Selector function for recursive arguments. By xi(x) we denote
the binary function which computes the recursive argument of the recursive
application of f at position indexed by the dyadic path i in the computation
tree for f(x, y). The function satisfies

x0(x) = x

xi1(x) = xi(x) � 1
xi2(x) = xi(x) � 1

and it is defined explicitly as a p.r. function by

xi(x) = x � ∣i∣ .

1.6.8 Selector function for parameters. The ternary function yi(x, y)
computes the parameter of the recursive application of f at position indexed
by the dyadic path i in the computation tree for f(x, y). The function satisfies

y0(x, y) = y

yi1(x, y) = σ1[xi1(x),yi(x, y)]
yi2(x, y) = σ2[xi2(x),yi(x, y)]

and it is defined by course of values recursion on i as a p.r. function:

y0(x, y) = y

yi+1(x, y) = D((i + 1) mod 2, σ1[xi+1(x),yi÷2(x, y)], σ2[xi+1(x),yi÷2(x, y)]).

1.6.9 Course of values subtree function. The ternary function f(x, y).i
returns the subtree of the computation tree for f(x, y) at position indexed
by the dyadic path i. It has the following basic properties:



1.6 Recursion with Parameter Substitution 25

∣i∣ = x→ f(x, y).i = ⟨ρ[yi(x, y)],0,0⟩
∣i∣ < x→ f(x, y).i =

⟨τ[xi(x) � 1, π1(f(x, y).i1), π1(f(x, y).i2),yi(x, y)],

f(x, y).i1, f(x, y).i2⟩.

The course of values subtree function f(x, y).i for f is defined by backward
recursion on the difference 2x � 1 � i as a p.r. function by

i ≥ 2x � 1→ f(x, y).i = ⟨ρ[yi(x, y)],0,0⟩
i < 2x � 1→ f(x, y).i = ⟨τ[xi(x) � 1, π1(f(x, y).i1), π1(f(x, y).i2),yi(x, y)],

f(x, y).i1, f(x, y).i2⟩.

The composition property of the course of values subtree function is

∣i ⋆ j∣ ≤ x→ f(x, y).(i ⋆ j) = f(xi(x),yi(x, y)).j.

1.6.10 Course of values function. The binary function f(x, y) returns
the computation tree for f(x, y). The function satisfies

f(0, y) = ⟨ρ[y],0,0⟩ (1)

f(x + 1, y) = ⟨τ[x, π1f(x,σ1[x, y]), π1f(x,σ2[x, y]), y],

f(x,σ1[x, y]), f(x,σ2[x, y])⟩

(2)

and it is defined explicitly with the help of the course of values subtree func-
tion f(x, y).i for f as follows

f(x, y) = f(x, y).0.

1.6.11 Theorem Primitive recursive functions are closed under primitive
recursion with parameter substitution for the case k = 2 and n = 1.

Proof. Let f be defined by primitive recursion with parameter substitution
from p.r. functions as in Par. 1.6.2. Let further f be its course of values
function as in Par. 1.6.10. We claim that we have

f(x, y) = π1f(x, y). (†1)

The function f is primitive recursive and so is f .
This is proved by induction on x as ∀y(†1). The base case follows from

f(0, y) = ρ[y] = π1⟨g(y),0,0⟩ 1.6.10(1)= π1f(0, y).



26 1 Primitive Recursive Functions

In the induction step take any y and we obtain

f(x + 1, y) = τ[x, f(x,σ1[x, y]), f(x,σ2[x, y]), y] 2×IH=
= τ[x, π1f(x,σ1[x, y]), π1f(x,σ2[x, y]), y] 1.6.10(2)= π1f(x + 1, y). ⊓⊔

Primitive Recursion with Parameter Substitution:
Case n = 1

1.6.12 Introduction. In this subsection we will investigate the schema of
primitive recursion with substitution in one parameter (n = 1), where arbi-
trary number of recursive applications are allowed:

f(0, y) = ρ[y]
f(x + 1, y) = τ [x, f(x,σ1[x, y]), . . . , f(x,σk+1[x, y]), y] .

1.6.13 Theorem Primitive recursive functions are closed under primitive
recursion with parameter substitution for the case n = 1.

Proof. It will be supplied later. ⊓⊔

Primitive Recursion with Parameter Substitution

1.6.14 Introduction. In this subsection we will investigate the schema of
primitive recursion with arbitrary number of parameters:

f(0, y⃗) = ρ[y⃗]
f(x + 1, y⃗) = τ [x, f(x, σ⃗1[x, y⃗]), . . . , f(x, σ⃗k[x, y⃗]), y⃗] .

We will prove the admissibility of the schema by reducing it to primitive
recursion with substitution in one parameter (see Thm. 1.6.16).

1.6.15 Contraction of parameters. We will reduce the above schema for
n ≥ 2 to a new one for a binary function ⟨f⟩(x, y) so that

⟨f⟩(x, y) = f (x, [y]n1 , . . . , [y]nn) .

The n parameters y⃗ ≡ y1, . . . , yn are replaced by a single parameter y. We will
call the number y = ⟨y⃗⟩ ≡ ⟨y1, . . . , yn⟩ the contraction of the numbers y⃗.

The contraction function ⟨f⟩(x, y) is defined by primitive recursion on x
with substitution in the (only) parameter y as a p.r. function by



1.6 Recursion with Parameter Substitution 27

⟨f⟩(0, y) = ρ [[y]n1 , . . . , [y]nn]
⟨f⟩(x + 1, y) = τ[x, ⟨f⟩(x, ⟨σ⃗1[x, [y]n1 , . . . , [y]nn]⟩), . . . ,

⟨f⟩(x, ⟨σ⃗k[x, [y]n1 , . . . , [y]nn]⟩), [y]n1 , . . . , [y]nn].

1.6.16 Theorem Primitive recursive functions are closed under primitive
recursion with parameter substitution.

Proof. Let f be defined by primitive recursion with parameter substitution
from p.r. functions as in Par. 1.6.14, where n ≥ 2.1 Let further ⟨f⟩ be its
contraction function as in Par. 1.6.15. We claim that we have

f(x, y⃗) = ⟨f⟩(x, ⟨y⃗⟩). (†1)

The function ⟨f⟩ is primitive recursive and so is f .
This is proved by induction on x as ∀y(†1). The base case follows from

f(0, y⃗) = ρ[y⃗] = ρ [[⟨y⃗⟩]n1 , . . . , [⟨y⃗⟩]nn] = ⟨f⟩(0, ⟨y⃗⟩).

In the induction step take any y⃗ and we obtain

f(x + 1, y⃗) = τ [x, f(x, σ⃗1[x, y⃗]), . . . , f(x, σ⃗k[x, y⃗]), y⃗] k×IH=
= τ [x, ⟨f⟩(x, ⟨σ⃗1[x, y⃗]⟩), . . . , ⟨f⟩(x, ⟨σ⃗k[x, y⃗]⟩), y⃗] =

= τ[x, ⟨f⟩(x, ⟨σ⃗1[x, [⟨y⃗⟩]n1 , . . . , [⟨y⃗⟩]nn]⟩), . . . ,

⟨f⟩(x, ⟨σ⃗k[x, [⟨y⃗⟩]n1 , . . . , [⟨y⃗⟩]nn]⟩), [⟨y⃗⟩]n1 , . . . , [⟨y⃗⟩]nn] =

= ⟨f⟩(x + 1, ⟨y⃗⟩). ⊓⊔

Course of Values Recursion with Parameter
Substitution

1.6.17 Introduction. In this subsection we will investigate the general
schema of course of values recursion with parameter substitution:

f(0, y⃗) = ρ[y⃗] (1)

f(x + 1, y⃗) = τ [x, f(ξ1[x, y⃗], σ⃗1[x, y⃗]), . . . , f(ξk[x, y⃗], σ⃗k[x, y⃗]), y⃗] , (2)

where
1 The case n = 0 is obvious and the case n = 1 follows from Thm. 1.6.13.



28 1 Primitive Recursive Functions

ξ1[x, y⃗] ≤ x . . . ξk[x, y⃗] ≤ x. (3)

We will prove the admissibility of the schema by reducing it to primitive
recursion with parameter substitution (see Thm. 1.6.20).

1.6.18 Approximation function. We will introduce the function f(x, y⃗)
as primitive recursive with the help of its approximation function f+(z, x, y⃗).
The additional argument z plays the role of the depth of recursion counter.
It estimates the depth of recursion needed to compute the value f(x, y⃗). If
z is sufficiently large then we have f+(z, x, y⃗) = f(x, y⃗). As we will see below
every number z > x gives us sufficient estimation of the depth of recursion.
This will allow us to define f explicitly by f(x, y⃗) = f+(x + 1, x, y⃗).

The (n+2)-ary function f+(z, x, y⃗) satisfies

f+(0, x, y⃗) = 0 (1)
f+(z + 1,0, y⃗) = ρ[y⃗] (2)

f+(z + 1, x + 1, y⃗) = τ[x,f+(z, ξ1[x, y⃗], σ⃗1[x, y⃗]), . . . ,

f+(z, ξk[x, y⃗], σ⃗k[x, y⃗]), y⃗],

(3)

and it is defined by primitive recursion on z with substitution in the param-
eters x, y⃗ as a p.r. function by

f+(0, x, y⃗) = 0

f+(z + 1, x, y⃗) = D(x, τ[x � 1, f+(z, ξ1[x � 1, y⃗], σ⃗1[x � 1, y⃗]), . . . ,

f+(z, ξk[x � 1, y⃗], σ⃗k[x � 1, y⃗]), y⃗], ρ[y⃗]).

1.6.19 Monotonicity of the approximation function. We have

x < z1 ∧ x < z2 → f+(z1, x, y⃗) = f+(z2, x, y⃗). (1)

The property asserts that the application f+(z, x, y⃗) yields the same result
for every number z > x.

Proof. The property is proved by induction on z1 as ∀x∀y⃗∀z2(1). ⊓⊔

1.6.20 Theorem Primitive recursive functions are closed under course of
values recursion with parameter substitution.

Proof. Let f be defined by course of values recursion with parameter substitu-
tion from p.r. functions as in Par. 1.6.17. Let further f+ be its approximation
function as in Par. 1.6.18. We claim that we have



1.6 Recursion with Parameter Substitution 29

f(x, y⃗) = f+(x + 1, x, y⃗). (†1)

The function f+ is primitive recursive and so is f .
The property is proved by complete mathematical induction on x as

∀y(†1). So take any y⃗ and consider two cases. If x = 0 then we have

f(0, y⃗) = ρ[y⃗] 1.6.18(2)= f+(0 + 1,0, y⃗).

If x = v + 1 for some v then ξi[v, y⃗] < v + 1 for each i = 1, . . . , k by 1.6.17(3).
We then obtain

f(v + 1, y⃗) = τ[v, f(ξ1[v, y⃗], σ⃗1[v, y⃗]), . . . , f(ξk[v, y⃗], σ⃗k[v, y⃗]), y⃗] k×IH=

= τ[v, f+(ξ1[v, y⃗] + 1, ξ1[v, y⃗], σ⃗1[v, y⃗]), . . . ,

f+(ξk[v, y⃗] + 1, ξk[v, y⃗], σ⃗k[v, y⃗]), y⃗] 1.6.19(1)=

= τ[v, f+(v + 1, ξ1[v, y⃗], σ⃗1[v, y⃗]), . . . ,

f+(v + 1, ξk[v, y⃗], σ⃗k[v, y⃗]), y⃗] 1.6.18(3)=
= f+(v + 1 + 1, v + 1, y⃗). ⊓⊔


