
36 1 Primitive Recursive Functions

1.8 Recursion with Measure

1.8.1 Introduction. For efficient computation computer programming re-
quires definitions of functions with almost arbitrary recursion. Since we do
not wish such extensions to be inconsistent we restrict ourselves to regular
recursive definitions. The condition of regularity for the recursive definition of
a form f(x⃗) = τ[f ; x⃗] means that there must be a measure µ[x⃗] in which the
recursion goes down; i.e. we have µ[ρ⃗] < µ[x⃗] for every recursive application
f(ρ⃗) in τ . Regular recursive definitions are discussed in the next section. In
this section we consider a slightly restrictive form of regular recursion.

Let τ[f ; x⃗] be a term with all free variables indicated, and let µ[x⃗] be a
measure. We call

f(x⃗) = τ[λ̇y⃗.D(µ[y⃗] <∗ µ[x⃗], f(y⃗),0); x⃗] (1)

the definition by (course of values) recursion with measure µ. Note that ev-
ery recursive application in (1) is surrounded by a guard guaranteeing the
decrease of recursive arguments in the measure µ. This means that every
recursive application f(ρ⃗) in τ is replaced by the term

D(µ[ρ⃗] <∗ µ[x⃗], f(ρ⃗),0).

In the sequel we will use the notation τ[[f]µx⃗; x⃗] (or even τ[[f]; x⃗]) as an
abbreviation for the term on the right-hand side of the identity (1).

1.8.2 The principle of measure induction. For every formula ϕ[x⃗] and
term µ[x⃗], the formula of induction on x⃗ with measure µ[x⃗] for ϕ is the
following one:

∀x⃗(∀y⃗(µ[y⃗] < µ[x⃗]→ ϕ[y⃗])→ ϕ[x⃗])→ ∀x⃗ϕ[x⃗]. (1)

We assume here that the variables y⃗ are different from x⃗ and that they do not
occur in ϕ. The formula ϕ and the term µ may contain additional variables
as parameters.

Note that for x⃗ ≡ x and µ[x] ≡ x, the schema of measure induction is just
the schema of complete induction.

1.8.3 Theorem The principle of measure induction holds for each formula.

Proof. The principle of measure induction 1.8.2(1) is reduced to mathemati-
cal induction as follows. Under the assumption that ϕ is µ-progressive:

∀x⃗(∀y⃗(µ[y⃗] < µ[x⃗]→ ϕ[y⃗])→ ϕ[x⃗]), (†1)

we first prove, by induction on n, the following auxiliary property



1.8 Recursion with Measure 37

∀z⃗(µ[z⃗] < n→ ϕ[z⃗]). (†2)

In the base case there is nothing to prove. In the induction step take any z⃗
such that µ[z⃗] < n+1 and consider two cases. If µ[z⃗] < n then we obtain ϕ[z⃗]
by IH. If µ[z⃗] = n then by instantiating of (†1) with x⃗ ∶= z⃗ we obtain

∀y⃗(µ[y⃗] < n→ ϕ[y⃗])→ ϕ[z⃗].

Now we apply IH to get ϕ[z⃗].
With the auxiliary property proved we obtain that ϕ[x⃗] holds for every x⃗

by instantiating of ∀n(†2) with n ∶= µ[x⃗] + 1 and z⃗ ∶= x⃗. ⊓⊔

1.8.4 Recursive definitions with measure. Let µ[x⃗] and τ[f ; x⃗] be
terms in which no other variables than the n indicated ones are free. Consider
the following definition of an n-ary function f :

f(x⃗) = τ[[f]µx⃗; x⃗], (1)

We say that f is defined by recursion with measure. Any such definition can
be viewed as a function operator taking all functions in the terms τ and µ
and yielding the function f as a result.

We keep the notation introduced in this paragraph fixed until Thm. 1.8.7,
where we prove that the class of primitive recursive functions is closed under
the operator of recursion with measure.

1.8.5 Approximation function. We wish to introduce the function f as
a p.r. function with the help of its approximation function f+(z, x⃗). The
additional argument z plays the role of the depth of recursion counter. It
estimates the depth of recursion needed to compute the value f(x⃗). If z is
sufficiently large then we have f(x⃗) = f+(z, x⃗). As we will see below every
number z > µ[x⃗] gives us sufficient estimation of the depth of recursion. This
will allow us to defined f explicitly by f(x⃗) = f+(µ[x⃗] + 1, x⃗).

The approximation function is introduced with the help of approximation
terms ρ+[f+; z, x⃗] which are defined for all subterms ρ of τ to satisfy:

x+
i ≡ xi (variable)

g(ρ1, . . . , ρk)+ ≡ g(ρ+1, . . . , ρ+k) (auxiliary function)
f(ρ1, . . . , ρn)+ ≡ f+(z, ρ+1, . . . , ρ

+
n). (recursive application)

We define f+ by the following nested simple recursion:

f+(0, x⃗) = 0 (1)

f+(z + 1, x⃗) = τ +[λ̇z1y⃗.D(µ[y⃗] <∗ µ[x⃗], f+(z, y⃗),0); z, x⃗]. (2)

The approximation function is primitive recursive by Thm. 1.7.15.



38 1 Primitive Recursive Functions

Below we will use the notation τ +[[f+]µz,x⃗; z, x⃗] (or even τ +[[f+]; z, x⃗]) as
an abbreviation for the term on the right-hand side of the equation (2). We
will also use the notation (ρ1, . . . , ρm)+ as an abbreviation for (ρ+1, . . . , ρ+m).

1.8.6 Monotonicity of the approximation function. We have

µ[x⃗] < z1 ≤ z2 → f+(z1, x⃗) = f+(z2, x⃗). (1)

The property asserts that the application f+(z, x⃗) yields the same result for
all numbers z > µ[x⃗].
Proof. The property is proved by induction on z2 as ∀x⃗∀z1(1). ⊓⊔

1.8.7 Theorem Primitive recursive functions are closed under recursion
with measure.

Proof. Let f be defined by recursion with measure as in Par. 1.8.4 from p.r.
functions. Let further f+ be its approximation function as in Par. 1.8.5. We
claim that we have

f(x⃗) = f+(µ[x⃗] + 1, x⃗). (†1)

The function f+ is primitive recursive and so is f .
The property is proved by measure induction on x⃗ with measure µ[x⃗]. So

take any x⃗ and prove by (the inner) induction on the structure of subterms
ρ[f ; x⃗] of τ the property

ρ[[f]; x⃗] = ρ+[[f+];µ[x⃗], x⃗]. (†2)

We continue by case analysis of ρ. The case when ρ ≡ f(θ⃗) follows from

D(µ[θ⃗[[f]; x⃗]] <∗ µ[x⃗], f(θ⃗[[f]; x⃗]),0) outer IH=

= D(µ[θ⃗[[f]; x⃗]] <∗ µ[x⃗], f+(µ[θ⃗[[f]; x⃗]] + 1, θ⃗[[f]; x⃗]),0) 1.8.6(1)=

= D(µ[θ⃗[[f]; x⃗]] <∗ µ[x⃗], f+(µ[x⃗], θ⃗[[f]; x⃗]),0) inner IH’s=

= D(µ[θ⃗+[[f+];µ[x⃗], x⃗]] <∗ µ[x⃗], f+(µ[x⃗], θ⃗+[[f+];µ[x⃗], x⃗]),0).

The remaining cases when ρ ≡ xi or ρ ≡ g(θ⃗) are straightforward. With the
auxiliary property proved the equality (†1) is obtained from

f(x⃗) 1.8.4(1)= τ[[f]; x⃗] (†2)= τ +[[f+];µ[x⃗], x⃗] 1.8.5(2)= f+(µ[x⃗] + 1, x⃗). ⊓⊔


