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1.6 Recursion with Parameter Substitution

1.6.1 Substitution in parameters. Suppose that

ρ[Ñy], τ[x, Ña, Ñy], Ñσ1[x, Ñy], . . . , Ñσk[x, Ñy]

are terms which do not apply f with all their free variables indicated. Consider
the (n+1)-ary function f satisfying

f(0, Ñy) = ρ[Ñy]
f(x + 1, Ñy) = τ[x, f(x, Ñσ1[x, Ñy]), . . . , f(x, Ñσk[x, Ñy]), Ñy].

We say that f is defined by recursion with parameter substitution.
At the end of this section we will show that primitive recursive functions

are closed under recursion with parameter substitution (see Thm. 1.6.12). In
fact, the claim will be proved for two instances of recursions with parameter
substitution: for the case when k = 1 or k = 2. Our method method of proof
will be perfectly general, however.

Recursion with Parameter Substitution: Case k = 1

1.6.2 Fixing notation. At the end of this subsection (see Thm. 1.6.5) we
will show that primitive recursive functions are closed under recursion with
parameter substitution for the case when k = 1. To simplify the discussion we
shall consider definitions with one parameter substitution (n = 1):

f(0, y) = g(y)
f(x + 1, y) = h�x, f(x,σ[x, y]), y�.

1.6.3 Auxiliary functions. The binary function xi(x) satisfies

x0(x) = x (1)
xi+1(x) = xi(x) � 1 (2)

and it is defined explicitly

xi(x) = x � i

as a primitive recursive function.
The ternary function yi(x, y) is defined by primitive recursion on i

y0(x, y) = y (3)
yi+1(x, y) = σ[xi+1(x),yi(x, y)] (4)

as a primitive recursive function.
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1.6.4 Course of values function. The ternary function f i(x, y) satisfies

i = x� f i(x, y) = ag�yi(x, y)�,0f (1)

i < x� f i(x, y) = τ<[xi(x) � 1, f i+1(x, y),yi(x, y)], (2)

where τ< is the term

τ<[x, a, y] � ah�x, π1(a), y�, af.

The function is defined by backward recursion as a p.r. function by

f i(x, y) =
¢̈̈
¦̈
¤̈
0 if i C x + 1,
τB[i, f i+1(x, y), x, y] if i < x + 1,

where τB is the term

τB[i, a, x, y] � D�i =� x, ag�yi(x, y)�,0f, τ<[xi(x) � 1, a,yi(x, y)]�.

We also have

i B x� f i(x, y) = f0�xi(x),yi(x, y)�. (3)

Proof. (1),(2): Directly from definition. (3): By backward induction on the
difference x � i as ∀y(3). So take any i, x, y such that i B x and consider two
cases. If i = x then we have

f i(x, y) (1)= ag�yi(x, y)�,0f 1.6.3(3)= ag�y0(0,yi(x, y))�,0f =
= f0�0,yi(x, y)� = f0�x � i,yi(x, y)� = f0�xi(x),yi(x, y)�.

If i < x then first note that we have

x1(xi(x)) = xi+1(x) (†1)
y1(xi(x),yi(x, y)) = yi+1(x, y). (†2)

Indeed, we have

x1(xi(x)) 1.6.3(2)= x0(xi(x)) � 1
1.6.3(1)= xi(x) � 1

1.6.3(2)= xi+1(x)
y1(xi(x),yi(x, y)) 1.6.3(4)= σ[x1(xi(x)),y0(xi(x),yi(x, y))] (†1),1.6.3(3)=

= σ[xi+1(x),yi(x, y)] 1.6.3(4)= yi+1(x, y).

We have i + 1 B x and thus

xi(x) � 1
1.6.3(2)= x1(xi(x)) (†1)= xi+1(x) = x � (i + 1) < x � i.
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Therefore

f1�xi(x),yi(x, y)� IH= f0�x1(xi(x)),y1(xi(x),yi(x, y))� (†1),(†2)=
= f0�xi+1(x),yi+1(x, y)�.

Note that the induction hypothesis is applied with yi(x, y) in place of y. This
means that we have

f1�xi(x),yi(x, y)� = f0�xi+1(x),yi+1(x, y)� . (†3)

The induction step follows from

f i(x, y) (2)= τ<[xi(x) � 1, f i+1(x, y),yi(x, y)] IH’s=
τ<�xi(x) � 1, f0�xi+1(x),yi+1(x, y)�,yi(x, y)� (†3)=
τ<�xi(x) � 1, f1�xi(x),yi(x, y)�,yi(x, y)� 1.6.3(1)(3)=
τ<�x0(xi(x)) � 1, f1�xi(x),yi(x, y)�,y0(xi(x),yi(x, y))� 1.6.4(2)=
f0�xi(x),yi(x, y)�. A@

1.6.5 Theorem Primitive recursive functions are closed under recursion
with parameter substitution for the case k = 1.

Proof. Let f be defined by the recursion with parameter substitution as in
Par. 1.6.2 from p.r. functions. Let further f be its course of values function
as in Par. 1.6.4. We claim that we have

f(x, y) = π1f0(x, y). (†1)

The function f is primitive recursive and so is f .
This is proved by induction on x as ∀y(†1). In the base case we have

f(0, y) = g(y) = π1`g(y),0e 1.6.3(3)= π1ag�y0(x, y)�,0f 1.6.4(1)= π1f0(0, y).

In the induction step first note that we have

x1(x + 1) = x (†2)
y1(x + 1, y) = σ[x, y]. (†3)

Indeed, we have

x1(x + 1) 1.6.3(2)= x0(x + 1) � 1
1.6.3(1)= x + 1 � 1 = x

y1(x + 1, y) 1.6.3(4)= σ[x1(x + 1),y0(x + 1, y)] (†2),1.6.3(3)= σ[x, y].

Now we may continue
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f(x + 1, y) = h�x, f(x,σ[x, y]), y� IH’s=
h�x, π1f0(x,σ[x, y]), y� (†2),(†3)=
h�x, π1f0�x1(x + 1),y1(x + 1, y)�, y� 1.6.4(3)=
h�x, π1f1�x + 1, y�, y� 1.6.3(1)(3)=
h�x0(x + 1) � 1, π1f1(x + 1, y),y0(x + 1, y)� 1.6.4(2)=
π1f0(x + 1, y). A@

Recursion with Parameter Substitution: Case k = 2

1.6.6 Fixing notation. At the end of this subsection (see Thm. 1.6.11) we
will show that primitive recursive functions are closed under recursion with
parameter substitution for the case when k = 2. To simplify the discussion we
shall consider definitions with one parameter substitution (n = 1):

f(0, y) = g(y)
f(x + 1, y) = h�x, f(x,σ1[x, y]), f(x,σ2[x, y]), y�.

1.6.7 Dyadic representation of natural numbers. The dyadic succes-
sors are unary p.r. functions x1 and x2 explicitly defined by

x1 = 2x + 1
x2 = 2x + 2.

It is not difficult to see that every natural number has a unique representa-
tion as a dyadic numeral which are terms built up from the constant 0 by
applications of dyadic successors. Example:

0 = 0 012 = 2(2 � 0 + 1) + 2 = 4
01 = 2 � 0 + 1 = 1 021 = 2(2 � 0 + 2) + 1 = 5
02 = 2 � 0 + 2 = 2 022 = 2(2 � 0 + 2) + 2 = 6

011 = 2(2 � 0 + 1) + 1 = 3 0111 = 2(2(2 � 0 + 1) + 1) + 1 = 7.

1.6.8 Dyadic size. The unary dyadic size function SxSd yields the number of
dyadic successors in the dyadic numeral denoting the number x. The function
satisfies the identities

S0Sd = 0 (1)
Sx1Sd = SxSd + 1 (2)
Sx2Sd = SxSd + 1 (3)

and it is defined by bounded minimalization
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SxSd = µn B x[x + 1 < 2n+1]
as a primitive recursive function. We also have

SxSd B n� x + 1 < 2n+1. (4)

Proof. We have n < 2n and therefore §x B nx + 1 < 2n+1 since it suffices to
take x �= n. From this and the definition we obtain

x + 1 < 2SxSd+1 (†1)

x + 1 < 2n+1 � SxSd B n. (†2)

(1): We have 0 + 1 < 2 = 20+1 and thus S0Sd B 0 by (†2); hence S0Sd = 0.
(2): From (†1) we obtain

x1 + 1 = x + 1 + x + 1 < 2SxSd+1 + 2SxSd+1 = 22SxSd+1 = 2SxSd+1+1

and thus Sx1Sd B SxSd + 1 by (†2). The reverse inequality is proved as follows.
From (†1) again we obtain

2(x + 1) = x1 + 1 < 2Sx1Sd+1 = 22Sx1Sd .

Hence x + 1 < 2Sx1Sd . It must be Sx1Sd x 0 and therefore x + 1 < 2Sx1Sd�1+1. Now
(†2) applies and we get SxSd B Sx1Sd � 1, or equivalently SxSd + 1 B Sx1Sd.

(3): This is proved similarly.
(4): If SxSd B n then x + 1 < 2SxSd+1 B 2n+1 by (†1). The reverse direction is,

in fact, the property (†2). A@

1.6.9 Auxiliary functions. The binary function xi(x) satisfies

x0(x) = x (1)
xi1(x) = xi(x) � 1 (2)
xi2(x) = xi(x) � 1 (3)

and it is defined explicitly

xi(x) = x � SiSd
as a primitive recursive function.

The ternary function yi(x, y) satisfies

y0(x, y) = y (4)
yi1(x, y) = σ1[xi1(x),yi(x, y)] (5)
yi2(x, y) = σ2[xi2(x),yi(x, y)] (6)

and it is defined by course of values recursion on i

y0(x, y) = y

yi+1(x, y) = D�(i + 1) mod 2, σ1[xi+1(x),yi/2(x, y)], σ2[xi+1(x),yi/2(x, y)]�
as a primitive recursive function.
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Proof. (1): By 1.6.8(1) we have x0(x) = x � S0Sd = x � 0 = x. (2): It follows from

xi1(x) = x � Si1Sd
1.6.8(2)= x � (SiSd + 1) = x � SiSd � 1 = xi(x) � 1.

(3): This is proved similarly.
(4): From definition. (5): It follows from

yi1(x, y) = y2i+1(x, y) = σ1[x2i+1(x),y2i/2(x, y)] = σ1[xi1(x),yi(x, y)].

(6): This is proved similarly. A@

1.6.10 Course of values function. The ternary function f i(x, y) satisfies

SiSd = x� f i(x, y) = ag�yi(x, y)�,0,0f (1)

SiSd < x� f i(x, y) = τ<[xi(x) � 1, f i1(x, y), f i2(x, y),yi(x, y)], (2)

where τ< is the term

τ<[x, a1, a2, y] � ah�x, π1(a1), π1(a2), y�, a1, a2f.

The function is defined by backward recursion as a p.r. function by

f i(x, y)
¢̈̈
¦̈
¤̈
0 if i C 2x+1 � 1,
τB[i, f i1(x, y), f i2(x, y), x, y] if i < 2x+1 � 1,

where τB is the term

τB[i, a1, a2, x, y] � D�SiSd =� x, ag�yi(x, y)�,0,0f, τ<[xi(x) � 1, a1, a2,yi(x, y)]�.

We also have

SiSd B x� f i(x, y) = f0�xi(x),yi(x, y)�. (3)

Proof. (1),(2): It follows from the definition by noting that we have

i < 2x+1 � 1� i + 1 < 2x+1 1.6.8(4)� SiSd B x.

(3): By backward induction on the difference x � SiSd as ∀y(3). So take any
i, x, y such that SiSd B x and consider two cases. If SiSd = x then we have

f i(x, y) (1)= ag�yi(x, y)�,0,0f 1.6.9(4)= ag�y0(0,yi(x, y))�,0,0f =
= f0�0,yi(x, y)� = f0�x � SiSd,yi(x, y)� = f0�xi(x),yi(x, y)�.

If SiSd < x then first note that we have
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x01(xi(x)) = xi1(x) , x02(xi(x)) = xi2(x) (†1)
y01(xi(x),yi(x, y)) = yi1(x, y) , y02(xi(x),yi(x, y)) = yi2(x, y). (†2)

For instance, we have

x01(xi(x)) 1.6.9(2)= x0(xi(x)) � 1
1.6.9(1)= xi(x) � 1

1.6.9(2)= xi1(x)
y01(xi(x),yi(x, y)) 1.6.9(5)= σ1[x01(xi(x)),y0(xi(x),yi(x, y))] (†1),1.6.9(4)=

= σ1[xi1(x),yi(x, y)] 1.6.9(5)= yi1(x, y).

We have Si1Sd = SiSd + 1 B x by 1.6.8(2) and thus

xi(x) � S01Sd
1.6.9(2)= x01(xi(x)) (†1)= xi1(x) = x � Si1Sd < x � SiSd .

Therefore

f01
�xi(x),yi(x, y)� IH= f0�x01(xi(x)),y01(xi(x),yi(x, y))� (†1),(†2)=

= f0�xi1(x),yi1(x, y)�.

Note that the induction hypothesis is applied with yi(x, y) in place of y. This
means that we have

f01
�xi(x),yi(x, y)� = f0�xi1(x),yi1(x, y)� (†3)

and by a similar argument also

f02
�xi(x),yi(x, y)� = f0�xi2(x),yi2(x, y)�. (†4)

The induction step follows from

f i(x, y) (2)= τ<[xi(x) � 1, f i1(x, y), f i2(x, y),yi(x, y)] IH’s=
τ<�xi(x) � 1, f0�xi1(x),yi1(x, y)�, f0�xi2(x),yi2(x, y)�,yi(x, y)� (†3),(†4)=
τ<�xi(x) � 1, f01

�xi(x),yi(x, y)�, f02
�xi(x),yi(x, y)�,yi(x, y)� 1.6.9(1)(4)=

τ<�x0(xi(x)) � 1, f01
�xi(x),yi(x, y)�, f02

�xi(x),yi(x, y)�,y0(xi(x),yi(x, y))� 1.6.10(2)=
f0�xi(x),yi(x, y)�. A@

1.6.11 Theorem Primitive recursive functions are closed under recursion
with parameter substitution for the case k = 2.

Proof. Let f be defined by the recursion with parameter substitution as in
Par. 1.6.6 from p.r. functions. Let further f be its course of values function
as in Par. 1.6.10. We claim that we have
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f(x, y) = π1f0(x, y). (†1)

The function f is primitive recursive and so is f .
This is proved by induction on x as ∀y(†1). In the base case we have

f(0, y) = g(y) = π1`g(y),0,0e 1.6.9(4)= π1ag�y0(x, y)�,0,0f 1.6.10(1)= π1f0(0, y).

In the induction step first note that we have

x01(x + 1) = x , x02(x + 1) = x (†2)
y01(x + 1, y) = σ1[x, y] , y02(x + 1, y) = σ2[x, y]. (†3)

Indeed, we have

x01(x + 1) 1.6.9(2)= x0(x + 1) � 1
1.6.9(1)= x + 1 � 1 = x

y01(x + 1, y) 1.6.9(5)= σ1[x01(x + 1),y0(x + 1, y)] (†2),1.6.9(4)= σ1[x, y].

Other conjuncts are proved similarly. Now we may continue

f(x + 1, y) = h�x, f(x,σ1[x, y]), f(x,σ2[x, y]), y� IH’s=
h�x, π1f0(x,σ1[x, y]), π1f0(x,σ2[x, y]), y� (†2),(†3)=
h�x, π1f0�x01(x + 1),y01(x + 1, y)�, π1f0�x02(x + 1),y02(x + 1, y)�, y� 1.6.10(3)=
h�x, π1f01

�x + 1, y�, π1f02
�x + 1, y�, y� 1.6.9(1)(4)=

h�x0(x + 1) � 1, π1f01(x + 1, y), π1f02(x + 1, y),y0(x + 1, y)� 1.6.10(2)=
π1f0(x + 1, y). A@

Recursion with Parameter Substitution: General Case

1.6.12 Theorem Primitive recursive functions are closed under recursion
with parameter substitution.

Proof. By inspection of the proof of Thms. 1.6.5 and 1.6.11. A@


