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1.8 Recursion with Measure

1.8.1 Introduction. For efficient computation computer programming re-
quires definitions of functions with almost arbitrary recursion. Since we do
not wish such extensions to be inconsistent we restrict ourselves to regular
recursive definitions. The condition of regularity for the recursive definition of
a form f(Ñx) = τ[f ; Ñx] means that there must be a measure µ[Ñx] in which the
recursion goes down; i.e. we have µ[Ñρ] < µ[Ñx] for every recursive application
f(Ñρ) in τ . Regular recursive definitions are discussed in the next section. In
this section we consider a slightly restrictive form of regular recursion.

Let τ[f ; Ñx] be a term with all free variables indicated, and let µ[Ñx] be a
measure. We call

f(Ñx) = τ[λ̇Ñy.D(µ[Ñy] <� µ[Ñx], f(Ñy),0); Ñx] (1)

the definition by (course of values) recursion with measure µ. Note that every
recursive application in (1) is surrounded by a guard guaranteeing the decrease
of recursive arguments in the measure µ. This means that every recursive
application f(Ñρ) in τ is replaced by the term

D(µ[Ñρ] <� µ[Ñx], f(Ñρ),0).

In the sequel we will use the notation τ�[f]µÑx; Ñx� (or even τ�[f]; Ñx�) as an
abbreviation for the term on the right-hand side of the identity (1).

1.8.2 The principle of measure induction. For every formula ϕ[Ñx] and
term µ[Ñx], the formula of induction on Ñx with measure µ[Ñx] for ϕ is the
following one:

∀Ñx�∀Ñy(µ[Ñy] < µ[Ñx]� ϕ[Ñy])� ϕ[Ñx]�� ∀Ñxϕ[Ñx]. (1)

We assume here that the variables Ñy are different from Ñx and that they do not
occur in ϕ. The formula ϕ and the term µ may contain additional variables
as parameters.

Note that for Ñx � x and µ[x] � x, the schema of measure induction is just
the schema of complete induction.

1.8.3 Theorem The principle of measure induction holds for each formula.

Proof. The principle of measure induction 1.8.2(1) is reduced to mathematical
induction as follows. Under the assumption that ϕ is µ-progressive:

∀Ñx�∀Ñy(µ[Ñy] < µ[Ñx]� ϕ[Ñy])� ϕ[Ñx]�, (†1)

we first prove, by induction on n, the following auxiliary property

∀Ñz(µ[Ñz] < n� ϕ[Ñz]). (†2)
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In the base case there is nothing to prove. In the induction step take any Ñz
such that µ[Ñz] < n+ 1 and consider two cases. If µ[Ñz] < n then we obtain ϕ[Ñz]
by IH. If µ[Ñz] = n then by instantiating of (†1) with Ñx �= Ñz we obtain

∀Ñy(µ[Ñy] < n� ϕ[Ñy])� ϕ[Ñz].

Now we apply IH to get ϕ[Ñz].
With the auxiliary property proved we obtain that ϕ[Ñx] holds for every Ñx

by instantiating of ∀n(†2) with n �= µ[Ñx] + 1 and Ñz �= Ñx. A@

1.8.4 Recursive definitions with measure. Let µ[Ñx] and τ[f ; Ñx] be terms
in which no other variables than the n indicated ones are free. Consider the
following definition of an n-ary function f :

f(Ñx) = τ�[f]µÑx; Ñx�, (1)

We say that f is defined by recursion with measure. Any such definition can
be viewed as a function operator taking all functions in the terms τ and µ
and yielding the function f as a result.

We keep the notation introduced in this paragraph fixed until Thm. 1.8.7,
where we prove that the class of primitive recursive functions is closed under
the operator of recursion with measure.

1.8.5 Approximation function. We wish to introduce the function f as a
p.r. function with the help of its approximation function f+(z, Ñx). The addi-
tional argument z plays the role of the depth of recursion counter. It estimates
the depth of recursion needed to compute the value f(Ñx). If z is sufficiently
large then we have f(Ñx) = f+(z, Ñx). As we will see below every number z A µ[Ñx]
gives us sufficient estimation of the depth of recursion. This will allow us to
defined f explicitly by f(Ñx) = f+(µ[Ñx] + 1, Ñx).

The approximation function is introduced with the help of approximation
terms ρ+[f+; z, Ñx] which are defined for all subterms ρ of τ to satisfy:

x+
i � xi (variable)

g(ρ1, . . . , ρk)+ � g(ρ+1, . . . , ρ+k) (auxiliary function)
f(ρ1, . . . , ρn)+ � f+(z, ρ+1, . . . , ρ

+
n). (recursive application)

We define f+ by the following nested simple recursion:

f+(0, Ñx) = 0 (1)

f+(z + 1, Ñx) = τ +[λ̇z1Ñy.D(µ[Ñy] <� µ[Ñx], f+(z, Ñy),0); z, Ñx]. (2)

The approximation function is primitive recursive by Thm. 1.7.1.
Below we will use the notation τ +[[f+]µz,Ñx; z, Ñx] (or even τ +[[f+]; z, Ñx]) as

an abbreviation for the term on the right-hand side of the equation (2). We
will also use the notation (ρ1, . . . , ρm)+ as an abbreviation for (ρ+1, . . . , ρ+m).
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1.8.6 Monotonicity of the approximation function. We have

µ[Ñx] < z1 B z2 � f+(z1, Ñx) = f+(z2, Ñx). (1)

The property asserts that the application f+(z, Ñx) yields the same result for
all numbers z A µ[Ñx].
Proof. The property is proved by induction on z2 as ∀Ñx∀z1(1). In the base
case there is nothing to prove. In the induction step, take any numbers Ñx, z1

such that µ[Ñx] < z1 B z2 + 1 and prove by inner induction of subterms ρ[f ; Ñx]
of the term τ the following identity

ρ+�[f+]; z1 � 1, Ñx� = ρ+�[f+]; z2, Ñx�. (†1)

We continue by the case analysis of ρ. If ρ � f(Ñθ) then by inner IH there are
numbers Ñy � y1, . . . , yn such that

θ+i �[f+]; z1 � 1, Ñx� = yi = θ+i �[f+]; z2, Ñx�

for every i = 1, . . . , n. We consider two subcases. The subcase µ[Ñy] C µ[Ñx] is
obvious. In the subcase µ[Ñy] < µ[Ñx] we have µ[Ñy] < z1 � 1 B z2 and thus

D�µ[Ñy] <� µ[Ñx], f+(z1 � 1, Ñy),0� = f+(z1 � 1, Ñy) outer IH= f+(z2, Ñy) =
= D�µ[Ñy] <� µ[Ñx], f+(z2, Ñy),0�.

The remaining cases when ρ � xi or ρ � g(Ñθ) are straightforward.
With the auxiliary property proved the induction step of the outer induc-

tion follows from

f+(z1, Ñx) = τ +�[f+]; z1 � 1, Ñx� (†1)= τ +�[f+]; z2, Ñx� = f+(z2 + 1, Ñx). A@

1.8.7 Theorem Primitive recursive functions are closed under recursion
with measure.

Proof. Let f be defined by recursion with measure as in Par. 1.8.4 from p.r.
functions. Let further f+ be its approximation function as in Par. 1.8.5. We
claim that we have

f(Ñx) = f+(µ[Ñx] + 1, Ñx). (†1)

The function f+ is primitive recursive and so is f .
The property is proved by measure induction on Ñx with measure µ[Ñx]. So

take any Ñx and prove by (the inner) induction on the structure of subterms
ρ[f ; Ñx] of τ the property

ρ�[f]; Ñx� = ρ+�[f+];µ[Ñx], Ñx�. (†2)
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We continue by case analysis of ρ. The case when ρ � f(Ñθ) follows from

D�µ�Ñθ[[f]; Ñx]� <� µ[Ñx], f�Ñθ[[f]; Ñx]�,0� outer IH=

= D�µ�Ñθ[[f]; Ñx]� <� µ[Ñx], f+�µ�Ñθ[[f]; Ñx]� + 1, Ñθ[[f]; Ñx]�,0� 1.8.6(1)=

= D�µ�Ñθ[[f]; Ñx]� <� µ[Ñx], f+�µ[Ñx], Ñθ[[f]; Ñx]�,0� inner IH’s=

= D�µ�Ñθ+[[f+];µ[Ñx], Ñx]� <� µ[Ñx], f+�µ[Ñx], Ñθ+[[f+];µ[Ñx], Ñx]�,0�.

The remaining cases when ρ � xi or ρ � g(Ñθ) are straightforward. With the
auxiliary property proved the equality (†1) is obtained from

f(Ñx) 1.8.4(1)= τ�[f]; Ñx� (†2)= τ +�[f+];µ[Ñx], Ñx� 1.8.5(2)= f+(µ[Ñx] + 1, Ñx). A@


