
Exercise 12: Arithmetization of Reductions II

12.1 Codes of defined recursive function symbols. We claim
that there is a binary primitive recursive predicate Cdf n(e) satisfying

Cdf n(e) iff e = pλn. τq for some defined R-function symbol λn. τ .

For that we need some auxiliary functions and predicates.
The predicate Nms(ts) holds if ts is a list of the codes of numerals.

The predicate is defined by course of values recursion as a primitive
recursive predicate:

Nms(0)
Nms 〈t, ts〉 ← Nm(t) ∧Nms(ts).

The ternary predicate Tm(t, rs, n) satisfies for all n ≥ 1 and for all
R-terms ρ1, . . . , ρk in the recursor fn and in the variables x1, . . . , xn:

predicate Tm(t, 〈pρ1q, . . . , pρkq, 0〉, n) holds iff there is a R-
term τ in the recursor fn and variables x1, . . . , xn such that

pτq = t • pρ1q • · · · • pρkq.

The predicate is defined by course of values recursion on t with sub-
stitution in parameters as a primitive recursive predicate:

Tm(xi, 0, n) ← 1 ≤ i ≤ n
Tm(0, 0, n)
Tm(S(t), 0, n) ← Tm(t, 0, n)
Tm(P(t), 0, n) ← Tm(t, 0, n)
Tm(D(t1, t2, t3), 0, n) ← Tm(t1, 0, n) ∧ Tm(t2, 0, n) ∧ Tm(t3, 0, n)
Tm(t1 • t2, rs, n) ←

Tm(t1, 〈t2, rs〉, n) ∧ Tm(t2, 0, n) ∧ ∃e∃ts t1 = e[[[ts]]] ∧ ¬Nm(t2)
Tm(t1 • t2, rs, n) ←

Tm(t1, 〈t2, rs〉, n) ∧ Tm(t2, 0, n) ∧ ¬∃e∃ts t1 = e[[[ts]]]
Tm(fm[[[ts]]], rs, n) ← m ≥ 1 ∧m = n ∧Nms(ts) ∧ L(ts) + L(rs) = m
Tm((λm. t)[[[ts]]], rs, n) ←

m ≥ 1 ∧Nms(ts) ∧ L(ts) + L(rs) = m ∧ Tm(t, 0,m)
Tm(gm

i [[[ts]]], rs, n) ← m ≥ 1 ∧Nms(ts) ∧ L(ts) + L(rs) = m

The predicate Cdf n(e) holding of the codes of n-ary defined re-
cursive function symbols is defined explicitly as a primitive recursive
predicate:

Cdf n(e) ↔ n ≥ 1 ∧ ∃t≤ e(e = λn. t ∧ ∧Tm(t, 0, n)).



12.2 Auxiliary functions and predicates. The function Ar(e)
takes the code e of a R-function symbol f and yields the arity of
f , i.e. we have

Ar(pfnq) = Ar(pλn.τq) = Ar(pgn
i q) = n.

The function is defined explicitly as a primitive recursive function:

Ar(fn) = n
Ar(λn. t) = n
Ar(gn

i ) = n.

The ternary iteration contraction function t •n rs satisfying

t •n 〈r1, . . . , rn〉 = t • r1 • · · · • rn

is defined by course of values recursion regular in rs with substitution
in parameter as a primitive recursive function:

t •1 r = t • r
t •n+2 〈r, rs〉 = t • r •n+1 rs

The binary application function e(ts) is such that the following
holds

pf(τ1, . . . , τn)q = pfq(〈pτ1q, . . . , pτnq〉)

for every R-term f(τ1, . . . , τn). We define the application function ex-
plicitly as a primitive recursive function:

e(ts) = e[[[0]]] •Ar(e) ts.


