
Exercise 11: Arithmetization of Reductions

11.1 Arithmetization of recursive terms. We arithmetize R-terms and
R-functions symbols with the following pair constructors:

xi = 〈0, i〉 (variables)
0 = 〈1, 0〉 (zero)
S(t) = 〈2, t〉 (successor)
P(t) = 〈3, t〉 (predecessor)
D(t1, t2, t3) = 〈4, t1, t2, t3〉 (conditional)
t1 • t2 = 〈5, t1, t2〉 (curried application)
e[[[ts]]] = 〈6, e, ts〉 (partial application)
fn = 〈0, n〉 (recursors)
λn. t = 〈1, n, t〉. (defined functions)

We postulate that the binary constructor • groups to the left, i.e. that t1•t2•t3
abbreviates (t1 • t2) • t3.

We assign to every R-term τ and to every R-function symbol f their codes
pτq and pfq inductively as follows:

pxiq = xi (1)
p0q = 0 (2)

pτ + 1q = S(pτq) (3)
pτ .− 1q = P(pτq) (4)

pD(τ1, τ2, τ3)q = D(pτ1q, pτ2q, pτ3q) (5)
pf(τ1, . . . , τn)q = pfq[[[〈pτ1q, . . . , pτkq, 0〉]]] • pτk+1q • · · · • pτnq (6)

where k is the maximal number such that
the terms τ1, . . . , τk are numerals

pfnq = fn (7)
pλn.τq = λn. pτq. (8)

11.2 Codes of numerals. Applications of functions are reduced when their
arguments are numerals. In order to recognize when the codes of arguments
are already reduced we will need a unary predicate Nm holding of the codes
of numerals, i.e. Nm(t) ↔ ∃x t = pxq. The predicate is primitive recursive
by parameterless course of values recursive definition:

Nm(0)
Nm S(t) ← Nm(t).

We will need a unary coding function pxq which takes a number x and
yields the code of the numeral x. The function is primitive recursive by prim-
itive recursive definition:

p0q = 0
px + 1q = S(pxq).

1



Its inverse Dc(t), called the decoding function, satisfies

Dc(pxq) = x. (1)

The function is primitive recursive by parameterless course of values recursive
definition:

Dc(0) = 0
Dc S(t) = Dc(t) + 1.

11.3 Contraction function. The binary contraction function t1 • t2 asso-
ciating to the left satisfies the identity

pf(τ1, . . . , τn)q = pfq[[[〈pτ1q, . . . , pτkq, 0〉]]] • pτk+1q • · · · • pτnq, (1)

where the terms τ1, . . . , τk are numerals, and it is defined by explicit definition
as a primitive recursive function:

e[[[ts]]] • t2 = e[[[ts ⊕ 〈t2, 0〉]]] ← Nm(t2)
t1 • t2 = t1 • t2 ← ¬(∃e∃ts t1 = e[[[ts]]] ∧Nm(t2)

)
.

11.4 Arithmetization of substitution function. The substitution func-
tion τ [λn.σ; ~x] is over recursive terms. Its arithmetization t[[[e; rs]]] is a ternary
function which takes the code t of the R-term τ [fn; x1, . . . , xn] with all free
recursors and free variables indicated, the code e of the n-ary function sym-
bol λn.σ and the list rs = 〈px1q, . . . , pxnq, 0〉 of the codes of the numerals
x1, . . . , xn, and yields the code of the R-term τ [λn.σ;x1, . . . , xn], i.e.

pτq[[[pλn.σq; 〈px1q, . . . , pxnq, 0〉]]] = pτ [λn.σ; x1, . . . , xn]q. (1)

The arithmetized substitution function is primitive recursive by course of
values definition regular in the first argument:

xi[[[e; rs]]] = (rs)i .−1

0[[[e; rs]]] = 0
S(t)[[[e; rs]]] = S(t[[[e; rs]]])
P(t)[[[e; rs]]] = P(t[[[e; rs]]])
D(t1, t2, t3)[[[e; rs]]] = D(t1[[[e; rs]]], t2[[[e; rs]]], t3[[[e; rs]]])
(t1 • t2)[[[e; rs]]] = t1[[[e; rs]]] • t2[[[e; rs]]]
fn[[[ts]]][[[e; rs]]] = e[[[ts]]]
(λn. t)[[[ts]]][[[e; rs]]] = (λn. t)[[[ts]]].

11.5 Auxiliary functions. We will also need two auxiliary functions Pn(t)
and Dn(t1, t2, t3) satisfying

Pn(pxq) = px .− 1q (1)
Dn(pxq, t2, t3) = D(x, t2, t3). (2)

The functions are defined explicitly as a primitive recursive functions:

2



Pn(0) = 0
Pn S(t) = t

Dn(0, t2, t3) = t3
Dn(S(t1), t2, t3) = t2.

11.6 Arithmetization of one-step reduction. We intend to define a
unary function Rd satisfying:

Rd(pxq) = pxq (1)
for every ρ, if τ B1 ρ then Rd(pτq) = pρq. (2)

The function Rd is defined as primitive recursive by parameterless course of
values definition:

Rd(0) = 0
Rd S(t) = S Rd(t)
Rd P(t) = Pn(t) ← Nm(t)
Rd P(t) = P Rd(t) ← ¬Nm(t)
Rd D(t1, t2, t3) = Dn(t1, t2, t3) ← Nm(t1)
Rd D(t1, t2, t3) = D(Rd(t1), t2, t3) ← ¬Nm(t1)
Rd(t1 • t2) = t1 • Rd(t2) ← ∃e∃ts t1 = e[[[ts]]]
Rd(t1 • t2) = Rd(t1) • t2 ← ¬∃e∃ts t1 = e[[[ts]]]
Rd (λn. t)[[[ts]]] = t[[[λn. t; ts]]].

11.7 Arithmetization of reductions. The binary iteration of the reduc-
tion function Rdk(t) defined by

Rd0(t) = t

Rdk+1(t) = Rd Rdk(t)

is a primitive recursive function. Properties 11.6(1)(2) generalizes to

Rdk(pxq) = pxq (1)

for every τ , if τ Bk ρ then Rdk(pτq) = pρq. (2)

3


