Arithmetization of Reductions

1 Arithmetization of recursive terms. We arithmetize R-terms and R-
functions symbols with the following pair constructors:

x; = (0,1) (variables)
0 =(1,0) (zero)
S(t) = (2,t) (successor)
P(t) = (3,t) (predecessor)
D(thtz,tg) = <4,t1,t2,t3> (conditional)
t1 @ty = (5,t1,ta) (curried application)
e[ts] = (6, ¢, ts) (partial application)
fo={(7,n) (recursors)
Aot = (8,n,t). (defined functions)

We postulate that the binary constructor e groups to the left, i.e. that t, et et3
abbreviates (t1 @ t2) @ t3.

We assign to every R-term 7 and to every R-function symbol f their codes
Tr77and " f7 inductively as follows:

T, ' =m;
0'=20
I_S( )—l — S(V_T_\)
"P(r)=P("77)
"D(11,72,73) =D, ", "137)
Tf(ry ) =T, T L 0)] @ T T e e,

where k is the maximal number such that

the terms 7, ..., 7, are numerals

’_fn—l = fn

A= Ayl T

2 Codes of numerals. Applications of functions are reduced when their
arguments are numerals. In order to recognize when the codes of arguments
are already reduced we will need a unary predicate Nm holding of the codes
of numerals, i.e. Nm(t) <> 3zt = 2. The predicate is primitive recursive
by parameterless course of values recursive definition:

Nm(0)
Nm S(t) < Nm(t).
We will need a unary coding function "z which takes a number z and

yields the code of the numeral . The function is primitive recursive by prim-
itive recursive definition:

r07=0
Tz 4+17=8("z).



Its inverse Dc(t), called the decoding function, satisfies
De(Tz™) = .

The function is primitive recursive by parameterless course of values recursive
definition:

Dc(0)=0
Dc S(t) = Dc(t) + 1.

3 Contraction function. The binary contraction function ¢, e to associat-
ing to the left satisfies the identity

Cf(r, ) =T, T, 0)] @ T e e T

where the terms 7, . .., 7, are numerals, and it is defined by explicit definition
as a primitive recursive function:

e[ts] @ ta = e[ts @ (t2,0)] < Nm(t2)
ty oty =ty oty + —(JeTtsty = efts] A Nm(ts)).

4 Arithmetization of substitution function. The substitution function
7[An.0; Z] is over recursive terms. Its arithmetization t[e; rs] is a ternary func-
tion which takes the code ¢ of the R-term 7[f,; 1, ..., z,] with all free recur-
sors and free variables indicated, the code e of the n-ary function symbol A,.c
and the list rs = ("z17,..., 2,7, 0) of the codes of the numerals 1, ..., 2z,
and yields the code of the R-term 7[\,.0; 21, ..., 2,], i.e.

T Ao s (T T2, L 0)] = T Aoz, @]

The arithmetized substitution function is primitive recursive by course of
values definition regular in the first argument:

z;[e; rs] = (7s);1

Olesrs] =0

S(t)[e; rs] = S(t[e; rs])

P(t)[e; rs] = P(t[e; rs])

D(tq,ta,t3)[e; rs] = D(t1]e; rs], tales rs], tsle; rs])

(t1 @ t2)[e; rs] = ti[e; rs] @ tafe; rs]

Fults]les rs] = e[ts]

(An-O)[ts][e; ms] = (Ap. )[Es].

5 Auxiliary functions. We will also need two auxiliary functions Pn(t)
and Dn(ty,to,t3) satisfying
Pn(Tz) ="z =17

Dn(’_gj, t2, td) = D(.’E, tg, td)

The functions are defined explicitly as a primitive recursive functions:



Pn(0) =0
Pn S(t) =

DTL(O, tz, tg) = t3
DTL(S(tl), tQ, tg) = tg.
6 Arithmetization of one-step reduction. We intend to define a unary
function Rd satisfying:
Rd(rg—\) — TQ"I
for every p, if 7 >1 p then Rd("77) ="p™.

The function Rd is defined as primitive recursive by parameterless course of
values definition:

RA(0) =
RAS(t) =S Rd(t)

RAP(t) = Pn(t) « Nm(t)
RAP(t) = P Rd(t) + ~Nm(t)

Rd D(tl,tg,tg) Dn(tl,tz,tg) «— Nm(tl)

Rd D(tl,tQ,t?,) D(Rd(tl)ﬂfzﬂfg) — ﬁNm(tl)
Rd(t; et3) =11 @ Rd(t2) + Jedtst = e[ts]
Rd(t; et2) = Rd(t1) @ to + —TFeTtsty = e[ts]
Rd (A, t)[ts] = t[An-t; ts].

7 Arithmetization of reductions. The iteration of Rd defined by

Rd°(t) =
RA**1(t) = Rd Rd*(t)

is a primitive recursive function. Properties of Rd generalizes to
de(l—g—l) =g
for every 7, if 7 >, p then Rd*("77) ="p™.
8 Codes of defined recursive function symbols. We claim that there
is a binary primitive recursive predicate Rf(n,e) satisfying
Rf(n,e) iff e =" A,. 77 for some defined R-function symbol A,. 7.

For that we need some auxiliary functions and predicates.
The predicate Nms(ts) holds if ¢s is a list of the codes of numerals. The
predicate is defined by course of values recursion as a p.r. predicate:

Nms(0)
Nms (t, ts) < Nm(t) A Nms(ts).
The ternary predicate Tm(t,rs,n) satisfies for all n > 1 and for all R-
terms p1, ..., pg in the recursor f, and in the variables x1,...,z,:



predicate Tm(t, ("p1 7, ..., pr ", 0),n) holds iff there is a R-term 7 in
the recursor f,, and variables z1,...,x, such that

r L

Ti=te p; e -0 p.

The predicate is defined by course of values recursion on ¢ with substitution
in parameters as a primitive recursive predicate:
Tm(xz;,0,n) «+1<i<n
Tm(0,0,n)
Tm(S(t),0,n) + Tm(t,0,n)
Tm(P(t),0,n) < Tm(t,0,n)
Tm(D(t1,t2,t3),0,n) < Tm(t1,0,n) A Tm(t2,0,n) A Tm(ts,0,n)
Tm(t; @ to, rs,n) <
Tm(ty, (t2,s),n) A Tm(t2,0,n) A Jedtsty = e[ts] A ~Nm(ta)
Tm(t, @ to, rs,n) <
Tm(ty, (ta, ms),n) A Tm(t2,0,n) A =Jedtst1 = e[ts]
Tm(fin[ts], rs,n) < m > 1Am =nA Nms(ts) A L(ts) + L(rs) =m
Tm((Ap. t)[ts], rs,n) <
m > 1A Nms(ts) A L(ts) + L(rs) = m A Tm(t,0,m)
The predicate Rf(n,e) holding of the codes of n-ary defined recursive
function symbols is defined explicitly as a primitive recursive predicate:

Rf(n,e) < n>1A3t<e(e= .t AANTmM(t,0,n)).

9 Auxiliary functions and predicates. The function Ar(e) takes the
code e of a R-function symbol f and yields the arity of f, i.e. we have

Ar(T5, ) = Ar(T A7) = Ar(Tgl'™) = n.
The function is defined explicitly as a primitive recursive function:

Ar(f,) =n
Ar(A,.t) =n.

The ternary iteration contraction function t e,, rs satisfying
te, (ri,...,mn) =terie---or,

is defined by course of values recursion regular in rs with substitution in
parameter as a primitive recursive function:

te,r=ter
t3n+2 <Ta TS> = tlrln-l-l rs

The binary application function e(ts) is such that the following holds
Ty ) =TT T )

for every R-term f(7,...,7,). We define the application function explicitly
as a primitive recursive function:

e(ts) = e[0] @ 4, ts.



