
1.8 Nested Simple Recursion 49

1.8 Nested Simple Recursion

1.8.1 Introduction. In this section we will investigate recursive definitions
for which parameters may be arbitrarily substituted for, even with nested
recursive applications. For instance:

f(0, y) = g(y)
f(x + 1, y) = h(x, f(x,σ[x, y, f(x, y)]), y).

Such recursion is called nested simple recursion (see [1, 2]).

1.8.2 Notation. Let τ[f] be a term which may apply an n-ary function
symbol f and x⃗ pairwise different n variables. We will use the special lambda

notation τ[λ̇x⃗.ρ[x⃗]], for the term obtained from τ by the replacement of all
applications f(θ⃗) in it by terms ρ[θ⃗].
1.8.3 Nested simple recursion. Let ρ[y⃗] and τ[f ;x, y⃗] are terms in which
no other variables than the indicated ones are free. Suppose that ρ does not
apply f . Consider the (n+1)-ary function f defined by

f(0, y⃗) = ρ[y⃗] (1)

f(x + 1, y⃗) = τ[λ̇x1y⃗.f(x, y⃗);x, y⃗]. (2)

We say that f is defined by nested simple recursion. The definition can be
viewed as a function operator which takes all auxiliary functions applied in
the terms ρ, τ and yields the function f as a result.

The fact that p.r. functions are closed under simple nested recursion will
be proved at the end of this section. The proof proceeds in stages. First, we
prove the claim for the scheme with two recursive applications (k = 2) and
one parameter (n = 1). This is proved in Thm. 1.8.11 by reducing the scheme
to course of values recursion with parameter substitution. Next, we extend
this result to the scheme with arbitrary number of recursive applications
(Thm. 1.8.14). Finally, we prove the claim for the scheme with arbitrary
number of parameters (Thm. 1.8.17).

We may assume that the function f is applied in τ at least once because
otherwise there would be nothing to prove. In order to simplify our discussion
we transform the equation (2) into equivalent one by ‘unnesting’ all recursive
applications of f in the term τ :

k

⋀
i=1

f(x, σ⃗i[x, y⃗, z⃗i−1]) = zi → f(x + 1, y⃗) = θ[x, z⃗, y⃗]. (3)

Here z⃗i abbreviates z1, . . . , zi and the terms σ1, . . . , σk, θ contain at most the
indicated variables and do not apply f .



50 1 Primitive Recursive Functions

Nested Simple Recursion: Case k = 2 and n = 1

1.8.4 Introduction. In this subsection we will investigate the scheme of
nested simple recursion with two different recursive applications (k = 2) and
one parameter (n = 1). The admissibility of the scheme in the class of p.r.
functions will be shown in Thm. 1.8.11.

We will fix the notation used in this subsection as follows. Let f be the
function defined by the following nested simple recursion:

f(0, y) = ρ[y] (1)

f(x + 1, y) = θ[x, f(x,σ1[x, y]), f(x,σ2[x, y, f(x,σ1[x, y])]), y] (2)

from p.r. functions. We claim that f is also primitive recursive. We will prove
this fact by reducing the scheme to previous recursive schemes.

1.8.5 The outline of the proof. We will introduce the function f as prim-
itive recursive by arithmetization of its computation trees in which we use
as computational rules the defining axioms 1.8.4(1)(2). The evaluation of the
application f(x, y) is recorded as a full binary tree of depth x+ 1 with labels
consisting of all applications f(xi, yi) which are needed to calculate the value
f(x, y).

Binary trees are coded as follows. The empty tree is coded by the number
0. A non-empty tree is coded by the number ⟨z, l, r⟩, where z is the label of its
root node, and l and r are the codes of its left and right subtree, respectively.
Note that if t is the code of a non-empty tree then the label of its root node
is the first projection of t, i.e. the number π1(t).

We intend to introduce the function f as primitive recursive with the help
of its course of values function f . The function f(x, y) yields the computation
tree for the application f(x, y). This can be expressed more formally by the
following properties of the course of values function:

f(0, y) = ⟨f(0, y),0,0⟩
f(x + 1, y) = ⟨f(x + 1, y), f(x,σ1[x, y]), f(x,σ2[x, y, f(x,σ1[x, y])])⟩.

We will show that the course of values function is primitive recursive. Hence
the explicit definition f(x, y) = π1f(x, y) will derive f as a p.r. function.

Note that the natural evaluation strategy for evaluating the application
f(x, y) corresponds to postorder traversal of the computation tree f(x, y).
Indeed, consider the computation tree from Fig. 1.5. The course of values
sequence of its labels

f(x0, y0), f(x1, y1), f(x2, y2), . . . , f(xj , yj), . . . , f(xi, yi), . . .



1.8 Nested Simple Recursion 51

consists of all applications which are needed to compute its root value.
The parameter yi of each application f(xi, yi) depends only on those val-
ues f(xj , yj) which are directly before it: j < i. We refer to the number i as
the (index of) position of the node f(xi, yi) in the computation tree. Note also
that the order in which the course of values sequence is sorted corresponds
to postorder traversal of the computation tree.

Let us now consider a finite sequence of full binary trees of depth x + 1

t0, t1, t2, . . . , ti, . . . , t2x+1∸1,

where each tree ti satisfies the following condition w.r.t. the application
f(x, y): every subtree of ti at position j < i is the computation tree for

the application f(xj , yj). Such trees will be called partial computation trees

for the application f(x, y). Note that the last tree t2x+1∸1 of the sequence is
in fact a computation tree for f(x, y).

This suggests the following method for building of the computation tree
f(x, y). We start by creating a ‘dummy’ full binary tree t0 of depth x + 1.
Suppose that after i < 2x+1-steps we get a partial computation tree ti for
f(x, y). The tree is updated at position i by f(xi, yi) whereby we obtain a
new partial computation tree ti+1. After 2x+1 steps we get the computation
tree f(x, y) for f(x, y).

f(x14, y14)

f(x6, y6)

f(x2, y2)

f(x0, y0) f(x1, y1)

f(x5, y5)

f(x3, y3) f(x4, y4)

f(x13, y13)

f(x9, y9)

f(x7, y7) f(x8, y8)

f(x12, y12)

f(x10, y10) f(x11, y11)

Fig. 1.5 Postorder traversal of a computation tree of depth 4

1.8.6 Full binary trees. The function Full(n) creates a full binary tree of
the depth n. The function is defined by primitive recursion as a p.r. function:

Full(0) = 0
Full(n + 1) = ⟨0,Full(n),Full(n)⟩.

1.8.7 Local node condition. The application V (x, y, l, r) determines the
correct value f(x, y) from the subtrees l and r of a partial computation tree⟨z, l, r⟩ for f(x, y). The function is primitive recursive by the following explicit
definition (with monadic discrimination):



52 1 Primitive Recursive Functions

V (0, y, l, r) = ρ[y]
V (x + 1, y, l, r) = θ[x,π1(l),π1(r), y]

1.8.8 Local update. The 4-ary function U (t, i, x, y) updates the partial
computation tree t for f(x, y) at position i by f(xi, yi). The function has the
following basic properties

i < 2x ∸ 1 → U (⟨z, l, r⟩, i, x, y) = ⟨z,U (l, i, x ∸ 1, σ1[x ∸ 1, y]), r⟩ (1)

j < 2x ∸ 1→ U (⟨z, l, r⟩,2x ∸ 1 + j, x, y) =
⟨z, l,U (r, j, x ∸ 1, σ2[x ∸ 1, y,π1(l)])⟩ (2)

U (⟨z, l, r⟩,2x+1 ∸ 2, x, y) = ⟨V (x, y, l, r), l, r⟩. (3)

Note that both ’recursive’ applications of the function U on the right-hand
side of the conditional equations (1) and (2) are applied to lesser arguments l <⟨z, l, r⟩ and r < ⟨z, l, r⟩ than the one on the left. We will use this observation to
find a course of values recursive definition of U as follows. The transformation
of the specification properties into course of values derivation of U is based
on the following simple properties of the projection functions:

∃z∃l∃r t = ⟨z, l, r⟩↔ π2(t) ≠ 0
t = ⟨z, l, r⟩→ z = π1(t) ∧ l = π1π2(t) ∧ r = π2

2(t)
π1(t + 1) ≤ t ∧ π1π2(t + 1) ≤ t ∧ π2

2(t + 1) ≤ t.
Now let ξ be the term

ξ[t, l1, r1, i, x, y] ≡ D(π2(t),
D(i+1 <∗ 2x,
⟨π1(t), l1,π2

2(t)⟩,
D(i+2 <∗ 2x+1,
⟨π1(t),π1π2(t), r1⟩,
⟨V (x, y,π1π2(t),π2

2(t)),π1π2(t),π2
2(t)⟩)),0).

The function U (t, i, x, y) is defined by course of values recursion on t with
substitution in parameters as a p.r. function by



1.8 Nested Simple Recursion 53

U (0, i, x, y) = 0
U (t + 1, i, x, y) = ξ[t + 1,U (π1π2(t + 1), i, x ∸ 1, σ1[x ∸ 1, y]),

U (π2
2(t + 1), i ∸ (2x ∸ 1), x ∸ 1, σ2[x ∸ 1, y,π2

1π2(t + 1)]),
i, x, y].

It is clear that the function U satisfies (1)-(3).

1.8.9 Global update. The 4-ary function Mi(x, y, t) updates the partial
computation tree t for the application f(x, y) at each position j < i by
f(xj , yj). The function is defined by primitive recursion on i as a p.r. func-
tion:

M0(x, y, t) = t
Mi+1(x, y, t) = U (Mi(x, y, t), i, x, y).

It has the following properties which will be needed in the sequel:

i + 1 ≤ 2x+1 →Mi(x + 1, y, ⟨z, l, r⟩) = ⟨z,Mi(x,σ1[x, y], l), r⟩ (1)

i + 1 ≤ 2x+1 ∧M2x+1∸1(x,σ1[x, y], l) = l1 →
M2x+1∸1+i(x + 1, y, ⟨z, l, r⟩) = ⟨z, l1,Mi(x,σ2[x, y,π1(l1)], r)⟩. (2)

Proof. (1): By induction on i. In the base case, clearly 0 + 1 ≤ 2x+1 and thus

M0(x + 1, y, ⟨z, l, r⟩) = ⟨z, l, r⟩ = ⟨z,M0(x,σ1[x, y], l), r⟩.
In the induction step, if (i + 1) + 1 ≤ 2x+1 then i + 1 ≤ 2x+1 and therefore

Mi+1(x + 1, y, ⟨z, l, r⟩) = U (Mi(x + 1, y, ⟨z, l, r⟩), i, x + 1, y) IH=
= U (⟨z,Mi(x,σ1[x, y], l), r⟩, i, x + 1, y) 1.8.8(1)=
= ⟨z,U (Mi(x,σ1[x, y], l), i, x, σ1[x, y]), r⟩ = ⟨z,Mi+1(x,σ1[x, y], l), r⟩.

(2): By induction on i. In the base case suppose that M2x+1∸1(x,σ1[x, y], l) =
l1. We clearly have 0 + 1 ≤ 2x+1 and thus

M2x+1∸1+0(x + 1, y, ⟨z, l, r⟩) =M2x+1∸1(x + 1, y, ⟨z, l, r⟩) (1)=
= ⟨z,M2x+1∸1(x,σ1[x, y], l), r⟩ = ⟨z, l1, r⟩ = ⟨z, l1,M0(x,σ2[x, y,π1(l1)], r)⟩.

In the induction step, assume (i+1)+1 ≤ 2x+1 and M2x+1∸1(x,σ1[x, y], l) = l1.
Then i + 1 ≤ 2x+1 and we obtain



54 1 Primitive Recursive Functions

M2x+1∸1+(i+1)(x + 1, y, ⟨z, l, r⟩) =M2x+1∸1+i+1(x + 1, y, ⟨z, l, r⟩) =
= U (M2x+1∸1+i(x + 1, y, ⟨z, l, r⟩),2x+1 ∸ 1 + i, x + 1, y) IH=
= U (⟨z, l1,Mi(x,σ2[x, y,π1(l1)], r)⟩,2x+1 ∸ 1 + i, x + 1, y) 1.8.8(2)=

= ⟨z, l1,U (Mi(x,σ2[x, y,π1(l1)], r), i, x, σ2[x, y,π1(l1)])⟩ =
= ⟨z, l1,Mi+1(x,σ2[x, y,π1(l1)], r)⟩. ⊓⊔

1.8.10 Course of values function. The binary function f(x, y) returns
the computation tree for f(x, y). The course of values function for f satisfies

f(0, y) = ⟨ρ[y],0,0⟩ (1)

f(x,σ1[x, y]) = l ∧ f(x,σ2[x, y,π1(l)]) = r →
f(x + 1, y) = ⟨θ[x,π1(l),π1(r), y], l, r⟩

(2)

and it is defined explicitly as a p.r. function by

f(x, y) =M2x+1∸1(x, y,Full(x + 1)).
Proof. (1): It follows from

f(0, y) =M20+1∸1(0, y,Full(0 + 1)) =M1(0, y,Full(1)) =M1(0, y, ⟨0,0,0⟩) =
= U (M0(0, y, ⟨0,0,0⟩),0,0, y) = U (⟨0,0,0⟩,0,0, y) 1.8.8(3)=
= ⟨V (0, y,0,0),0,0⟩ = ⟨ρ[y],0,0⟩.

(2): Suppose that

f(x,σ1[x, y]) = l
f(x,σ2[x, y,π1(l)]) = r.

Then, by definition, we have

M2x+1∸1(x,σ1[x, y],Full(x + 1)) = l (†1)

M2x+1∸1(x,σ2[x, y,π1(l)],Full(x + 1)) = r (†2)

and therefore

f(x + 1, y) =M2x+1+1∸1(x + 1, y,Full(x + 1 + 1)) =
=M2x+2∸2+1(x + 1, y, ⟨0,Full(x + 1),Full(x + 1)⟩) =
= U (M2x+2∸2(x + 1, y, ⟨0,Full(x + 1),Full(x + 1)⟩),2x+2 ∸ 2, x + 1, y) =



1.8 Nested Simple Recursion 55

= U (M2x+1∸1+(2x+1∸1)(x + 1, y, ⟨0,Full(x + 1),Full(x + 1)⟩),
2x+2 ∸ 2, x + 1, y) (†

1
), 1.8.9(2)=

= U (⟨0,M2x+1∸1(x,σ1[x, y],Full(x + 1)),
M2x+1∸1(x,σ2[x, y,π1(l)],Full(x + 1))⟩,2x+2 ∸ 2, x + 1, y) (†

1
), (†

2
)=

= U (⟨0, l, r⟩,2x+2 ∸ 2, x + 1, y) 1.8.8(3)= ⟨V (x + 1, y, l, r), l, r⟩ =
= ⟨θ[x,π1(l),π1(r), y], l, r⟩. ⊓⊔

1.8.11 Theorem Primitive recursive functions are closed under nested sim-

ple recursion for the case k = 2 and n = 1.

Proof. Let f be defined by nested simple recursion as in Par. 1.8.4 from p.r.
functions. Let further f be its course of values function as in Par. 1.8.10. We
claim that we have

f(x, y⃗) = π1f(x, y⃗). (1)

The function f is primitive recursive and so is f .
The property is proved by induction on x as ∀y(1). In the base case take

any y and we have

f(0, y) = ρ[y] = π1⟨g(y),0,0⟩ 1.8.10(1)= π1f(0, y).
In the induction step take any y and we obtain

f(x + 1, y) = θ[x, f(x,σ1[x, y]), f(x,σ2[x, y, f(x,σ1[x, y])]), y] IH=
= θ[x, f(x,σ1[x, y]),π1f(x,σ2[x, y, f(x,σ1[x, y])]), y] IH=
= θ[x,π1f(x,σ1[x, y]),π1f(x,σ2[x, y,π1f(x,σ1[x, y])]), y] 1.8.10(2)=
= π1f(x + 1, y). ⊓⊔



56 1 Primitive Recursive Functions

Nested Simple Recursion: Case n = 1

1.8.12 Introduction. In this subsection we will show that p.r. functions
are closed under the scheme of nested simple recursion with one parameter.
This will be proved in Thm. 1.8.14 by reducing the number of recursive appli-
cations. This leads eventually to nested simple recursion with one parameter
and two recursive applications.

We will fix the notation used in this subsection as follows. Let f be the
function defined by the following nested simple recursion

f(0, y) = ρ[y] (1)

k+1

⋀
i=1

f(x,σi[x, y, z⃗i−1]) = zi → f(x + 1, y) = θ[x, z1, . . . , zk+1, y] (2)

from p.r. functions. We claim that f is also primitive recursive.

1.8.13 Reduction of the number of recursive applications. We will
reduce the above definition for k ≥ 2 to a new one, where only k recursive
applications are allowed. This new definition is for a binary function f̂(u, v)
such that f̂(2x, y) = f(x, y) and it is of the form

f̂(0, v) = ρ[v]
k

⋀
i=1

f̂(u, σ̂i[u, v, w⃗i−1]) = wi → f̂(u + 1, v) = θ̂[u,w1, . . . ,wk, v]
for suitable terms θ̂[u, w⃗, v], σ̂1[u, v, w⃗0], . . . , σ̂k[u, v, w⃗k−1]. Here w⃗i abbrevi-
ates w1, . . . ,wi. Note that this is nested simple recursion on u with substitu-
tion in the parameter v with k recursive applications. We will take then the
identity f(x, y) = f̂(2x, y) as an alternative, explicit definition of f .

The idea behind reduction of recursive applications is as follows. We would
like to have f̂(2x, y) = f(x, y) and so it must be

k+1

⋀
i=1

f̂(2x,σi[x, y, z⃗i−1]) = zi → f̂(2(x + 1), y) = θ[x, z1, . . . , zk+1, y]. (1)

For the values of the form f̂(2x + 1, v) we require

k

⋀
i=1

f(x,σi[x, y, z⃗i−1]) = zi → f̂(2x + 1, ⟨1, y⟩) = ⟨z1, . . . , zk⟩
f̂(2x + 1, ⟨2, y, z⃗k⟩) = f(x,σk+1[x, y, z⃗k]).

Note that the application f̂(2x + 1, ⟨1, y⟩) returns a number which codes k

values f(x,σ1[x, y, z⃗0]), . . . , f(x,σk[x, y, z⃗k−1]) of the function f for some z⃗.



1.8 Nested Simple Recursion 57

These informal arguments can be rewritten without mentioning the func-
tion f as follows:

k

⋀
i=1

f̂(2x,σi[x, y, z⃗i−1]) = zi → f̂(2x + 1, ⟨1, y⟩) = ⟨z1, . . . , zk⟩ (2)

f̂(2x + 1, ⟨2, y, z⃗k⟩) = f̂(2x,σk+1[x, y, z⃗k]) (3)

f̂(2x + 2, y) = θ[x, [f̂(2x + 1, ⟨1, y⟩)]k
1
, . . . , [f̂(2x + 1, ⟨1, y⟩)]k

k
,

f̂(2x + 1, ⟨2, y, f̂(2x + 1, ⟨1, y⟩)⟩), y].
(4)

This means that the terms τ̂ , σ̂1, . . . , σ̂k. satisfy the properties

θ̂[2x + 1, z, zk+1, . . . , y] = θ [x, [z]k1 , . . . , [z]kk , zk+1, y] (5)

θ̂[2x, z1, . . . , zk, ⟨1, y⟩] = ⟨z1, . . . , zk⟩ (6)

θ̂[2x, zk+1, . . . , ⟨2, y, z⟩] = zk+1 (7)

and

σ̂1[2x + 1, y] = ⟨1, y⟩ (8)

σ̂2[2x + 1, y, z] = ⟨2, y, z⟩ (9)

k

⋀
i=1

σ̂i[2x, ⟨1, y⟩, z⃗i−1] = σi[x, y, z⃗i−1] (10)

σ̂1[2x, ⟨2, y, z⃗k⟩] = σk+1[x, y, z⃗k]. (11)

For that it is sufficient to set

θ̂[u,w1, . . . ,wk, v] ≡ D(umod 2, θ [u ÷ 2, [w1]k1 , . . . , [w1]kk ,w2, v] ,
D(π1(v) =∗ 1, ⟨w1, . . . ,wk⟩,w1))

and

σ̂1[u, v] ≡ D(umod 2, ⟨1, v⟩,
D(π1(v) =∗ 1, σ1[u ÷ 2,π2(v)],

σk+1[u ÷ 2,π1π2(v), [π2
2(v)]k1 , . . . , [π2

2(v)]kk]))



58 1 Primitive Recursive Functions

σ̂2[u, v,w1] ≡D(umod 2, ⟨2, v,w1⟩, σ2 [u ÷ 2,π2(v),w1])
σ̂i[u, v, w⃗i−1] ≡ σi [u ÷ 2,π2(v), w⃗i−1] for i = 3, . . . , k.

Proof. (5)-(11): Directly from definition. (2): Let us denote by z1, . . . , zk the

numbers such that f̂(2x,σi[x, y, z⃗i−1]) = zi for every i = 1, . . . , k. We then
have

f̂(2x, σ̂i[2x, ⟨1, y⟩, z⃗i−1]) (10)= f̂(2x,σi[x, y, z⃗i−1]) = zi (†1)

for every i = 1, . . . , k. From this we obtain

f̂(2x + 1, ⟨1, y⟩) (†
1
)= θ̂[2x, z1, . . . , zk, ⟨1, y⟩] (6)= ⟨z1, . . . , zk⟩.

(3): It follows from

f̂(2x + 1, ⟨2, y, z⃗k⟩) = θ̂[2x, f̂(2x, σ̂1[2x, ⟨2, y, z⃗k⟩]), . . . , ⟨2, y⟩] (11)=
= θ̂[2x, f̂(2x,σk+1[x, y, z⃗k]), . . . , ⟨2, y⟩] (7)= f̂(2x,σk+1[x, y, z⃗k]).

(4): It follows from

f̂(2x + 2, y) = f̂(2x + 1 + 1, y) =
= θ̂[2x + 1, f̂(2x + 1, σ̂1[2x + 1, y]),

f̂(2x + 1, σ̂2[2x + 1, y, f̂(2x + 1, σ̂1[2x + 1, y])]), . . . , y] (8),(9)=

= θ̂[2x + 1, f̂(2x + 1, ⟨1, y⟩), f̂(2x + 1, ⟨2, y, f̂(2x + 1, ⟨1, y⟩)⟩), . . . , y] (5)=
= θ[x, [f̂(2x + 1, ⟨1, y⟩)]k

1
, . . . , [f̂(2x + 1, ⟨1, y⟩)]k

k
,

f̂(2x + 1, ⟨2, y, f̂(2x + 1, ⟨1, y⟩)⟩), y].
We are now in position to prove (1). Suppose that

k+1

⋀
i=1

f̂(2x,σi[x, y, z⃗i−1]) = zi
Then by (2) and (3) we obtain

f̂(2x + 1, ⟨1, y⟩) = ⟨z1, . . . , zk⟩ (†2)

f̂(2x + 1, ⟨2, y, z⃗k⟩) = zk+1. (†3)



1.8 Nested Simple Recursion 59

We now have

f̂(2(x + 1), y) = f̂(2x + 2, y) (4)=
= θ[x, [f̂(2x + 1, ⟨1, y⟩)]k

1
, . . . , [f̂(2x + 1, ⟨1, y⟩)]k

k
,

f̂(2x + 1, ⟨2, y, f̂(2x + 1, ⟨1, y⟩)⟩), y] (†
2
),(†

3
)=

= θ[x, [⟨z1, . . . , zk⟩]k1 , . . . , [⟨z1, . . . , zk⟩]kk , zk+1, y] =
= θ[x, z1, . . . , zk, zk+1, y]. ⊓⊔

1.8.14 Theorem Primitive recursive functions are closed under nested sim-

ple recursion for the case n = 1.

Proof. The claim is proved by (meta-)induction on the number k of recursive
applications in the defining axiom 1.8.12(2). The case k = 0 is in fact explicit
definition with monadic discrimination on the first argument and it follows
from Thm. 1.2.5. The cases k = 1 or k = 2 follow from Thm. 1.8.11. So suppose
that the claim holds for the case k ≥ 2. We will prove that the claim holds
also for the case k + 1.

Let f be defined by nested simple recursion as in Par. 1.8.12 from p.r.
functions. Let further f̂ be the function from Par. 1.8.13. We claim that

f(x, y) = f̂(2x, y). (1)

The auxiliary function f̂ is primitive recursive and so is f .
The property is proved by induction on x as ∀y(1). In the base case take

any y and we have

f(0, y) = ρ[y] = f̂(0, y) = f̂(2 × 0, y).
In the induction step take any y and let us denote by z1, . . . , zk+1 the numbers
such that

k+1

⋀
i=1

f(x,σi[x, y, z⃗i−1]) = zi
By (k+1) applications of IH we obtain

k+1

⋀
i=1

f̂(2x,σi[x, y, z⃗i−1]) = zi.
We then have

f(x + 1, y) = θ[x, z1, . . . , zk+1, y] 1.8.13(1)= f̂(2(x + 1), y). ⊓⊔



60 1 Primitive Recursive Functions

Nested Simple Recursion

1.8.15 Introduction. In this subsection we will show that p.r. functions
are closed under the scheme of nested simple recursion with arbitrary number
of parameters. This will be proved in Thm. 1.8.17 by reducing it to nested
simple recursion with one parameter.

We will fix the notation used in this subsection as follows. Let f be the
function defined by the following nested simple recursion

f(0, y⃗) = ρ[y⃗] (1)

k

⋀
i=1

f(x, σ⃗i[x, y⃗, z⃗i−1]) = zi → f(x + 1, y⃗) = θ[x, z⃗, y⃗] (2)

from p.r. functions. We claim that f is also primitive recursive.
Below we will consider the case when the definition has at least two pa-

rameters, i.e. n ≥ 2. The case n = 0 is in fact parameterless primitive recursion
for which the claim has been already proved in Thm. 1.2.5. The case with
one parameter (n = 1) follows from Thm. 1.8.14.

1.8.16 Contraction of parameters. We will reduce the above scheme,
where n ≥ 2, to a new one for a binary function ⟨f⟩(x, y) so that

⟨f⟩(x, y) = f (x, [y]n1 , . . . , [y]nn) .
The n parameters y⃗ ≡ y1, . . . , yn are replaced by a single parameter y. We
will call the number y = ⟨y⃗⟩ ≡ ⟨y1, . . . , yn⟩ the contraction of the numbers y⃗.

The contraction function ⟨f⟩(x, y) is defined by nested simple recursion
on x with one parameter y as a p.r. function by

⟨f⟩(0, y) = ρ [[y]n1 , . . . , [y]nn] (1)

k

⋀
i=1

⟨f⟩(x, ⟨σ⃗i[x, [y]n1 , . . . , [y]nn , z⃗i−1]⟩) = zi →
⟨f⟩(x + 1, [y]n1 , . . . , [y]nn) = θ [x, z⃗, [y]n1 , . . . , [y]nn] .

(2)

1.8.17 Theorem Primitive recursive functions are closed under nested sim-

ple recursion.

Proof. Let f be defined by nested simple recursion as in Par. 1.8.15 from
p.r. functions, where the number of parameters is at least two (n ≥ 2).2 Let
further ⟨f⟩ be the contraction function of f from Par. 1.8.16. We claim that

f(x, y⃗) = ⟨f⟩(x, ⟨y⃗⟩). (1)

2 The cases n = 0 or n = 1 follow from Thm. 1.2.5 or Thm. 1.8.12, respectively.



1.8 Nested Simple Recursion 61

The auxiliary function ⟨f⟩ is primitive recursive and so is f .
The property is proved by induction on x as ∀y⃗(1). In the base case take

any y⃗ and we have

f(0, y⃗) = ρ[y⃗] = ρ [[⟨y⃗⟩]n1 , . . . , [⟨y⃗⟩]nn] = ⟨f⟩(0, ⟨y⃗⟩).
In the induction step take any y⃗ and let us denote by z⃗ the numbers such
that the following holds

k

⋀
i=1

f(x, σ⃗i[x, y⃗, z⃗i−1]) = zi.
By k applications of IH we obtain

k

⋀
i=1

⟨f⟩(x, ⟨σ⃗i[x, y⃗, z⃗i−1]⟩) = zi
and thus we have

k

⋀
i=1

⟨f⟩(x, ⟨σ⃗i[x, [⟨y⃗⟩]n1 , . . . , [⟨y⃗⟩]nn , z⃗i−1]⟩) = zi.
From this we obtain

f(x + 1, y⃗) = θ[x, z⃗, y⃗] = θ [x, z⃗, [⟨y⃗⟩]n1 , . . . , [⟨y⃗⟩]nn] = ⟨f⟩(x + 1, ⟨y⃗⟩). ⊓⊔


