
30 1 Primitive Recursive Functions

1.7 Recursion with Parameter Substitution

1.7.1 Introduction. In this section we will investigate recursive definitions
for which parameters change in recursive applications. This new scheme is
called recursion with parameter substitution.

1.7.2 Example of primitive recursion with parameter substitution.

Our first example of recursion with parameter substitution is the efficient
implementation of the sequence of Fibonacci (see Par. 1.5.2). Recall that the
fast program for the Fibonacci function

fib(0) = 0
fib(n + 1) = g(n,1,0)

is obtained with the help of the auxiliary ternary function g defined by

g(0, a, b) = a
g(n + 1, a, b) = g(n,a + b, a).

Note that the value g(n + 1, a, b) depends on the value g(n,a + b, a) from
the previous stage, where the terms a + b and a has been substituted for the
parameters a and b, respectively. We say that the function g(n,a, b) is defined
by primitive recursion on n with substitution in the parameters a and b.

1.7.3 Example of course of values recursion with parameter substi-

tution. The second example is the algorithm of Euclid for computing of the
greatest common divisor of two numbers:

gcd(0, y) = y

gcd(x + 1, y) = gcd(y mod (x + 1), x + 1),

which relies on the following property of divisibility:

y ≠ 0→ z ∣ x ∧ z ∣ y↔ z ∣ y ∧ z ∣ xmod y.

These two equations have a form of a course of values recursive definition
because the first argument decreases in the recursive application:

y mod (x + 1) ≤ x < x + 1.

The only difference between the above definition and the one discussed in
Sect. 1.5 is that in this case the parameter changes in recursion. Namely, the
term x+ 1 is substituted for the parameter y in the second equation. We say
that the function gcd(x, y) is defined by course of values recursion on x with
substitution in the parameter y.



1.7 Recursion with Parameter Substitution 31

1.7.4 Recursion with substitution in parameters. Suppose that

ρ[y⃗], τ[x, z⃗, y⃗], ξ1[x, y⃗], σ⃗1[x, y⃗], . . . , ξk[x, y⃗], σ⃗k[x, y⃗]
are terms which do not apply f with all their free variables indicated s.t.

T ⊢ ξ1[x, y⃗] ≤ x . . . T ⊢ ξk[x, y⃗] ≤ x.
Consider the (n+1)-ary function f satisfying

f(0, y⃗) = ρ[y⃗]
f(x + 1, y⃗) = τ [x, f(ξ1[x, y⃗], σ⃗1[x, y⃗]), . . . , f(ξk[x, y⃗], σ⃗k[x, y⃗]), y⃗] .

We say that f is defined by by (course of values) recursion with parameter
substitution. The definition can be viewed as a function operator which takes
all functions applied in the terms ρ, τ, ξ1, σ⃗1, . . . , ξk, σ⃗k and yields the function
f as a result.

The assertion that the class of primitive recursive functions is closed under
the operator of course of values recursion with parameter substitution will
be proved at the end of this section. The proof proceeds in stages. First, we
prove the result for the scheme of primitive recursion with parameter sub-
stitution with two recursive applications (k = 2) and one parameter (n = 1).
This is shown in Thm. 1.7.21 by reducing the scheme to backward recursion.
Next, we extend the result to primitive recursion with arbitrary number of
recursive applications (Thm. 1.7.24) and parameters (Thm. 1.7.27). Finally,
we show how to reduce course of values recursion with parameter substitution
to primitive recursion (Thm. 1.7.31).

Primitive Recursion with Parameter Substitution:

Case k = 1 and n = 1

1.7.5 Introduction. In this subsection we will investigate the scheme of
primitive recursion with substitution in one parameter (n = 1), where only
one recursive applications are allowed (k = 1). The fact that p.r. functions
are closed under such recursion will be proved in Thm. 1.7.11.

We will fix the notation used in this subsection as follows. Let f be the
function defined by the following recursion with parameter substitution

f(0, y) = ρ[y] (1)

f(x + 1, y) = τ[x, f(x,σ[x, y]), y] (2)

from p.r. functions. We claim that f is also primitive recursive. We will prove
this fact by reducing the scheme to backward recursion.



32 1 Primitive Recursive Functions

1.7.6 The outline of of the proof. We will introduce the function f as
primitive recursive by the arithmetization of computation sequences for f in
which we use as computational rules its defining axioms 1.7.5(1)(2). The com-
putation of the application f(x, y) can be visualized as a finite sequence with
labels consisting of all applications f(xi, yi) which are needed to compute
the value f(x, y).

We intend to introduce f with the help of its course of values function
f . The function f(x, y) yields the computation sequence for the application
f(x, y), i.e. we would like to have

f(0, y) = ⟨f(0, y),0⟩
f(x + 1, y) = ⟨f(x + 1, y), f(x,σ[x, y])⟩.

The function f can then be defined explicitly by

f(x, y) = f(x, y)[0]
as primitive recursive.

1.7.7 Selector function for recursive arguments. By xi(x) we denote
the binary function which computes the recursive argument of the recursive
application of f at position indexed by i in the computation sequence for
f(x, y). The function is defined explicitly as a p.r. function by

xi(x) = x ∸ i.
1.7.8 Selector function for parameters. The ternary function yi(x, y)
computes the parameter of the recursive application of f at position indexed
by i in the computation sequence for f(x, y). The function yi(x, y) is defined
by primitive recursion on i as primitive recursive by

y0(x, y) = y
yi+1(x, y) = σ[xi+1(x),yi(x, y)].

1.7.9 Partial course of values sequence. The ternary function f(x, y).i
returns the subsequence of the computation sequence for f(x, y) starting
from the position indexed i. The function is defined by backward recursion
on the difference x ∸ i as a p.r. function by

f(x, y).i = ⎧⎪⎪⎨⎪⎪⎩
⟨ρ[yi(x, y)],0⟩ if i ≥ x,

⟨τ[xi(x) ∸ 1, f(x, y).(i + 1)[0],yi(x, y)], f(x, y).(i + 1)⟩ if i < x.

The auxiliary course of values function satisfies

i ≤ x→ f(x, y).i = f(xi(x),yi(x, y)).0. (1)



1.7 Recursion with Parameter Substitution 33

Proof. By backward induction on the difference x ∸ i as ∀y(1). So take any
i, x, y such that i ≤ x and consider two cases. If i = x then we have

f(x, y).x = ⟨g(yx(x, y)),0⟩ = ⟨g(y0(0,yx(x, y))),0⟩ =
= f(0,yx(x, y)).0 = f(x ∸ x,yx(x, y)).0 = f(xx(x),yx(x, y)).0.

If i < x then first note that we have

x1xi(x) = xi+1(x) (†1)

y1(xi(x),yi(x, y)) = yi+1(x, y). (†2)

Indeed, we have

x1xi(x) = x ∸ i ∸ 1 = x ∸ (i + 1) = xi+1(x)
y1(xi(x),yi(x, y)) = σ[x1xi(x),y0(xi(x),yi(x, y))] (†1)=

= σ[xi+1(x),yi(x, y)] = yi+1(x, y).
We have i < i + 1 ≤ x and thus

xi(x) ∸ 1 = x ∸ i ∸ 1 = x ∸ (i + 1) < x ∸ i.
Therefore

f(xi(x),yi(x, y)).1 IH= f(x1xi(x),y1(xi(x),yi(x, y))).0 (†
1
),(†

2
)

=

= f(xi+1(x),yi+1(x, y)).0.
Note that the induction hypothesis is applied with yi(x, y) in place of y. This
means that we have

f(xi(x),yi(x, y)).1 = f(xi+1(x),yi+1(x, y)).0 . (†3)

The induction step follows from

f(x, y).i = ⟨τ[xi(x) ∸ 1, f(x, y).(i + 1)[0],yi(x, y)], f(x, y).(i + 1)⟩ IH=
⟨τ[xi(x) ∸ 1, f(xi+1(x),yi+1(x, y)).0,yi(x, y)], f(xi+1(x),yi+1(x, y)).0⟩ (†3)=
⟨τ[xi(x) ∸ 1, f(xi(x),yi(x, y)).1,yi(x, y)], f(xi(x),yi(x, y)).1⟩ =
⟨τ[x0xi(x) ∸ 1, f(xi(x),yi(x, y)).1,y0(xi(x),yi(x, y)), f(xi(x),yi(x, y)).1]⟩ =
f(xi(x),yi(x, y)).0. ⊓⊔

1.7.10 Course of values function. The binary function f(x, y) returns
the course of values sequence for f(x, y). The function satisfies



34 1 Primitive Recursive Functions

f(0, y) = ⟨ρ[y],0⟩ (1)

f(x + 1, y) = ⟨τ[x, f(x,σ[x, y])[0], y], f(x,σ[x, y])⟩ (2)

and it is defined explicitly with the help of the auxiliary course of values
function f(x, y).i for f as follows

f(x, y) = f(x, y).0.
Proof. (1): We have 0 ≥ 0 and thus

f(0, y) = f(0, y).0 = ⟨y0(0, ρ[y]),0⟩ = ⟨ρ[y],0⟩.
(2): First note that we have

x1(x + 1) = x + 1 ∸ 1 = x (†1)

y1(x + 1, y) = σ[x1(x + 1),y0(x + 1, y)] (†1)= σ[x, y]. (†2)

Clearly 0 < x + 1 and therefore

f(x + 1, y) = f(x + 1, y).0 =
= ⟨τ[x0(x + 1) ∸ 1, f(x + 1, y).1[0],y0(x + 1, y)], f(x + 1, y).1⟩ =
= ⟨τ[x, f(x + 1, y).1[0], y], f(x + 1, y).1⟩ 1.7.9(1)=
= ⟨τ[x, f(x1(x + 1),y1(x + 1, y))[0], y], f(x1(x + 1),y1(x + 1, y))⟩ (†1),(†2)=

= ⟨τ[x, f(x,σ[x, y])[0], y], f(x,σ[x, y])⟩. ⊓⊔

1.7.11 Theorem Primitive recursive functions are closed under primitive
recursion with parameter substitution for the case k = 1 and n = 1.

Proof. Let f be defined by recursion with parameter substitution as in
Par. 1.7.5 from p.r. functions. Let further f be its course of values function
as in Par. 1.7.10. We claim that we have

f(x, y) = f(x, y)[0]. (1)

The course of values function f is primitive recursive and so is f .
The property is proved by induction on x as ∀y(1). In the base case take

any y and we obtain

f(0, y) = ρ[y] = ⟨ρ[y],0⟩[0] 1.7.10(1)= f(0, y)[0].
In the induction step take any y and we have



1.7 Recursion with Parameter Substitution 35

f(x + 1, y) = τ[x, f(x,σ[x, y]), y] IH= τ[x, f(x,σ[x, y])[0], y] =
= ⟨τ[x, f(x,σ[x, y])[0], y], f(x,σ[x, y])⟩[0] 1.7.10(2)= f(x + 1, y)[0]. ⊓⊔

Primitive Recursion with Parameter Substitution:

Case k = 2 and n = 1

1.7.12 Introduction. In this subsection we will investigate the scheme of
primitive recursion with substitution in one parameter (n = 1), where only
two different recursive applications are allowed (k = 2). The fact that p.r.
functions are closed under such recursion will be proved in Thm. 1.7.21.

We will fix the notation used in this subsection as follows. Let f be the
function defined by the following recursion with parameter substitution

f(0, y) = ρ[y] (1)

f(x + 1, y) = τ[x, f(x,σ1[x, y]), f(x,σ2[x, y]), y] (2)

from p.r. functions. We claim that f is also primitive recursive. We will prove
this fact by reducing the scheme to backward recursion.

1.7.13 The outline of of the proof. We will introduce the function f

as primitive recursive by the arithmetization of computation trees for f in
which we use as computational rules its defining axioms 1.7.12(1)(2). The
computation of the application f(x, y) can be visualized as a binary tree with
labels consisting of all applications f(xi, yi) which are needed to compute the
value f(x, y).

Binary trees are coded as follows. The empty tree is coded by the number
0. A non-empty tree is coded by the number ⟨z, l, r⟩, where z is the label of its
root node, and l and r are the codes of its left and right subtrees, respectively.
Note that if t is the code of a non-empty tree then the label of its root node
is the first projection of t, i.e. the number π1(t).

We intend to introduce f with the help of its course of values function f .
The function f(x, y) yields the computation tree for the application f(x, y),
i.e. we would like to have

f(0, y) = ⟨f(0, y),0,0⟩
f(x + 1, y) = ⟨f(x + 1, y), f(x,σ1[x, y]), f(x,σ2[x, y])⟩.

The function f can then be defined explicitly by

f(x, y) = π1f(x, y)
as primitive recursive.



36 1 Primitive Recursive Functions

f(x, y)

f(x1, y1)

f(x11, y11)

f(x111, y111)
f(x1111, y1111)

f(x1112, y1112)

f(x112, y112)
f(x1121, y1121)

f(x1122, y1122)

f(x12, y12)

f(x121, y121)
f(x1211, y1211)

f(x1212, y1212)

f(x122, y122)
f(x1221, y1221)

f(x1222, y1222)

f(x2, y2)

f(x21, y21)

f(x211, y211)
f(x2111, y2111)

f(x2112, y2112)

f(x212, y212)
f(x2121, y2121)

f(x2122, y2122)

f(x22, y22)

f(x221, y221)
f(x2211, y2211)

f(x2212, y2212)

f(x222, y222)
f(x2221, y2221)

f(x2222, y2222)

Fig. 1.4 Computation tree of depth 5

Figure 1.4 shows an example of computation tree f(x, y) for the applica-
tion f(x, y). Note that each node of the tree has the form f(xi, yi) for some
word i over two-symbol alphabet Σ = {1,2}. The dyadic word i represents the
path from the root to that node in obvious manner. Note that we can easily
recover the arguments of the application f(xi, yi) from the arguments of the
application f(x, y) and the path i. Clearly, the recursive argument xi is the
difference between x and the and the length of the dyadic word i. Moreover

y∅ = y yi1 = σ1[xi ∸ 1, yi] yi2 = σ2[xi ∸ 1, yi].
This gives us simple recurrences for computing the parameter yi.

There is simple correspondence between dyadic words and the so-called
dyadic representation of natural numbers. It is easy to see that every natural
number has a unique representation as a dyadic numeral which are terms
built up from the constant 0 by applications of the dyadic successors

x1 = 2x + 1 x2 = 2x + 2.



1.7 Recursion with Parameter Substitution 37

This is called the dyadic representation of natural numbers. Dyadic repre-
sentation allows simple coding of dyadic words into natural numbers. For
instance, the code number of the dyadic word 221 is the number

0221 = 2 × (2 × (2 × 0 + 2) + 2) + 1 = 2 × 22 + 2 × 21 + 1 × 20 = 13.
Arithmetization is so straightforward that, from now on, we will usually iden-
tify dyadic words with their code numbers.

We intend to compute f(x, y) from bottom-up using backward recursion.
This is done with the help of the course of values subtree function f(x, y).i
which returns the subtree of the computation tree for f(x, y) at position
indexed by the dyadic path i. That is, we would like to have

π1f(x, y).i = f(xi, yi)
for every dyadic path i in the computation tree f(x, y). Hence

f(x, y) = π1f(x, y).0
and we can take the identity as an explicit definition of the course of values
function. Note that 0 is the code number of the empty dyadic word ∅.

1.7.14 Dyadic case analysis. Note that we have

x = 0 ∨ ∃y x = x1 ∨ ∃y x = x2. (1)

This is called the principle of dyadic case analysis on the number x.

1.7.15 Dyadic size. The unary function ∣x∣d yields the number of dyadic
successors in the dyadic representation of x. The dyadic size function satisfies

∣0∣d = 0 (1)

∣x1∣d = ∣x∣d + 1 (2)

∣x2∣d = ∣x∣d + 1 (3)

and it is defined by course of values recursion as a p.r. function by

∣0∣d = 0∣x + 1∣d = ∣x ÷ 2∣d + 1.
The following property will be needed later:

∣x∣d < n↔ x + 1 < 2n. (4)

In the sequel we will tacitly use the properties (1)-(3) of dyadic size.



38 1 Primitive Recursive Functions

1.7.16 Dyadic concatenation. The binary function x ⋆ y yields a num-
ber which dyadic representation is obtained from the dyadic representations
of x and y by appending the digits of y after the digits of x. The dyadic
concatenation function x ⋆ y satisfies the identities

x ⋆ 0 = x (1)

x ⋆ y1 = (x ⋆ y)1 (2)

x ⋆ y2 = (x ⋆ y)2 (3)

and it is defined explicitly as a p.r. function by

x ⋆ y = x2∣y∣d + y.

We will need the following distributive property:

∣x ⋆ y∣d = ∣x∣d + ∣y∣d . (4)

In the sequel we will tacitly use the properties (1)-(3) of dyadic concatenation.

1.7.17 Selector function for recursive arguments. By xi(x) we denote
the binary function which computes the recursive argument of the recursive
application of f at position indexed by the dyadic path i in the computation
tree for f(x, y). The function satisfies

x0(x) = x (1)

xi1(x) = xi(x) ∸ 1 (2)

xi2(x) = xi(x) ∸ 1 (3)

and it is defined explicitly as a p.r. function by

xi(x) = x ∸ ∣i∣d .
We will need the following composition property of the selector function:

⊢PA xi⋆j(x) = xjxi(x). (4)

In the sequel we will tacitly use the properties (1)-(3).

1.7.18 Selector function for parameters. The ternary function yi(x, y)
computes the parameter of the recursive application of f at position indexed
by the dyadic path i in the computation tree for f(x, y). The function satisfies

y0(x, y) = y (1)

yi1(x, y) = σ1[xi(x) ∸ 1,yi(x, y)] (2)

yi2(x, y) = σ2[xi(x) ∸ 1,yi(x, y)] (3)



1.7 Recursion with Parameter Substitution 39

and it is defined by course of values recursion on i as a p.r. function:

y0(x, y) = y
yi+1(x, y) =D((i + 1)mod 2, σ1[xi+1(x),yi÷2(x, y)], σ2[xi+1(x),yi÷2(x, y)]).
The following is the composition property of the parameter selector function:

yi⋆j(x, y) = yj(xi(x),yi(x, y)). (4)

In the sequel we will use the properties (1)-(3) without explicit reference.

1.7.19 Course of values subtree function. The ternary function f(x, y).i
returns the subtree of the computation tree for f(x, y) at position indexed
by the dyadic path i. It has the following basic properties:

∣i∣d = x→ f(x, y).i = ⟨ρ[yi(x, y)],0,0⟩ (1)

∣i∣d < x→ f(x, y).i = (2)

⟨τ[xi(x) ∸ 1,π1(f(x, y).i1),π1(f(x, y).i2),yi(x, y)],
f(x, y).i1, f(x, y).i2⟩.

The course of values subtree function f(x, y).i for f is defined by backward
recursion on the difference 2x ∸ 1 ∸ i as a p.r. function by

f(x, y).i =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⟨ρ[yi(x, y)],0,0⟩ if i ≥ 2x ∸ 1,

⟨τ[xi(x) ∸ 1,π1(f(x, y).i1),π1(f(x, y).i2),yi(x, y)],
f(x, y).i1, f(x, y).i2⟩. if i < 2x ∸ 1.

The composition property of the course of values subtree function is

∣i ⋆ j∣d ≤ x→ f(x, y).(i ⋆ j) = f(xi(x),yi(x, y)).j. (3)

Proof. (1),(2): Directly from definition by noting that

i < 2x ∸ 1⇔ i + 1 < 2x
1.7.15(4)⇔ ∣i∣d < x.

(3): By backward induction on the difference x ∸ ∣j∣d. So take any i, j, x such
that ∣i ⋆ j∣d ≤ x and consider two cases. If ∣i ⋆ j∣d = x then ∣i∣d + ∣j∣d = x by
1.7.16(4) and therefore ∣j∣d = x ∸ ∣i∣d = xi(x). We obtain

f(x, y).(i ⋆ j) (1)= ⟨ρ[yi⋆j(x, y)],0,0⟩ 1.7.18(4)= ⟨ρ[yj(xi(x),yi(x, y))],0,0⟩ (1)=
= f(xi(x),yi(x, y)).j



40 1 Primitive Recursive Functions

So suppose that ∣i ⋆ j∣d < x. We then have ∣i∣d + ∣j∣d < x by 1.7.16(4) and
therefore ∣j∣d < x ∸ ∣i∣d = xi(x) and

∣i ⋆ j1∣d 1.7.16(4)
= ∣i∣d + ∣j1∣d = ∣i∣d + ∣j∣d + 1 ≤ x.

From ∣j∣d < x we obtain ∣j∣d < ∣j∣d + 1 = ∣j1∣d ≤ x and thus x ∸ ∣j1∣d < x ∸ ∣j∣d.
Therefore

f(x, y).(i ⋆ j) (2)
=

= ⟨τ[xi⋆j(x) ∸ 1,π1(f(x, y).(i ⋆ j)1),π1(f(x, y).(i ⋆ j)2),yi⋆j(x, y)],
f(x, y).(i ⋆ j)1, f(x, y).(i ⋆ j)2⟩ 1.7.17(4),1.7.18(4)=

= ⟨τ[xjxi(x) ∸ 1,π1(f(x, y).(i ⋆ j1)),π1(f(x, y).(i ⋆ j2)),
yj(xi(x),yi(x, y))], f(x, y).(i ⋆ j1), f(x, y).(i ⋆ j2)⟩ 2×IH=

= ⟨τ[xjxi(x) ∸ 1,π1(f(xi(x),yi(x, y)).j1),π1(f(xi(x),yi(x, y)).j2),
yj(xi(x),yi(x, y))], f(xi(x),yi(x, y)).j1, f(xi(x),yi(x, y)).j2⟩ (2)=

= f(xi(x),yi(x, y)).j. ⊓⊔

1.7.20 Course of values function. The binary function f(x, y) returns
the computation tree for f(x, y). The function satisfies

f(0, y) = ⟨ρ[y],0,0⟩ (1)

f(x + 1, y) = ⟨τ[x,π1f(x,σ1[x, y]),π1f(x,σ2[x, y]), y],
f(x,σ1[x, y]), f(x,σ2[x, y])⟩

(2)

and it is defined explicitly with the help of the course of values subtree func-
tion f(x, y).i for f as follows

f(x, y) = f(x, y).0.
Proof. (1): We have ∣0∣d = 0 and thus

f(0, y) = f(0, y).0 1.7.19(1)
= ⟨ρ[y0(0, y)],0,0⟩ = ⟨ρ[y],0,0⟩.

(2): First note that the following holds

T ⊢ ∣i∣d ≤ x→ f(x, y).i = f(xi(x),yi(x, y)). (†1)

Indeed, if ∣i∣d ≤ x then ∣i ⋆ 0∣d = ∣i∣d ≤ x and therefore



1.7 Recursion with Parameter Substitution 41

f(x, y).i = f(x, y).(i ⋆ 0) 1.7.19(3)= f(xi(x),yi(x, y)).0 = f(xi(x),yi(x, y)).
Further note, for instance, that

x01(x + 1) = x0(x + 1) ∸ 1 = x + 1 ∸ 1 = x
y01(x + 1, y) = σ1[x0(x + 1) ∸ 1,y0(x + 1, y)] = σ1[x + 1 ∸ 1, y] = σ1[x, y],

and thus we have

x01(x + 1) = x ∧ x02(x + 1) = x (†2)

y01(x + 1, y) = σ1[x, y] ∧ y02(x + 1, y) = σ2[x, y]. (†3)

We have ∣0∣d = 0 < x + 1 and therefore

f(x + 1, y) = f(x + 1, y).0 1.7.19(2)
=

= ⟨τ[x0(x + 1) ∸ 1,π1(f(x + 1, y).01),π1(f(x + 1, y).02),y0(x + 1, y)],
f(x + 1, y).01, f(x + 1, y).02⟩ =

= ⟨τ[x,π1(f(x + 1, y).01),π1(f(x + 1, y).02), y],
f(x + 1, y).01, f(x + 1, y).02⟩ (†1)=

= ⟨τ[x,π1f(x01(x + 1),y01(x + 1, y)),π1f(x02(x + 1),y02(x + 1, y)), y],
f(x01(x + 1),y01(x + 1, y)), f(x02(x + 1),y02(x + 1, y))⟩ (†2),(†3)=

= ⟨τ[x,π1f(x,σ1[x, y]),π1f(x,σ2[x, y]), y], f(x,σ1[x, y]), f(x,σ2[x, y])⟩.
This proves the property (2). ⊓⊔

1.7.21 Theorem Primitive recursive functions are closed under primitive
recursion with parameter substitution for the case k = 2 and n = 1.

Proof. Let f be defined by recursion with parameter substitution as in
Par. 1.7.12 from p.r. functions. Let further f be its course of values func-
tion as in Par. 1.7.20. We claim that we have

f(x, y) = π1f(x, y), (1)

The function f is primitive recursive and so is f .
This is proved by induction on x as ∀y(1). The base case follows from

f(0, y) = ρ[y] = π1⟨g(y),0,0⟩ 1.7.20(1)= π1f(0, y).
In the induction step take any y and we obtain



42 1 Primitive Recursive Functions

f(x + 1, y) = τ[x, f(x,σ1[x, y]), f(x,σ2[x, y]), y] 2×IH=
= τ[x,π1f(x,σ1[x, y]),π1f(x,σ2[x, y]), y] 1.7.20(2)= π1f(x + 1, y). ⊓⊔

Primitive Recursion with Parameter Substitution:

Case n = 1

1.7.22 Introduction. In this subsection we will show that p.r. functions
are closed under the scheme of primitive recursion with substitution in one
parameter. This will be proved in Thm. 1.7.24 by reducing the number of
recursive applications. This leads eventually to primitive recursion with sub-
stitution in one parameter and two recursive applications.

We will fix the notation used in this subsection as follows. Let f be the
function defined by the following recursion with parameter substitution

f(0, y) = ρ[y] (1)

f(x + 1, y) = τ [x, f(x,σ1[x, y]), . . . , f(x,σk+1[x, y]), y] (2)

from p.r. functions. We claim that f is also primitive recursive.

1.7.23 Reduction of the number of recursive applications. We will
reduce the above definition for k ≥ 2 to a new one, where only k recursive
applications are allowed. This new definition is for a binary function f̂(u, v)
such that f̂(2x, y) = f(x, y) and it is of the form

f̂(0, v) = ρ[v]
f̂(u + 1, v) = τ̂ [u, f̂(u, σ̂1[u, v]), . . . , f̂(u, σ̂k[u, v]), v]

for suitable terms τ̂ [u, w⃗, v], σ̂1[u, v], . . . , σ̂k[u, v]. Note that this is primitive
recursion on u with substitution in the parameter v with k recursive appli-
cations. We will take then the identity f(x, y) = f̂(2x, y) as an alternative,
explicit definition of f .

The idea behind reduction of recursive applications is as follows. We would
like to have f̂(2x, y) = f(x, y) and so it must be

f̂(2(x + 1), y) = τ [x, f̂(2x,σ1[x, y]), . . . , f̂(2x,σk+1[x, y]), y] . (1)

For the values of the form f̂(2x + 1, v) we require

f̂(2x + 1, ⟨1, y⟩) = ⟨f(x,σ1[x, y]), . . . , f(x,σk[x, y])⟩
f̂(2x + 1, ⟨2, y⟩) = f(x,σk+1[x, y]).



1.7 Recursion with Parameter Substitution 43

Note that the application f̂(2x + 1, ⟨1, y⟩) returns a number which codes k

values f(x,σ1[x, y]), . . . , f(x,σk[x, y]) of the function f .
These informal arguments can be rewritten without mentioning the func-

tion f as follows:

f̂(2x + 1, ⟨1, y⟩) = ⟨f̂(2x,σ1[x, y]), . . . , f̂(2x,σk[x, y])⟩ (2)

f̂(2x + 1, ⟨2, y⟩) = f̂(2x,σk+1[x, y]). (3)

f̂(2x + 2, y) = τ[x, [f̂(2x + 1, ⟨1, y⟩)]k
1
, . . . , [f̂(2x + 1, ⟨1, y⟩)]k

k
,

f̂(2x + 1, ⟨2, y⟩), y]
(4)

This means that the terms τ̂ , σ̂1, . . . , σ̂k. satisfy the properties

τ̂[2x + 1, z, zk+1, . . . , y] = τ [x, [z]k1 , . . . , [z]kk , zk+1, y] (5)

τ̂[2x, z1, . . . , zk, ⟨1, y⟩] = ⟨z1, . . . , zk⟩ (6)

τ̂[2x, zk+1, . . . , ⟨2, y⟩] = zk+1 (7)

and

σ̂1[2x + 1, y] = ⟨1, y⟩ (8)

σ̂2[2x + 1, y] = ⟨2, y⟩ (9)

k

⋀
i=1

σ̂i[2x, ⟨1, y⟩] = σi[x, y] (10)

σ̂1[2x, ⟨2, y⟩] = σk+1[x, y]. (11)

For that it is sufficient to set

τ̂[u,w1, . . . ,wk, v] ≡ D(umod 2, τ[u ÷ 2, [w1]k1 , . . . , [w1]kk ,w2, v],
D(π1(v) =∗ 1, ⟨w1, . . . ,wk⟩,w1))

and

σ̂1[u, v] ≡ D(umod 2, ⟨1, v⟩,
D(π1(v) =∗ 1, σ1[u ÷ 2,π2(v)], σk+1[u ÷ 2,π2(v)]))

σ̂2[u, v] ≡D(umod 2, ⟨2, v⟩, σ2[u ÷ 2,π2(v)])
σ̂i[u, v] ≡ σi[u ÷ 2,π2(v)] for i = 3, . . . , k.



44 1 Primitive Recursive Functions

Proof. (5)-(11): Directly from definition. (2): It follows from

f̂(2x + 1, ⟨1, y⟩) =
= τ̂[2x, f̂(2x, σ̂1[2x, ⟨1, y⟩]), . . . , f̂(2x, σ̂k[2x, ⟨1, y⟩]), ⟨1, y⟩] (10)=
= τ̂[2x, f̂(2x,σ1[x, y]), . . . , f̂(2x,σk[x, y]), ⟨1, y⟩] (6)=
= ⟨f̂(2x,σ1[x, y]), . . . , f̂(2x,σk[x, y])⟩.

(3): It follows from

f̂(2x + 1, ⟨2, y⟩) = τ̂[2x, f̂(2x, σ̂1[2x, ⟨2, y⟩]), . . . , ⟨2, y⟩] (11)=
= τ̂[2x, f̂(2x,σk+1[x, y]), . . . , ⟨2, y⟩] (7)= f̂(2x,σk+1[x, y]).

(4): It follows from

f̂(2x + 2, y) = f̂(2x + 1 + 1, y) =
= τ̂[2x + 1, f̂(2x + 1, σ̂1[2x + 1, y]), f̂(2x + 1, σ̂2[2x + 1, y]), . . . , y] (8),(9)=
= τ̂[2x + 1, f̂(2x + 1, ⟨1, y⟩), f̂(2x + 1, ⟨2, y⟩), . . . , y] (5)=
= τ[x, [f̂(2x + 1, ⟨1, y⟩)]k

1
, . . . , [f̂(2x + 1, ⟨1, y⟩)]k

k
, f̂(2x + 1, ⟨2, y⟩), y].

We are now in position to prove (1):

f̂(2(x + 1), y) = f̂(2x + 2, y) (4)=
= τ[x, [f̂(2x + 1, ⟨1, y⟩)]k

1
, . . . , [f̂(2x + 1, ⟨1, y⟩)]k

k
, f̂(2x + 1, ⟨2, y⟩), y] (2),(3)=

= τ[x, f̂(2x,σ1[x, y]), . . . , f̂(2x,σk[x, y]), f̂(2x,σk+1[x, y]), y]. ⊓⊔

1.7.24 Theorem Primitive recursive functions are closed under primitive
recursion with parameter substitution for the case n = 1.

Proof. The claim is proved by (meta-)induction on the number k of recursive
applications in the defining axiom 1.7.22(2). The case k = 0 is in fact explicit
definition with monadic discrimination on the first argument and it follows
from Thm. 1.2.5. The cases k = 1 or k = 2 follow from Thm. 1.7.21. So suppose
that the claim holds for the case k ≥ 2. We will prove that the claim holds
also for the case k + 1.

Let f be defined by primitive recursion with parameter substitution as in
Par. 1.7.22 from p.r. functions. Let further f̂ be the function from Par. 1.7.23.
We claim that we have



1.7 Recursion with Parameter Substitution 45

f(x, y) = f̂(2x, y), (1)

The auxiliary function f̂ is primitive recursive and so is f .
The property is proved by induction on x as ∀y(1). In the base case take

any y and we have

f(0, y) = ρ[y] = f̂(0, y) = f̂(2 × 0, y).
In the induction step take any y and we obtain

f(x + 1, y) = τ[x, f(x,σ1[x, y]), . . . , f(x,σk+1[x, y]), y] (k+1)×IH=
= τ[x, f̂(2x,σ1[x, y]), . . . , f̂(2x,σk+1[x, y]), y] 1.7.23(1)=

= f̂(2(x + 1), y). ⊓⊔

Primitive Recursion with Parameter Substitution

1.7.25 Introduction. In this subsection we will show that p.r. functions are
closed under the scheme of primitive recursion with substitution in arbitrary
number of parameters. This will be proved in Thm. 1.7.27 by reducing it to
primitive recursion with substitution in one parameter.

We will fix the notation used in this subsection as follows. Let f be the
function defined by the following recursion with parameter substitution

f(0, y⃗) = ρ[y⃗] (1)

f(x + 1, y⃗) = τ [x, f(x, σ⃗1[x, y⃗]), . . . , f(x, σ⃗k[x, y⃗]), y⃗] (2)

from p.r. functions. We claim that f is also primitive recursive.
Below we will consider the case when the definition has at least two pa-

rameters, i.e. n ≥ 2. The case n = 0 is in fact parameterless primitive recursion
for which the claim has been already proved in Thm. 1.2.5. The case with
one parameter (n = 1) follows from Thm. 1.7.24.

1.7.26 Contraction of parameters. We will reduce the above scheme,
where n ≥ 2, to a new one for a binary function ⟨f⟩(x, y) so that

⟨f⟩(x, y) = f (x, [y]n1 , . . . , [y]nn) .
The n parameters y⃗ ≡ y1, . . . , yn are replaced by a single parameter y. We
will call the number y = ⟨y⃗⟩ ≡ ⟨y1, . . . , yn⟩ the contraction of the numbers y⃗.

The contraction function ⟨f⟩(x, y) is defined by primitive recursion on x

with substitution in the (only) parameter y as a p.r. function by



46 1 Primitive Recursive Functions

⟨f⟩(0, y) = ρ [[y]n1 , . . . , [y]nn]
⟨f⟩(x + 1, y) = τ[x, ⟨f⟩(x, ⟨σ⃗1[x, [y]n1 , . . . , [y]nn]⟩), . . . ,

⟨f⟩(x, ⟨σ⃗k[x, [y]n1 , . . . , [y]nn]⟩), [y]n1 , . . . , [y]nn].
1.7.27 Theorem Primitive recursive functions are closed under primitive
recursion with parameter substitution.

Proof. Let f be defined by primitive recursion with parameter substitution
as in Par. 1.7.25 from p.r. functions, where the number of parameters is at
least two (n ≥ 2).1 Let further ⟨f⟩ be the contraction function of f from
Par. 1.7.26. We claim that

f(x, y⃗) = ⟨f⟩(x, ⟨y⃗⟩). (1)

The auxiliary function ⟨f⟩ is primitive recursive and so is f .
The property is proved by induction on x as ∀y⃗(1). In the base case take

any y⃗ and we have

f(0, y⃗) = ρ[y⃗] = ρ [[⟨y⃗⟩]n1 , . . . , [⟨y⃗⟩]nn] = ⟨f⟩(0, ⟨y⃗⟩).
In the induction step take any y⃗ and we obtain

f(x + 1, y⃗) = τ [x, f(x, σ⃗1[x, y⃗]), . . . , f(x, σ⃗k[x, y⃗]), y⃗] k×IH=
= τ [x, ⟨f⟩(x, ⟨σ⃗1[x, y⃗]⟩), . . . , ⟨f⟩(x, ⟨σ⃗k[x, y⃗]⟩), y⃗] =
= τ[x, ⟨f⟩(x, ⟨σ⃗1[x, [⟨y⃗⟩]n1 , . . . , [⟨y⃗⟩]nn]⟩), . . . ,

⟨f⟩(x, ⟨σ⃗k[x, [⟨y⃗⟩]n1 , . . . , [⟨y⃗⟩]nn]⟩), [⟨y⃗⟩]n1 , . . . , [⟨y⃗⟩]nn] =
= ⟨f⟩(x + 1, ⟨y⃗⟩). ⊓⊔

Course of Values Recursion with Parameter

Substitution

1.7.28 Introduction. In this subsection we will show that p.r. functions are
closed under the general scheme of course of values recursion with parameter
substitution. This will be proved in Thm. 1.7.31 by it to primitive recursion
with parameter substitution.

We will fix the notation used in this subsection as follows. Let f be the
function defined by the following course of values recursion with parameter

1 The cases n = 0 or n = 1 follow from Thm. 1.2.5 or Thm. 1.7.22, respectively.



1.7 Recursion with Parameter Substitution 47

substitution

f(0, y⃗) = ρ[y⃗] (1)

f(x + 1, y⃗) = τ [x, f(ξ1[x, y⃗], σ⃗1[x, y⃗]), . . . , f(ξk[x, y⃗], σ⃗k[x, y⃗]), y⃗] (2)

from p.r. functions, where

ξ1[x, y⃗] ≤ x . . . ξk[x, y⃗] ≤ x. (3)

We claim that f is also primitive recursive.

1.7.29 Approximation function. We will introduce the function f(x, y⃗)
as primitive recursive with the help of its approximation function f +(z, x, y⃗).
The additional argument z plays the role of the depth of recursion counter. It
estimates the depth of recursion needed to compute the value f(x, y⃗). If z is
sufficiently large then we have f +(z, x, y⃗) = f(x, y⃗). As we will see below every
number z > x gives us sufficient estimation of the depth of recursion. This
will allow us to introduce f as primitive recursive by the following explicit
definition f(x, y⃗) = f +(x + 1, x, y⃗).

The (n+2)-ary function f +(z, x, y⃗) satisfies
f +(0, x, y⃗) = 0 (1)

f +(z + 1,0, y⃗) = ρ[y⃗] (2)

f +(z + 1, x + 1, y⃗) = τ[x,f +(z, ξ1[x, y⃗], σ⃗1[x, y⃗]), . . . ,
f +(z, ξk[x, y⃗], σ⃗k[x, y⃗]), y⃗],

(3)

and it is defined by primitive recursion on z with substitution in the param-
eters x, y⃗ as a p.r. function by

f +(0, x, y⃗) = 0
f +(z + 1, x, y⃗) =D(x, τ[x ∸ 1, f +(z, ξ1[x ∸ 1, y⃗], σ⃗1[x ∸ 1, y⃗]), . . . ,

f +(z, ξk[x ∸ 1, y⃗], σ⃗k[x ∸ 1, y⃗]), y⃗], ρ[y⃗]).
1.7.30 Monotonicity of the approximation function. We have

x < z1 ∧ x < z2 → f +(z1, x, y⃗) = f +(z2, x, y⃗). (1)

The property asserts that the application f +(z, x, y⃗) yields the same result
for every number z > x.
Proof. The property is proved by induction on z1 as ∀x∀y⃗∀z2(1). In the base
case there is nothing to prove. In the induction step take any numbers x, y⃗, z2



48 1 Primitive Recursive Functions

such that x < z1+1 and x < z2. Then z2 = z′2+1 for some z′2. We consider two
cases. If x = 0 then we have

f +(z1 + 1,0, y⃗) 1.7.29(2)= ρ[y⃗] 1.7.29(2)= f +(z′2 + 1,0, y⃗).
If x = x′ +1 for some x′ then ξi[x′, y⃗] ≤ x′ < z1 and ξi[x′, y⃗] ≤ x′ < z′2 for every
i = 1, . . . , k by 1.7.28(3), We obtain

f +(z1 + 1, x′ + 1, y⃗) 1.7.29(3)=

= τ[x′, f +(z1, ξ1[x′, y⃗], σ⃗1[x′, y⃗]), . . . , f +(z1, ξk[x′, y⃗], σ⃗k[x′, y⃗]), y⃗] k×IH=
= τ[x′, f +(z′2, ξ1[x′, y⃗], σ⃗1[x′, y⃗]), . . . , f +(z′2, ξk[x′, y⃗], σ⃗k[x′, y⃗]), y⃗] 1.7.29(3)=

= f +(z′2 + 1, x′ + 1, y⃗). ⊓⊔

1.7.31 Theorem Primitive recursive functions are closed under course of
values recursion with parameter substitution.

Proof. Let f be defined by course of values recursion with parameter substitu-
tion as in Par. 1.7.28 from p.r. functions. Let further f + be the approximation
function of f from Par. 1.7.29. We claim that

f(x, y⃗) = f +(x + 1, x, y⃗). (1)

The auxiliary function f + is primitive recursive and so is f .
The property is proved by complete induction on x as ∀y⃗(1). So take any

y⃗ and consider two cases. If x = 0 then we have

f(0, y⃗) = ρ[y⃗] 1.7.29(2)= f +(0 + 1,0, y⃗).
If x = x′+1 for some x′ then ξi[x′, y⃗] < x′+1 for every i = 1, . . . , k by 1.7.28(3),
We then obtain

f(x′ + 1, y⃗) = τ[x′, f(ξ1[x′, y⃗], σ⃗1[x′, y⃗]), . . . , f(ξk[x′, y⃗], σ⃗k[x′, y⃗]), y⃗] k×IH=
= τ[x′, f +(ξ1[x′, y⃗] + 1, ξ1[x′, y⃗], σ⃗1[x′, y⃗]), . . . ,

f +(ξk[x′, y⃗] + 1, ξk[x′, y⃗], σ⃗k[x′, y⃗]), y⃗] 1.7.30(1)=

= τ[x′, f +(x′ + 1, ξ1[x′, y⃗], σ⃗1[x′, y⃗]), . . . ,
f +(x′ + 1, ξk[x′, y⃗], σ⃗k[x′, y⃗]), y⃗] 1.7.29(3)=

= f +(x′ + 1 + 1, x′ + 1, y⃗). ⊓⊔


