1.1 Definitions

1.1.1 Basic primitive recursive functions. The zero function Z is such that $Z(x)=0$; the successor function S satisfies the equation $S(x)=x+1$. For every $n \geq 1$ and $1 \leq i \leq n$, the n-ary identity function I_{i}^{n} yields its i-th argument, i.e. we have

$$
I_{i}^{n}\left(x_{1}, \ldots, x_{n}\right)=x_{i} .
$$

We usually write I instead of I_{1}^{1} and we have $I(x)=x$.
1.1.2 Composition. For every $m \geq 1$ and $n \geq 1$, the operator of composition takes an m-ary function h and $m n$-ary functions g_{1}, \ldots, g_{m} and yields an n-ary function f satisfying:

$$
f(\vec{x})=h\left(g_{1}(\vec{x}), \ldots, g_{m}(\vec{x})\right) .
$$

1.1.3 Primitive recursion. For every $n \geq 1$, the operator of primitive recursion takes an n-ary function g and an ($n+2$)-ary function h and yields an $(n+1)$-ary function f such that

$$
\begin{aligned}
f(0, \vec{y}) & =g(\vec{y}) \\
f(x+1, \vec{y}) & =h(x, f(x, \vec{y}), \vec{y}) .
\end{aligned}
$$

The first argument is the recursive argument whereas the remaining arguments are parameters. Note that the definition has at least one parameter.
1.1.4 Primitive recursive functions. A sequence of functions f_{1}, \ldots, f_{k} is called a primitive recursive derivation of a function f if
(i) $f=f_{k}$,
(ii) for every i such that $1 \leq i \leq k$, the function f_{i} is either one of the basic primitive recursive functions or is obtained from some of the previous functions f_{1}, \ldots, f_{i-1} by composition or primitive recursion.
A function is primitive recursive if it has a primitive recursive derivation. A predicate is primitive recursive if its characteristic function is.

