1.1 Definitions

1.1.1 Basic primitive recursive functions. The zero function Z is such that Z(x) = 0; the successor function S satisfies the equation S(x) = x + 1. For every $n \ge 1$ and $1 \le i \le n$, the n-ary identity function I_i^n yields its *i*-th argument, i.e. we have

$$I_i^n(x_1,\ldots,x_n)=x_i.$$

We usually write I instead of I_1^1 and we have I(x) = x.

1.1.2 Composition. For every $m \ge 1$ and $n \ge 1$, the operator of *composition* takes an *m*-ary function *h* and *m n*-ary functions g_1, \ldots, g_m and yields an *n*-ary function *f* satisfying:

$$f(\vec{x}) = h(g_1(\vec{x}), \dots, g_m(\vec{x})).$$

1.1.3 Primitive recursion. For every $n \ge 1$, the operator of *primitive recursion* takes an *n*-ary function *g* and an (n+2)-ary function *h* and yields an (n+1)-ary function *f* such that

$$f(0, \vec{y}) = g(\vec{y})$$

$$f(x+1, \vec{y}) = h(x, f(x, \vec{y}), \vec{y})$$

The first argument is the *recursive argument* whereas the remaining arguments are *parameters*. Note that the definition has at least one parameter.

1.1.4 Primitive recursive functions. A sequence of functions f_1, \ldots, f_k is called a *primitive recursive derivation* of a function f if

- (i) $f = f_k$,
- (ii) for every *i* such that $1 \le i \le k$, the function f_i is either one of the basic primitive recursive functions or is obtained from some of the previous functions f_1, \ldots, f_{i-1} by composition or primitive recursion.

A function is primitive recursive if it has a primitive recursive derivation. A predicate is primitive recursive if its characteristic function is.