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1.3 Primitive Recursive Predicates and Bounded
Minimalization

1.3.1 Case discrimination function is primitive recursive. The case
discrimination function 𝐷 is defined by

𝐷(𝑥, 𝑦, 𝑧) = 𝑣↔ 𝑥 ≠ 0 ∧ 𝑣 = 𝑦 ∨ 𝑥 = 0 ∧ 𝑣 = 𝑧.

The function is primitive recursive by the following explicit definition which
uses monadic discrimination on the first argument:

𝐷(0, 𝑦, 𝑧) = 𝑧
𝐷(𝑥 + 1, 𝑦, 𝑧) = 𝑦.

1.3.2 Equality predicate is primitive recursive. The characteristic
function 𝑥 =∗ 𝑦 of the equality predicate 𝑥 = 𝑦 is primitive recursive by the
following explicit definition:

(𝑥 =∗ 𝑦) =𝐷(𝑥 � 𝑦 + (𝑦 � 𝑥),0,1).

This is because we have 𝑥 = 𝑦↔ 𝑥 � 𝑦 + (𝑦 � 𝑥) = 0.

1.3.3 Bounded minimalization. For every 𝑛 ≥ 1, the operator of bounded
minimalization takes an (𝑛+1)-ary function 𝑔 and yields an (𝑛+1)-ary func-
tion 𝑓 satisfying:

𝑓(𝑥, 𝑦) =
⎧⎪⎪⎨⎪⎪⎩

the least 𝑧 ≤ 𝑥 s.t. 𝑔(𝑧, 𝑦) = 1 holds if ∃𝑧 ≤ 𝑥𝑔(𝑧, 𝑦) = 1;
0 if there is no such number.

This is usually abbreviated to

𝑓(𝑥, 𝑦) = µ𝑧 ≤ 𝑥[𝑔(𝑧, 𝑦) = 1].

1.3.4 Theorem Primitive recursive functions are closed under the operator
of bounded minimalization.

Proof. Suppose that 𝑓 is obtained by the bounded minimalization

𝑓(𝑥, 𝑦) = µ𝑧 ≤ 𝑥[𝑔(𝑧, 𝑦) = 1]

of a primitive recursive function 𝑔. Clearly we have

𝑔(𝑓(𝑥, 𝑦), 𝑦) = 1→ 𝑓(𝑥 + 1, 𝑦) = 𝑓(𝑥, 𝑦)
𝑔(𝑓(𝑥, 𝑦), 𝑦) ≠ 1 ∧ 𝑔(𝑥 + 1, 𝑦) = 1→ 𝑓(𝑥 + 1, 𝑦) = 𝑥 + 1

𝑔(𝑓(𝑥, 𝑦), 𝑦) ≠ 1 ∧ 𝑔(𝑥 + 1, 𝑦) ≠ 1→ 𝑓(𝑥 + 1, 𝑦) = 0.
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We derive 𝑓 as a p.r. function by the following primitive recursive definition:

𝑓(0, 𝑦) = 0
𝑓(𝑥 + 1, 𝑦) =𝐷(𝑔(𝑓(𝑥, 𝑦), 𝑦) =∗ 1, 𝑓(𝑥, 𝑦),𝐷(𝑔(𝑥 + 1, 𝑦) =∗ 1, 𝑥 + 1,0)). ⊓⊔

1.3.5 Boolean functions are primitive recursive. The boolean func-
tions are defined by

(¬∗𝑥) = 𝑦↔ 𝑥 ≠ 0 ∧ 𝑦 = 0 ∨ 𝑥 = 0 ∧ 𝑦 = 1
(𝑥 ∧∗ 𝑦) = 𝑧 ↔ 𝑥 ≠ 0 ∧ 𝑦 ≠ 0 ∧ 𝑧 = 1 ∨ (𝑥 = 0 ∨ 𝑦 = 0) ∧ 𝑧 = 0
(𝑥 ∨∗ 𝑦) = 𝑧 ↔ (𝑥 ≠ 0 ∨ 𝑦 ≠ 0) ∧ 𝑧 = 1 ∨ 𝑥 = 0 ∧ 𝑦 = 0 ∧ 𝑧 = 0
(𝑥→∗ 𝑦) = 𝑧 ↔ (𝑥 = 0 ∨ 𝑦 ≠ 0) ∧ 𝑧 = 1 ∨ 𝑥 ≠ 0 ∧ 𝑦 = 0 ∧ 𝑧 = 0
(𝑥↔∗ 𝑦) = 𝑧 ↔ 𝑥 ≠ 0 ∧ 𝑦 ≠ 0 ∧ 𝑧 = 1 ∨ 𝑥 = 0 ∧ 𝑦 = 0 ∧ 𝑧 = 1 ∨

𝑥 ≠ 0 ∧ 𝑦 = 0 ∧ 𝑧 = 0 ∨ 𝑥 = 0 ∧ 𝑦 ≠ 0 ∧ 𝑧 = 0.

Note that we identify non-zero values with truth and 0 with falsehood.
The functions are primitive recursive by the following explicit definitions:

(¬∗𝑥) =𝐷(𝑥,0,1)
(𝑥 ∧∗ 𝑦) =𝐷(𝑥,𝐷(𝑦,1,0),0)
(𝑥 ∨∗ 𝑦) = (¬∗(¬∗𝑥 ∧∗ ¬∗𝑦))
(𝑥→∗ 𝑦) = (¬∗𝑥 ∨∗ 𝑦)
(𝑥↔∗ 𝑦) = ((𝑥→∗ 𝑦) ∧∗ (𝑦→∗ 𝑥)).

1.3.6 Formulas with bounded quantifiers. Bounded quantifiers are for-
mulas of the form ∀𝑥 ≤ 𝜏 𝜑 and ∃𝑥 ≤ 𝜏 𝜑, where the variable 𝑥 is not free
in 𝜏 . The bounded quantifiers abbreviate the formulas ∀𝑥(𝑥 ≤ 𝜏 → 𝜑) and
∃𝑥(𝑥 ≤ 𝜏 ∧ 𝜑), respectively. Strict bounded quantifiers ∀𝑥 < 𝜏 𝜑 and ∃𝑥 < 𝜏 𝜑
are defined similarly.

Bounded formulas are formulas which are built from atomic formulas by
propositional connectives and bounded quantifiers.

1.3.7 Explicit definitions of predicates with bounded formulas. Ex-
plicit definitions of predicates with bounded formulas are of a form

𝑃 (𝑥1, . . . , 𝑥𝑛)↔ 𝜑[𝑥1, . . . , 𝑥𝑛],

where 𝜑 is a bounded formula with at most the indicated 𝑛-tuple of variables
free and without any application of the predicate symbol 𝑃 .

Every such definition can be viewed as a function operator which takes
all functions occurring in the formula 𝜑 (this also includes the characteristic
functions of every predicate occurring in 𝜑) and which yields as a result the
characteristic function 𝑃∗ of the predicate 𝑃 .
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1.3.8 Theorem Primitive recursive predicates are closed under explicit def-
initions of predicates with bounded formulas.

Proof. We show that the class of primitive recursive predicates is closed under
explicit definitions 𝑃 (�⃗�) ↔ 𝜑[�⃗�] of 𝑛-ary predicates by induction on the
structure of bounded formulas 𝜑.

If 𝜑 ≡ 𝜏 = 𝜌 then the characteristic function 𝑃∗ of 𝑃 is primitive recursive
by the following explicit definition: 𝑃∗(�⃗�) = (𝜏[�⃗�] =∗ 𝜌[�⃗�]).

If 𝜑 ≡ 𝑅(𝜏) then, since 𝑅∗ is primitive recursive, we define 𝑃∗ as primitive
recursive by explicit definition: 𝑃∗(�⃗�) = 𝑅∗(𝜏[�⃗�]).

If 𝜑 ≡ ¬𝜓 then we use IH and define an 𝑛-ary p.r. predicate 𝑅 by explicit
definition: 𝑅(�⃗�) ↔ 𝜓[�⃗�]. Now we define 𝑃∗ as primitive recursive by the
following explicit definition: 𝑃∗(�⃗�) = (¬∗𝑅∗(�⃗�)).

If 𝜑 ≡ 𝜓 ∧ 𝜒 then we obtain as primitive recursive two auxiliary 𝑛-ary
predicates 𝑅(�⃗�)↔ 𝜓[�⃗�] and 𝑄(�⃗�)↔ 𝜒[�⃗�] by IH. We define 𝑃∗ as primitive
recursive by explicit definition: 𝑃∗(�⃗�) = (𝑅∗(�⃗�) ∧∗ 𝑄∗(�⃗�)).

If 𝜑 ≡ ∃𝑦 ≤ 𝜏 𝜓[𝑦, �⃗�] then we use IH and define an auxiliary (𝑛 + 1)-ary
p.r. predicate 𝑅 by explicit definition: 𝑅(𝑦, �⃗�)↔ 𝜓[𝑦, �⃗�]. Then we define an
auxiliary witnessing p.r. function 𝑓 by bounded minimalization:

𝑓(𝑧, �⃗�) = µ𝑦 ≤ 𝑧[𝑅∗(𝑦, �⃗�) = 1].

The characteristic function 𝑃∗ of the predicate 𝑃 has the following explicit
definition: 𝑃∗(�⃗�) = 𝑅∗(𝑓(𝜏[�⃗�], �⃗�), �⃗�) as a p.r. function.

The remaining cases are treated similarly. ⊓⊔

1.3.9 Comparison predicates are primitive recursive. The standard
comparison predicates are primitive recursive by explicit definitions:

𝑥 ≤ 𝑦↔ ∃𝑧 ≤ 𝑦 𝑥 = 𝑧 𝑥 ≥ 𝑦↔ 𝑦 ≤ 𝑥
𝑥 < 𝑦↔ 𝑦 ≰ 𝑥 𝑥 > 𝑦↔ 𝑦 < 𝑥.

1.3.10 Divisibility is primitive recursive. The binary divisibility pred-
icate 𝑥 ∣ 𝑦 is a p.r. predicate by the following explicit definition:

𝑥 ∣ 𝑦↔ ∃𝑧 ≤ 𝑦 𝑦 = 𝑥𝑧.

1.3.11 Definitions by bounded minimalization. Definitions of func-
tions by bounded minimalization are of the form

𝑓(�⃗�) =
⎧⎪⎪⎨⎪⎪⎩

the least 𝑦 ≤ 𝜏[�⃗�] s.t. 𝜑[�⃗�, 𝑦] holds if ∃𝑦 ≤ 𝜏[�⃗�]𝜑[�⃗�, 𝑦];
0 if there is no such number.

Here 𝜏[�⃗�] is a term and 𝜑[�⃗�, 𝑦] a bounded formula with at most the indicated
variables free, both without any application of the symbol 𝑓 . Every such
definition can be viewed as a function operator taking all functions and the
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characteristic functions of all predicates occurring in either the term 𝜏 or
formula 𝜑 and yielding the function 𝑓 .

In the sequel we abbreviate the definition to

𝑓(�⃗�) = µ𝑦 ≤ 𝜏[�⃗�][𝜑[�⃗�, 𝑦]].

We permit also strict bounds in definitions by bounded minimalization; i.e.
we allow definitions of the form

𝑓(�⃗�) = µ𝑦 < 𝜏[�⃗�][𝜑[�⃗�, 𝑦]]

as abbreviation for 𝑓(�⃗�) = µ𝑦 ≤ 𝜏[�⃗�][𝑦 < 𝜏[�⃗�] ∧ 𝜑[�⃗�, 𝑦]].

1.3.12 Theorem Primitive recursive functions are closed under definitions
of functions with bounded minimalization.

Proof. Consider an 𝑛-ary function 𝑓 defined by the bounded minimalization

𝑓(�⃗�) = µ𝑦 ≤ 𝜏[�⃗�][𝜑[�⃗�, 𝑦]]

from primitive recursive functions and predicates. We can define 𝑓 by the
following series of definitions:

𝑃 (𝑦, �⃗�)↔ 𝜑[�⃗�, 𝑦]
𝑔(𝑧, �⃗�) = µ𝑦 ≤ 𝑧[𝑃∗(𝑦, �⃗�) = 1]
𝑓(�⃗�) = 𝑔(𝜏[�⃗�], �⃗�).

By Thm. 1.3.8 and Thm. 1.3.4, the characteristic function 𝑃∗ of 𝑃 and the
auxiliary function 𝑔 are primitive recursive, and so is the function 𝑓 . ⊓⊔

1.3.13 Integer division is primitive recursive. The integer division
function 𝑥 ÷ 𝑦 is a p.r. function by the following bounded minimalization:

𝑥 ÷ 𝑦 = µ𝑞 ≤ 𝑥[𝑥 < (𝑞 + 1)𝑦].

1.3.14 Remainder is primitive recursive. The binary remainder func-
tion 𝑥mod 𝑦 is a p.r. function by the following explicit definition:

𝑥mod 𝑦 =𝐷(𝑦, 𝑥 � (𝑥 ÷ 𝑦)𝑦,0).


