
2.2 Universal Function for Primitive Recursive Functions 65

2.2 Beyond Primitive Recursion: Universal Function for
Primitive Recursive Functions

2.2.1 Introduction. In this section we give yet another example of an in-
tuitively computable function which is not primitive recursive. The function
in question is called universal function for primitive recursive functions. Its
construction requires arithmetization of primitive recursive function symbols.

2.2.2 Primitive recursive function symbols. For every n ≥ 1, the class
PRn of n-ary primitive recursive function symbols is defined inductively as
follows:

• Z ∈ PR1, S ∈ PR1 and Ini ∈ PR
n for 1 ≤ i ≤ n,

• if h ∈ PRm and g1, . . . , gm ∈ PRn then Compn
m(h, g1, . . . , gm) ∈ PR

n,
• if g ∈ PRn and h ∈ PRn+2 then Recn+1(g, h) ∈ PRn+1.

We set PR = ⋃n≥1PR
n.

We interpret n-ary p.r. function symbols by n-ary functions. The interpre-
tation fN of a p.r. function symbol f is defined by induction on the structure
of p.r. function symbols as follows:

• ZN is the zero function Z(x) = 0,
• SN is the successor function S(x) = x + 1,
• (Ini )

N
is the identity function Ini (x⃗) = xi,

• (Compn
m(h, g1, . . . , gm))

N
is the n-ary function defined by composition:

(Compn
m(h, g1, . . . , gm))

N (x⃗) = hN (gN1 (x⃗), . . . , gNm (x⃗)),

• (Recn(g, h))
N

is the n-ary function defined by primitive recursion:

(Recn(g, h))
N (0, y⃗) = gN (y⃗)

(Recn(g, h))
N (x + 1, y⃗) = hN (x, (Recn(g, h))

N (x, y⃗), y⃗).

In the sequel we will often drop the superscript in fN and write shortly f
instead of fN .

It is easy to see that primitive recursive functions are exactly those func-
tions which are denoted by p.r. function symbols. In other words, the class
of primitive recursive functions is just the set ⋃n≥1{fN ∣ f ∈ PRn}.

2.2.3 Arithmetization of primitive recursive function symbols. Now
we consider the problem of coding of p.r. function symbols into N. The sym-
bols are arithmetized with the help of the following pair constructors:



66 2 General Recursive Functions

Z = ⟨0,0⟩ (zero)

S = ⟨1,0⟩ (successor)

I n
i = ⟨2, n, i⟩ (identities)

⟨⟨⟨g, gs⟩⟩⟩ = ⟨3, g, gs⟩ (contraction)

Compn
m(h, gs) = ⟨4, n,m,h, gs⟩ (composition)

Recn(g, h) = ⟨5, n, g, h⟩. (primitive recursion)

The arities of the constructors are as shown in their definitions. We postulate
that the binary constructor ⟨⟨⟨g, gs⟩⟩⟩ groups to the right and has the same
precedence as the pairing function ⟨x, y⟩.

The assignment of the code ⌜f⌝ to the p.r. function symbol f is defined
inductively on the structure of p.r. function symbols:

⌜Z⌝ = Z
⌜S⌝ = S
⌜Ini ⌝ = I n

i

⌜Compn
m(h, g1, . . . , gm)⌝ =Compn

m(⌜h⌝,⟨⟨⟨⌜g1⌝, . . . , ⌜gm⌝⟩⟩⟩)
⌜Recn(g, h)⌝ =Recn(⌜g⌝, ⌜h⌝).

Note that the binary operator ⟨⟨⟨g, gs⟩⟩⟩ plays a similar role as the pairing func-
tion ⟨x, y⟩ does for n-tuples of natural numbers. Its sole purpose is to rep-
resent the m-tuple ⌜g1⌝, . . . , ⌜gm⌝ of the codes of p.r. function symbols by its
contraction which is the number of the form ⟨⟨⟨⌜g1⌝, . . . , ⌜gm⌝⟩⟩⟩.

2.2.4 Interpreter of primitive recursive functions. In this paragraph
we give a definition of a binary function e ● x which effectively realizes the
interpretation of p.r. function symbols. The application ⌜f⌝●⟨x1, . . . , xn⟩ takes
the code of an n-ary p.r. function symbol f and the contraction of an n-tuple
x1, . . . , xn of numbers, and yields the number f(x1, . . . , xn) as the result, i.e.

⌜f⌝ ● ⟨x1, . . . , xn⟩ = f(x1, . . . , xn).

To improve readability we will write e1 ● e2 ●x instead of e1 ● (e2 ●x), that is
we let the operator associates right.

The interpreter e ● x of primitive recursive functions is defined by

Z ● x = 0
S ● x = x + 1
I n
i ● x = [x]

n
i

⟨⟨⟨g, gs⟩⟩⟩ ● x = ⟨g ● x, gs ● x⟩
Compn

m(h, gs) ● x = h ● gs ● x
Recn(g, h) ● ⟨0, y⟩ = g ● y
Recn(g, h) ● ⟨x + 1, y⟩ = h ● ⟨x,Recn(g, h) ● ⟨x, y⟩, y⟩.



2.2 Universal Function for Primitive Recursive Functions 67

This is an example of regular recursive definition which is into the lexico-
graphical order (x1, y1) <lex (x2, y2) of natural numbers. This is because the
first argument of each recursive application except the one in the last recur-
sive clause goes down. In the recursive application of the last recursive clause
the first argument Recn(g, h) stays the same and the second argument goes
down since ⟨x, y⟩ < ⟨x + 1, y⟩. We have therefore

(Recn(g, h), ⟨x, y⟩) <lex (Recn(g, h), ⟨x + 1, y⟩).

From the results of this chapter, we obtain that the interpreter is effectively
computable; the closed form of the above definition constitutes a program
for the reduction model discussed later. As we will see below the function is
not primitive recursive.

2.2.5 Enumeration functions. The (n+1)-ary function θ is said to be
an enumeration function for the class of n-ary functions F if we have the
following for every n-ary function f :

f ∈ F iff there is a number e such that

f(x1, . . . , xn) = θ(e, x1, . . . , xn)

holds for all numbers x1, . . . , xn.

The function θ is often called the universal function for the class F .
In the next theorem we will prove for every n ≥ 1 that the (n+1)-ary

function Un explicitly defined by

Un(e, x1, . . . , xn) = e ● ⟨x1, . . . , xn⟩

is the enumeration function for the class of n-ary primitive recursive func-
tions. Since the function e ● x is effectively computable, so is Un. Note also
that U2 and e●x are the same functions. In the sequel we will often abbreviate
U1(e, x) to U(e, x).

2.2.6 Enumeration theorem. For every n ≥ 1, the Un is an effectively
computable function enumerating the class of n-ary primitive recursive func-
tions.

Proof. We wish to prove that the following holds for every n-ary function f :

the function f is primitive recursive iff there is a number e such that

f(x1, . . . , xn) = Un(e, x1, . . . , xn)

for every x1, . . . , xn.

For the proof of the (⇒)-part of the claim it suffices to show that for every
n-ary p.r. function symbol f and every x1, . . . , xn we have



68 2 General Recursive Functions

f(x1, . . . , xn) = ⌜f⌝ ● ⟨x1, . . . , xn⟩.

This is proved by induction on the structure of p.r. function symbols. So take
any n-ary p.r. function symbol f , any n-tuple x⃗ of numbers, and continue by
the case analysis of f . The cases when f ≡ Z or f ≡ S are straightforward.
Now, if f ≡ Compn

m(h, g1, . . . , gm) then we have

⌜Compn
m(h, g1, . . . , gm)⌝ ● ⟨x⃗⟩ =Compn

m(⌜h⌝,⟨⟨⟨⌜g1⌝, . . . , ⌜gm⌝⟩⟩⟩) ● ⟨x⃗⟩ =

= ⌜h⌝ ● ⟨⟨⟨⌜g1⌝, . . . , ⌜gm⌝⟩⟩⟩ ● ⟨x⃗⟩ = ⌜h⌝ ● ⟨⌜g1⌝ ● ⟨x⃗⟩, . . . , ⌜gm⌝ ● ⟨x⃗⟩⟩
IH=

= h(g1(x⃗), . . . , gm(x⃗)) = Compn
m(h, g1, . . . , gm)(x⃗).

Finally, if f ≡ Recn(g, h) then x⃗ ≡ z, y⃗ for some z and a non-empty y⃗. The
desired property

⌜Recn(g, h)⌝ ● ⟨z, y⃗⟩ = Recn(g, h)(z, y⃗)

is proved by (inner) induction on z. In the base case we have

⌜Recn(g, h)⌝ ● ⟨0, y⃗⟩ =Recn(⌜g⌝, ⌜h⌝) ● ⟨0, y⃗⟩ = ⌜g⌝ ● ⟨y⃗⟩
outer IH=

= g(y⃗) = Recn(g, h)(0, y⃗).

In the induction step we have

⌜Recn(g, h)⌝ ● ⟨z + 1, y⃗⟩ =Recn(⌜g⌝, ⌜h⌝) ● ⟨z + 1, y⃗⟩ =

= ⌜h⌝ ● ⟨z,Recn(⌜g⌝, ⌜h⌝) ● ⟨z, y⃗⟩, y⃗⟩
outer IH=

= h(z,Recn(⌜g⌝, ⌜h⌝) ● ⟨z, y⃗⟩, y⃗) = h(z, ⌜Recn(g, h)⌝ ● ⟨z, y⃗⟩, y⃗)
inner IH=

= h(z,Recn(g, h)(z, y⃗), y⃗) = Recn(g, h)(z + 1, y⃗).

This finishes the proof for the case when f ≡ Recn(g, h).
In the proof of (⇐)-part of the claim it suffices to show that the unary

functions ϕe explicitly defined by

ϕe(x) = e ● x

are primitive recursive functions. This is proved by complete induction on e.
So take any e and continue by case analysis on e. If e = Z , e = S or e = I n

i

then the following explicit definitions listed in that order

ϕe(x) = 0
ϕe(x) = x + 1
ϕe(x) = [x]ni

are derivations of ϕe as a primitive recursive function. If e =Compn
m(e1, e2)

for some e1 and e2 then the functions ϕe1 and ϕe2 are primitive recursive by



2.2 Universal Function for Primitive Recursive Functions 69

IH and we derive ϕe as a primitive recursive function by composition:

ϕe(x) = ϕe1 ϕe2(x).

If e = Recn(e1, e2) for some e1 and e2 then the functions ϕe1 and ϕe2 are
primitive recursive by IH and we derive ϕe as a primitive recursive function
by the following course of values recursive definition:

ϕe(0) = 0
ϕe⟨0, y⟩ = ϕe1(y)

ϕe⟨x + 1, y⟩ = ϕe2⟨x,ϕe⟨x, y⟩, y⟩.

If neither of the above cases applies then we derive ϕe as a primitive recursive
function by explicit definition:

ϕe(x) = 0. ⊓⊔

2.2.7 Enumeration functions are not primitive recursive. We already
know that the enumeration functions Un are effectively computable. In this
paragraph none of the enumeration functions is primitive recursive. We prove
this fact for the case when n = 1 and left the proof the general result to the
reader.

The standard proof uses a diagonal argument. Suppose by contradiction
that the enumeration function U(e, x) is primitive recursive. Then also the
explicitly defined function f :

f(x) = U(x,x) + 1 (1)

is a primitive recursive function. By the Enumeration Theorem there is a
number e such that for every number x we have

f(x) = U(e, x). (2)

We obtain contradiction from

f(e) (1)= U(e, e) + 1 (2)= f(e) + 1.

2.2.8 Primitive recursive indices. We say that a number e is a primitive
recursive index of the n-ary function f if

f(x1, . . . , xn) = Un(e, x1, . . . , xn)

for all numbers x1, . . . , xn. This can be expressed equivalently by

f(x1, . . . , xn) = e ● ⟨x1, . . . , xn⟩.



70 2 General Recursive Functions

Primitive index is said to be well-formed if it is a code of some p.r. function
symbol. As a simple corollary of the Enumeration Theorem we can see that
a function is primitive recursive iff it has a primitive recursive index.

For every n ≥ 1 by ϕ
(n)
e we denote the n-ary primitive recursive function

with the primitive recursive index e. Note that we then have

ϕ(n)e (x1, . . . , xn) = Un(e, x1, . . . , xn).

and

ϕ(n)e (x1, . . . , xn) = e ● ⟨x1, . . . , xn⟩.

By the Enumeration Theorem, an n-ary function f is primitive recursive iff

f = ϕ(n)e for some e. In the sequel we will often abbreviate ϕ
(1)
e (x⃗) to ϕe(x⃗).

2.2.9 Indices of initial primitive recursive functions. We clearly have

Z ● x = 0
S ● x = x + 1

I n
i ● ⟨x1, . . . , xn⟩ = xi

and therefore the numbers Z , S and I n
i are p.r. indices of the initial p.r.

functions Z(x) = 0, S(x) = x + 1 and Ini (x⃗) = xi, respectively.

2.2.10 Indices of constant functions. There is a unary p.r. function Cm

which yields p.r. indices of unary constant functions Cm(x) =m, i.e. we have

ϕCm(x) =m

for every x. The property can be easily expressed in the elementary logic by

Cm ● x =m (1)

Note that we have

C0(x) = 0
Cm+1(x) = S Cm(x)

and thus the function Cm has the following primitive recursive definition:

C0 = Z
Cm+1 =Comp1

1(S ,Cm).

There is a binary primitive recursive function Cn
m which yields p.r. indices

of n-ary constant functions Cn
m(x⃗) =m, i.e. we have



2.2 Universal Function for Primitive Recursive Functions 71

ϕCn
m
(x1, . . . , xn) =m.

This is expressed in the elementary logic by

Cn
m ● ⟨x1, . . . , xn⟩ =m (2)

Note that we have

Cn
m(x1, . . . , xn) = Cm In1 (x1, . . . , xn)

and thus the function Cn
m has the following primitive recursive definition:

Cn
m =Compn

1 (Cm, I n
1 ).

Verification. (1): By induction on m. The base case is trivial and the induc-
tion step follows from

Cm+1 ● x =Comp1
1(S ,Cm) ● x = S ●Cm ● x

IH= S ●m =m + 1.

(2): It follows from

Cn
m ● ⟨x1, . . . , xn⟩ =Compn

1 (Cm, I n
1 ) ● ⟨x1, . . . , xn⟩ =

=Cm ● I n
1 ● ⟨x1, . . . , xn⟩ =Cm ● x1

(1)= m. ⊓⊔

2.2.11 Explicit definitions. Now we consider the problem of finding p.r.
indices of functions defined by explicit definitions:

f(x1, . . . , xn) = τ[x1, . . . , xn] (1)

We suppose here that the term τ is built up from from variables and constants
by applications of p.r. function symbols.

The primitive recursive index ⌜λx⃗.τ⌝ of the function f defined by (1) is
constructed inductively on the structure of the term τ as follows:

⌜λx⃗.xi⌝ = I n
i

⌜λx⃗.m⌝ =Cn
m

⌜λx⃗.g(τ1, . . . , τm)⌝ =Compn
m(⌜g⌝,⟨⟨⟨⌜λx⃗.τ1⌝, . . . , ⌜λx⃗.τm⌝⟩⟩⟩).

We have

⌜λx⃗.τ⌝ ● ⟨x1, . . . , xn⟩ = τ[x1, . . . , xn]. (2)

Proof. Property (2) is proved by (meta-)induction on the structure of the
term τ . If τ ≡ xi then we have

⌜λx⃗.xi⌝ ● ⟨x1, . . . , xn⟩ = I n
i ● ⟨x1, . . . , xn⟩ = xi.



72 2 General Recursive Functions

Similarly, if τ ≡m then we have

⌜λx⃗.m⌝ ● ⟨x1, . . . , xn⟩ =Cn
m ● ⟨x1, . . . , xn⟩

2.2.10(2)= m.

Finally, if τ ≡ g(τ1, . . . , τm) then we have

⌜λx⃗.g(τ1, . . . , τm)⌝ ● ⟨x1, . . . , xn⟩ =
=Compn

m(⌜g⌝,⟨⟨⟨⌜λx⃗.τ1⌝, . . . , ⌜λx⃗.τm⌝⟩⟩⟩) ● ⟨x1, . . . , xn⟩ =
= ⌜g⌝ ● ⟨⟨⟨⌜λx⃗.τ1⌝, . . . , ⌜λx⃗.τm⌝⟩⟩⟩ ● ⟨x1, . . . , xn⟩ =

= ⌜g⌝ ● ⟨⌜λx⃗.τ1⌝ ● ⟨x1, . . . , xn⟩, . . . , ⌜λx⃗.τm⌝ ● ⟨x1, . . . , xn⟩⟩
IH=

= ⌜g⌝ ● ⟨τ1[x1, . . . , xn], . . . , τm[x1, . . . , xn]⟩ =
= g(τ1, . . . , τm)[x1, . . . , xn]. ⊓⊔

2.2.12 Example. Addition is defined by primitive recursion (cf. Par. 1.2.6)

0 + y = I(y)
(x + 1) + y = h(x,x + y, y)

from the identity function I(y) = y and the ternary function h(x, a, y) = S(a).
By Par. 2.2.11, ⌜λx1x2x3.S(x2)⌝ is a p.r. index of h and therefore the number

Rec2(I 1
1 , ⌜λx1x2x3.S(x2)⌝)

is a p.r. index of the addition. Primitive recursive indices of some other p.r.
functions (e.g. multiplication) are obtained similarly (cf. Sect. 1.2).

2.2.13 Parametric function. The binary parametric function e/x takes a
p.r. index e of a binary p.r. f and a number x and yields a p.r. index of the
unary p.r. function g such that g(y) = f(x, y), i.e. we have

ϕe/x(y) = ϕ(2)e (x, y).

This is expressed in the elementary logic by

(e/x) ● y = e ● ⟨x, y⟩. (1)

The parametric function is defined explicitly as a p.r. function by

e/x =Comp1
2(e,⟨⟨⟨Cx, I

1
1 ⟩⟩⟩).

Verification. Property (1) follows from

(e/x) ● y =Comp1
2(e,⟨⟨⟨Cx, I

1
1 ⟩⟩⟩) ● y = e ● ⟨⟨⟨Cx, I

1
1 ⟩⟩⟩ ● y =

= e ● ⟨Cx ● y, I 1
1 ● y⟩

2.2.10(1)= e ● ⟨x, y⟩. ⊓⊔



2.2 Universal Function for Primitive Recursive Functions 73

2.2.14 S-m-n theorem. For every m,n ≥ 1, there exists an (m+1)-ary
primitive recursive function smn (e, x⃗) such that

ϕ
(n)
smn (e,x⃗)

(y⃗) = ϕ(m+n)e (x⃗, y⃗).

This is expressed in the elementary logic by

smn (e, x1, . . . , xm) ● ⟨y1, . . . , yn⟩ = e ● ⟨x1, . . . , xm, y1, . . . , yn⟩. (1)

The function smn (e, x⃗) is defined explicitly as p.r. function by

smn (e, x1, . . . , xm) =Compn
m+n(e,⟨⟨⟨Cn

x1
, . . . ,Cn

xm
, I n

1 , . . . , I
n
n ⟩⟩⟩).

Verification. Property (1) is proved as follows (y⃗ ≡ y1, . . . , ym):

smn (e, x1, . . . , xm) ● ⟨y1, . . . , yn⟩ =
=Compn

m+n(e,⟨⟨⟨Cn
x1
, . . . ,Cn

xm
, I n

1 , . . . , I
n
n ⟩⟩⟩) ● ⟨y1, . . . , yn⟩ =

= e ● ⟨⟨⟨Cn
x1
, . . . ,Cn

xm
, I n

1 , . . . , I
n
n ⟩⟩⟩ ● ⟨y1, . . . , yn⟩ =

= e ● ⟨Cn
x1
● ⟨y⃗⟩, . . . ,Cn

xm
● ⟨y⃗⟩, I n

1 ● ⟨y⃗⟩, . . . , I n
n ● ⟨y⃗⟩⟩

2.2.10(2)=
= e ● ⟨x1, . . . , xm, y1, . . . , yn⟩. ⊓⊔

2.2.15 Self-reproducing machine. We conclude this section by solving
the following question. Does exist a primitive recursive function which pro-
duces its own description? More precisely, we wish to find a unary recursive
function ϕe(x) which yields its own well-formed index e for every input x,
i.e. we would like to have

ϕe(x) = e,

or equivalently

e ● x = e. (1)

For that consider the following unary p.r. function defined explicitly by

g(y) =Comp1
1(y,Cy). (2)

Let ⌜g⌝ be one of its well-formed p.r. indices. Then the number

e = g(⌜g⌝) (3)

is a well-formed index satisfying (1):



74 2 General Recursive Functions

e ● x (3)= g(⌜g⌝) ● x (2)= Comp1
1(⌜g⌝,C⌜g⌝) ● x = ⌜g⌝ ●C⌜g⌝ ● x

2.2.10(1)=

= ⌜g⌝ ● ⌜g⌝ index= g(⌜g⌝) (3)= e.


