2.5 General Recursive Functions

2.5.1 General recursive functions. The class of general recursive functions is generated from the successor function x + 1 and from the predecessor function $x \div 1$ by explicit and regular recursive definitions. A predicate is general recursive if so is its characteristic function.

2.5.2 Theorem The class of general recursive functions is primitively recursively closed and thus contains all primitive recursive functions and predicates.

Proof. The class general recursive functions is closed under explicit definitions of functions and therefore (why?) it contains the identity functions I_i^n and the zero function Z, and it is closed under composition of functions. It remains to show the closure under the operator of primitive recursion. So let f be the function obtained from the general recursive functions g and h by primitive recursion:

$$f(0, \vec{y}) = g(\vec{y}) f(x + 1, \vec{y}) = h(x, f(x, \vec{y}), \vec{y}).$$

We derive f as general recursive by the following recursive definition

$$f(x, \vec{y}) = \mathbf{if} \ x \neq 0 \ \mathbf{then} \ h(x \div 1, f(x \div 1, \vec{y}), \vec{y}) \ \mathbf{else} \ g(\vec{y}),$$

The definition is regular in the first argument since $x \neq 0 \rightarrow x - 1 < x$.

2.5.3 Theorem General recursive functions and predicates are closed under explicit definitions of predicates with bounded formulas and under definitions of functions with bounded minimalization.

Proof. It follows from the fact that the class of general recursive functions is primitively recursively closed and from the proofs of the corresponding theorems for primitive recursive functions and predicates. \Box

2.5.4 Regular minimalization. For every $n \ge 1$, the operator of *regular minimalization* takes an (n+1)-ary function g satisfying the following *condition of regularity*:

$$\forall \vec{x} \exists y g(y, \vec{x}) = 1$$

and yields an n-ary function f such that

 $f(\vec{x})$ = the least y such that $g(y, \vec{x}) = 1$ holds.

This is usually abbreviated to

2 General Recursive Functions

$$f(\vec{x}) = \mu y[g(y, \vec{x}) = 1].$$

2.5.5 Theorem General recursive functions are closed under the operator of regular minimalization.

Proof. Let f be defined by the following regular minimalization

$$f(\vec{x}) = \mu y [g(y, \vec{x}) = 1]$$

of a general recursive function g. Consider the following recursive definition of a function h (written in clausal form):

$$\begin{aligned} h(y,\vec{x}) &= y \leftarrow \exists z \leq y \, g(z,\vec{x}) = 1 \\ h(y,\vec{x}) &= h(y+1,\vec{x}) \leftarrow \forall z \leq y \, g(z,\vec{x}) \neq 1 \end{aligned}$$

We claim that the definition is regular in the well-founded relation \prec :

$$(y_1, \vec{x}_1) \prec (y_2, \vec{x}_2) \leftrightarrow f(\vec{x}_1) \doteq y_1 \lt f(\vec{x}_2) \doteq y_2$$

Indeed, if $g(z, \vec{x}) \neq 1$ for every $z \leq y$ then clearly $y < y + 1 \leq f(\vec{x})$ and thus we have $f(\vec{x}) \doteq (y+1) < f(\vec{x}) \doteq y$. From this we get

$$\forall z \le y \, g(z, \vec{x}) \neq 1 \rightarrow (y+1, \vec{x}) \prec (y, \vec{x}).$$

This proves the condition of regularity for the recursive application $h(y+1, \vec{x})$ of h in the second clause of the definition. Consequently, the function h is general recursive.

By a straightforward \prec -well-founded induction on (y, \vec{x}) we can prove

$$y \le f(\vec{x}) \to h(y, \vec{x}) = f(\vec{x}).$$

Now we can take the identity $f(\vec{x}) = h(0, \vec{x})$ as an explicit definition of f as a general recursive function.

2.5.6 Definitions by regular minimalization. Definitions of functions by *regular minimalization* are of the form

$$f(\vec{x})$$
 = the least y such that $\varphi[\vec{x}, y]$ holds,

where $\varphi[\vec{x}, y]$ is a bounded formula with at most the indicated variables free and without any application of the symbol f. Moreover we require that the formula φ satisfies the following *condition of regularity*:

$$\forall \vec{x} \exists y \varphi[\vec{x}, y].$$

Every such definition can be viewed as a function operator taking all functions and the characteristic functions of all predicates occurring in the formula φ and yielding the function f.

In the sequel we will abbreviate the definition to

2.5 General Recursive Functions

$$f(\vec{x}) = \mu y \big[\varphi[\vec{x}, y] \big].$$

2.5.7 Theorem General recursive functions are closed under definitions of functions with regular minimalization.

Proof. Suppose that f is defined by the regular minimalization

$$f(\vec{x}) = \mu y [\varphi[\vec{x}, y]]$$

from general recursive functions and predicates. We can derive f by

$$\begin{aligned} R(y, \vec{x}) &\leftrightarrow \varphi[\vec{x}, y] \\ f(\vec{x}) &= \mu y [R_*(y, \vec{x}) \simeq 1]. \end{aligned}$$

General recursivness of f follows from Thm. 2.5.3 and Thm. 2.5.5.