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2.5 General Recursive Functions

2.5.1 General recursive functions. The class of general recursive func-
tions is generated from the successor function x +1 and from the predecessor
function x = 1 by explicit and regular recursive definitions. A predicate is
general recursive if so is its characteristic function.

2.5.2 Theorem The class of general recursive functions is primitively re-
cursively closed and thus contains all primitive recursive functions and pred-
icates.

Proof. The class general recursive functions is closed under explicit defini-
tions of functions and therefore (why?) it contains the identity functions I7*
and the zero function Z, and it is closed under composition of functions. It
remains to show the closure under the operator of primitive recursion. So let
f be the function obtained from the general recursive functions g and h by
primitive recursion:

£(0,9) = 9(¥)
f@+1,9) = h(z, f(2,9),9)-

We derive f as general recursive by the following recursive definition
f(z,9) =if = #0 then h(z + 1, f(z = 1,7),9) else g(3),
The definition is regular in the first argument since z # 0 > -1 < z. ]

2.5.3 Theorem General recursive functions and predicates are closed under
explicit definitions of predicates with bounded formulas and under definitions
of functions with bounded minimalization.

Proof. Tt follows from the fact that the class of general recursive functions
is primitively recursively closed and from the proofs of the corresponding
theorems for primitive recursive functions and predicates. ]

2.5.4 Regular minimalization. For every n > 1, the operator of regular
minimalization takes an (n+1)-ary function g satisfying the following condi-
tion of regularity:

VZdyg(y,2) =1
and yields an n-ary function f such that
f(Z) = the least y such that g(y,Z) = 1 holds.

This is usually abbreviated to
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f(@) = nylg(y,2) =1].

2.5.5 Theorem General recursive functions are closed under the operator
of regular minimalization.

Proof. Let f be defined by the following regular minimalization

(@) =nylg(y,2) = 1]

of a general recursive function g. Consider the following recursive definition
of a function h (written in clausal form):

h(y, ) =y < 3z2<yg(2,7) =1
My, ) =h(y+1,%) <« Vz<yg(z,7) + 1.

We claim that the definition is regular in the well-founded relation <:

(y1,21) < (y2,22) < f(Z1) =1 < f(Z2) ~ ya.

Indeed, if g(z,%) # 1 for every z <y then clearly y <y +1 < f(Z) and thus we
have f(Z) = (y+1) < f(2) = y. From this we get

Ve<yg(z,2) #1 - (y+1,2) < (y,2).

This proves the condition of regularity for the recursive application h(y+1,Z)
of h in the second clause of the definition. Consequently, the function h is
general recursive.

By a straightforward <-well-founded induction on (y, ) we can prove

Now we can take the identity f(Z) = h(0,2) as an explicit definition of f as
a general recursive function. O

2.5.6 Definitions by regular minimalization. Definitions of functions
by regular minimalization are of the form

f(Z) = the least y such that ¢[Z,y] holds,

where ¢[Z,y] is a bounded formula with at most the indicated variables free
and without any application of the symbol f. Moreover we require that the
formula ¢ satisfies the following condition of regularity:

VZ3ye[Z,y].

Every such definition can be viewed as a function operator taking all functions
and the characteristic functions of all predicates occurring in the formula ¢
and yielding the function f.

In the sequel we will abbreviate the definition to



2.5 General Recursive Functions 79

f(@) = ny[elz,y]].

2.5.7 Theorem General recursive functions are closed under definitions of
Sfunctions with reqular minimalization.

Proof. Suppose that f is defined by the regular minimalization
F(@) = nyleli,y]]

from general recursive functions and predicates. We can derive f by

R(y,z) < »[Z,y]
(@) =nwy[R.(y,z) ~ 1].

General recursivness of f follows from Thm. 2.5.3 and Thm. 2.5.5. ]



