7.3 Sorting of Lists

7.3.1 Introduction. In this section we will consider the problem of sorting of lists. We will demonstrate the verification of two sorting algorithms: insertion sort and merge sort. We start by introducing into PA some of the specification predicates which are needed to specify and verify sorting algorithms.
7.3.2 Lower bounds of lists. The predicate $a \leq x$ holds if the number a is a lower bound of the list x, i.e. we have $a \leq b$ for every element b of x. The predicate is defined explicitly as primitive recursive by

$$
a \leq x \leftrightarrow \forall b(b \in x \rightarrow a \leq b) .
$$

The predicate satisfies

$$
\begin{array}{ll}
\text { PA } & a \leq 0 \\
{ }^{\text {PA }} & a \leq\langle v, w\rangle \leftrightarrow a \leq v \wedge a \leq w \\
{ }^{\text {PA }} & a \leq b \wedge b \leq x \rightarrow a \leq x \\
\text { P }_{\text {PA }} & a \leq x \oplus y \leftrightarrow a \leq x \wedge a \leq y \\
\text { \& }_{\text {PA }} & x \sim y \rightarrow a \leq x \leftrightarrow a \leq y . \tag{5}
\end{array}
$$

Proof. (1): Obvious. (2): This follows from

$$
\begin{aligned}
a \leq\langle v, w\rangle & \Leftrightarrow \forall b(b \varepsilon\langle v, w\rangle \rightarrow a \leq b) \stackrel{7 \cdot 1.13(2)}{\Leftrightarrow} \forall b(b=v \vee b \varepsilon w \rightarrow a \leq b) \Leftrightarrow \\
& \Leftrightarrow a \leq v \wedge \forall b(b \varepsilon w \rightarrow a \leq b) \Leftrightarrow a \leq v \wedge a \leq w .
\end{aligned}
$$

(3): Obvious. (4): This follows from

$$
\begin{aligned}
a \leq x \oplus y & \Leftrightarrow \forall b(b \varepsilon x \oplus y \rightarrow a \leq b) \stackrel{7.1 .13(3)}{\Leftrightarrow} \forall b(b \varepsilon x \vee b \varepsilon y \rightarrow a \leq b) \Leftrightarrow \\
& \Leftrightarrow \forall b(b \varepsilon x \rightarrow a \leq b) \wedge \forall b(b \varepsilon y \rightarrow a \leq b) \Leftrightarrow a \leq x \wedge a \leq y .
\end{aligned}
$$

(5) Suppose that $x \sim y$. We have

$$
a \leq x \Leftrightarrow \forall b(b \varepsilon x \rightarrow a \leq b) \stackrel{7.3 .5(7)}{\Leftrightarrow} \forall b(b \varepsilon y \rightarrow a \leq b) \Leftrightarrow a \leq y .
$$

7.3.3 Ordered lists. The predicate $\operatorname{Ord}(x)$ holds if x is an ordered list, i.e. the elements of the list x are stored in x in increasing order. The predicate is explicitly defined as primitive recursive by

$$
\operatorname{Ord}(x) \leftrightarrow \forall i \forall j(i<j<L(x) \rightarrow x[i] \leq x[j])
$$

We list here some properties of ordered lists which we will use in sequel:

$$
\begin{array}{ll}
\mathrm{I}_{\mathrm{PA}} & \operatorname{Ord}(0) \\
\mathrm{f}_{\mathrm{PA}} & \operatorname{Ord}\langle v, w\rangle \leftrightarrow v \leq w \wedge \operatorname{Ord}(w) \\
\mathrm{f}_{\mathrm{PA}} & \operatorname{Ord}\langle v, w\rangle \rightarrow a \leq\langle v, w\rangle \leftrightarrow a \leq v . \tag{3}
\end{array}
$$

Proof. (1): Obvious. (2): This follows from

$$
\begin{aligned}
& \text { Ord }\langle v, w\rangle \Leftrightarrow \forall i \forall j(i<j<L\langle v, w\rangle \rightarrow\langle v, w\rangle[i] \leq\langle v, w\rangle[j]) \stackrel{(*)}{\Leftrightarrow} \\
& \forall j(0<j<L(w)+1 \rightarrow\langle v, w\rangle[0] \leq\langle v, w\rangle[j]) \wedge \\
& \quad \wedge \forall i_{1} \forall j\left(i_{1}+1<j<L(w)+1 \rightarrow\langle v, w\rangle\left[i_{1}+1\right] \leq\langle v, w\rangle[j]\right) \Leftrightarrow \\
& \forall j_{1}\left(j_{1}+1<L(w)+1 \rightarrow v \leq\langle v, w\rangle\left[j_{1}+1\right]\right) \wedge \\
& \quad \wedge \forall i_{1} \forall j_{1}\left(i_{1}+1<j_{1}+1<L(w)+1 \rightarrow w\left[i_{1}\right] \leq\langle v, w\rangle\left[j_{1}+1\right]\right) \Leftrightarrow \\
& \forall j_{1}\left(j_{1}<L(w) \rightarrow v \leq w\left[j_{1}\right]\right) \wedge \\
& \quad \wedge \forall i_{1} \forall j_{1}\left(i_{1}<j_{1}<L(w) \rightarrow w\left[i_{1}\right] \leq w\left[j_{1}\right]\right) \Leftrightarrow v \leq w \wedge \operatorname{Ord}(w) .
\end{aligned}
$$

The step marked by $(*)$ is by case analysis on whether or not $i=0$.
(3): If $O r d\langle v, w\rangle$ then $v \leq w$ by (2) and thus, by 7.3.2(3), we have

$$
\begin{equation*}
a \leq v \rightarrow a \leq w . \tag{1}
\end{equation*}
$$

We then obtain

$$
a \leq\langle v, w\rangle \stackrel{7.3 .2(2)}{\Leftrightarrow} a \leq v \wedge a \leq w \stackrel{\left(\dagger_{1}\right)}{\Leftrightarrow} a \leq v .
$$

7.3.4 Permutations. We wish to introduce into PA the binary predicate $x \sim y$ holding if the list x is a permutation of the list y. For example:
are all permutations of the three-element list $\langle 1,2,3,0\rangle$. The standard mathematical definition uses a second-order concept (bijections over finite sets) which is not expressible directly in first-order arithmetic. Our definition of the predicate in PA is based on the following simple observation:
two lists are permutations precisely when every number has the same multiplicity in either list.

Thus we can define the predicate explicitly by

$$
x \sim y \leftrightarrow \forall a \#_{a}(x)=\#_{a}(y) .
$$

Note that from 7.2.10(3) we get

$$
\operatorname{l}_{\mathrm{PA}} x \sim y \leftrightarrow \forall a\left(a \varepsilon x \rightarrow \#_{a}(x)=\#_{a}(y)\right) \wedge \forall a\left(a \varepsilon y \rightarrow \#_{a}(x)=\#_{a}(y)\right)
$$

Consequently, the predicate $x \sim y$ is primitive recursive.

7．3．5 Basic properties of permutations．First note the predicate $x \sim y$ constitutes an equivalence relation which is reflexive，symmetric and transi－ tive．This is expressed in that order by

$$
\begin{align*}
& \text { ケA } x \sim x \tag{1}\\
& \text { ケ }_{\text {PA }} x \sim y \rightarrow y \sim x \tag{2}\\
& \text { 「 }_{\text {PA }} \tag{3}\\
& x \sim y \wedge y \sim z \rightarrow x \sim z
\end{align*}
$$

Congruence properties of permutations are expressed by

$$
\begin{align*}
& \text { ' }_{\text {PA }} x \sim y \rightarrow\langle a, x\rangle \sim\langle a, y\rangle \tag{4}\\
& \text { ' }_{\text {PA }} \tag{5}\\
& \text { ' } x \sim y \rightarrow L(x)=L(y) \tag{6}\\
& \text { 'PA } x_{1} \sim y_{1} \wedge x_{2} \sim y_{2} \rightarrow x_{1} \oplus x_{2} \sim y_{1} \oplus y_{2} \tag{7}\\
& \text { 'PA } x \sim y \wedge a \varepsilon x \rightarrow a \varepsilon y
\end{align*}
$$

There is one cancellation law，namely：

$$
\begin{equation*}
{ }_{\text {PA }} x_{1} \oplus\left\langle a, x_{2}\right\rangle \sim y_{1} \oplus\left\langle a, y_{2}\right\rangle \leftrightarrow x_{1} \oplus x_{2} \sim y_{1} \oplus y_{2} \tag{8}
\end{equation*}
$$

Finally，we have also the following recurrent properties of permutations：

$$
\begin{align*}
& \text { †A } x \sim 0 \leftrightarrow x=0 \tag{9}\\
& \text { †A } x \sim\langle v, w\rangle \leftrightarrow \exists z_{1} \exists z_{2}\left(x=z_{1} \oplus\left\langle v, z_{2}\right\rangle \wedge w \sim z_{1} \oplus z_{2}\right) \tag{10}
\end{align*}
$$

In the sequel we will use these properties without explicitly referring to them．
Proof．Properties（1）－（3）hold trivially．Property（4）follows directly from the definition．Properties（6）－（9）follow from the properties of the multiplicity function（see Par．7．2．10）．
（10）：In the direction (\rightarrow) assume $x \sim\langle v, w\rangle$ ．Then $v \in x$ by（7）and thus， by $7.1 .13(4)$ ，we have $x=z_{1} \oplus\left\langle v, z_{2}\right\rangle$ for some z_{1}, z_{2} ．Now it suffices to apply （8）to get $w \sim z_{1} \oplus z_{2}$ ．The reverse direction (\leftarrow) follows from（8）．
（5）：This is proved as $\forall y(5)$ by structural induction on the list x ．The base case is straightforward．In the induction step，when $x=\langle v, w\rangle$ for some v, w ，take any y such that $\langle v, w\rangle \sim y$ ．By（10），there are lists z_{1}, z_{2} such that $y=z_{1} \oplus\left\langle v, z_{2}\right\rangle$ and $w \sim z_{1} \oplus z_{2}$ ．We then obtain

$$
\begin{aligned}
L\langle v, w\rangle & =L(w)+1 \stackrel{\mathrm{IH}}{=} L\left(z_{1} \oplus z_{2}\right)+1=L\left(z_{1}\right)+L\left(z_{2}\right)+1= \\
& =L\left(z_{1}\right)+L\left\langle v, z_{2}\right\rangle=L\left(z_{1} \oplus\left\langle v, z_{2}\right\rangle\right)
\end{aligned}
$$

Note that the induction hypothesis is applied with $z_{1} \oplus z_{2}$ in place of y ．

Insertion Sort

7.3.6 Introduction. The simplest sorting algorithm is insertion sort which takes order $\mathcal{O}\left(L(x)^{2}\right)$ time to sort a list x. Insertion sort works on a nonempty list by recursively sorting its tail and then inserts its first element into the sorted list.
7.3.7 Insertion. At the heart of insertion sort algorithm is the insertion function $\operatorname{Insert}(a, x)$ which takes an ordered list x and yields a new one by inserting the element a into it. The function satisfies

$$
\begin{align*}
& \text { t PA }^{\text {Insert }}(a, x) \sim\langle a, x\rangle \tag{1}\\
& \text { tPA } \operatorname{Ord}(x) \rightarrow \operatorname{Ord} \operatorname{Insert}(a, x) \tag{2}
\end{align*}
$$

and it is defined by structural recursion on the list x as a p.r. function:

$$
\begin{aligned}
& \operatorname{Insert}(a, 0)=\langle a, 0\rangle \\
& \operatorname{Insert}(a,\langle v, w\rangle)=\langle a, v, w\rangle \leftarrow a \leq v \\
& \operatorname{Insert}(a,\langle v, w\rangle)=\langle v, \operatorname{Insert}(a, w)\rangle \leftarrow a\rangle v .
\end{aligned}
$$

Verification. (1): By structural induction on the list x. The base case is obvious. In the induction step when $x=\langle v, w\rangle$ we consider two cases. If $a \leq v$ then the claim follows directly from the definition. Otherwise $a>v$ and then

$$
\operatorname{Insert}(a,\langle v, w\rangle) \sim\langle v, \operatorname{Insert}(a, w)\rangle \stackrel{\mathrm{IH}}{\sim}\langle v, a, w\rangle \sim\langle a, v, w\rangle .
$$

As a simple consequence of (1) and 7.3.2(5) we get the following

$$
\begin{equation*}
\vdash_{\mathrm{PA}} b \leq \operatorname{Insert}(a, x) \leftrightarrow b \leq a \wedge b \leq x . \tag{1}
\end{equation*}
$$

(2): By structural induction on the list x. The base case is straightforward. In the induction step, when $x=\langle v, w\rangle$ for some v, w, assume $\operatorname{Ord}\langle v, w\rangle$ and consider two cases. If $a \leq v$ then we have

$$
\text { Ord Insert }(a,\langle v, w\rangle) \Leftrightarrow \operatorname{Ord}\langle a, v, w\rangle \stackrel{7.3 .3(2)}{\Leftrightarrow} \operatorname{Ord}\langle v, w\rangle \wedge a \leq\langle v, w\rangle
$$

The last follows from assumptions by 7.3.3(3). If $a>v$ then we have

$$
\begin{aligned}
& \operatorname{Ord} \operatorname{Insert}(a,\langle v, w\rangle) \Leftrightarrow \operatorname{Ord}\langle v, \operatorname{Insert}(a, w)\rangle \stackrel{7.3 .3(2)}{\Leftrightarrow} \\
& \operatorname{Ord} \operatorname{Insert}(a, w) \wedge v \leq \operatorname{Insert}(a, w) \stackrel{\left(\dagger_{1}\right)}{\Leftrightarrow} \operatorname{Ord} \operatorname{Insert}(a, w) \wedge v \leq a \wedge v \leq w .
\end{aligned}
$$

The last follows from assumptions and IH.
7.3.8 Insertion sort. The function $\operatorname{Isort}(x)$ recursively sorts the tail of an non-empty list and then inserts its first element into the sorted one. The function satisfies

$$
\begin{align*}
& \mathrm{\iota}_{\mathrm{PA}} \operatorname{Isort}(x) \sim x \tag{1}\\
& \mathrm{\iota}_{\mathrm{PA}} \operatorname{Ord} \operatorname{Isort}(x) \tag{2}
\end{align*}
$$

and it is defined by structural list recursion as a p.r. function:

$$
\begin{aligned}
& \operatorname{Isort}(0)=0 \\
& \operatorname{Isort}\langle v, w\rangle=\operatorname{Insert}(v, \operatorname{Isort}(w)) .
\end{aligned}
$$

Verification. (1): By structural list induction. The base case is straightforward and the induction step follows from

$$
\operatorname{Isort}\langle v, w\rangle \sim \operatorname{Insert}(v, \operatorname{Isort}(w)) \stackrel{7.3 .7(1)}{\sim}\langle v, \operatorname{Isort}(w)\rangle \stackrel{\mathrm{IH}}{\sim}\langle v, w\rangle .
$$

(2): By structural list induction. The base case follows from 7.3.3(1). In the induction step, when $x=\langle v, w\rangle$ for some v, w, assume $\operatorname{Ord}\langle v, w\rangle$. Then $\operatorname{Ord}(w)$ by 7.3.3(2) and we get from IH:

$$
\text { Ord Isort }(w) \stackrel{7.3 .7(2)}{\Rightarrow} \text { Ord Insert }(v, \operatorname{Isort}(w)) \Rightarrow \text { Ord Isort }\langle v, w\rangle
$$

Merge Sort

7.3.9 Introduction. More efficient sorting algorithm than insertion sort is merge sort which takes order $\mathcal{O}(L(x) \lg L(x))$ time to sort a list x The algorithm sorts a list by dividing it into two roughly equal parts. Each part is then recursively sorted and the resulting lists are merged into one list.

Our implementation uses the discrimination on whether or not $L(x) \leq 1$. As we have

$$
\mathrm{P}_{\mathrm{PA}} L(x) \leq 1 \leftrightarrow\left(\pi_{2}(x)={ }_{*} 0\right)=1
$$

the evaluation of the variant $L(x) \leq 1$ takes constant time provided the expression $\pi_{2}(x)={ }_{*} 0$ is taken as its characteristic term.
7.3.10 Splitting the list into two halves. The function $\operatorname{Split}(x)$ divides a list into two lists: the length of the first one is at most one more than the length of the second. The function satisfies

$$
\begin{align*}
& \mathrm{\digamma}_{\mathrm{PA}} \exists y \exists z \operatorname{Split}(x)=\langle y, z\rangle \tag{1}\\
& \mathrm{\digamma}_{\mathrm{PA}} \operatorname{Split}(x)=\langle y, z\rangle \rightarrow x \sim y \oplus z \tag{2}\\
& \mathrm{\digamma}_{\mathrm{PA}} \tag{3}\\
& \operatorname{Split}(x)=\langle y, z\rangle \rightarrow(L(y)=L(z) \vee L(y)=L(z)+1)
\end{align*}
$$

and it is defined by course of values recursion with measure $L(x)$ as a p.r. function by

$$
\operatorname{Split}(x)=\langle x, 0\rangle \leftarrow L(x) \leq 1
$$

$$
\operatorname{Split}(x)=\langle\langle u, y\rangle,\langle v, z\rangle\rangle \leftarrow L(x)>1 \wedge x=\langle u, v, w\rangle \wedge \operatorname{Split}(w)=\langle y, z\rangle
$$

Verification. (2): By induction with measure $L(x)$ as $\forall y \forall z(2)$. Take any y, z such that $\operatorname{Split}(x)=\langle y, z\rangle$ and consider two cases. The case when $L(x) \leq 1$ is obvious. So suppose that $L(x)>1$. Then $x=\langle u, v, w\rangle$ for some u, v, w. By (1) there are y_{1}, z_{1} such that $\operatorname{Split}(w)=\left\langle y_{1}, z_{1}\right\rangle$. By definition $\left\langle u, y_{1}\right\rangle=y$ and $\left\langle v, z_{1}\right\rangle=z$. We then obtain

$$
\langle u, v, w\rangle \stackrel{\mathrm{IH}}{\sim}\left\langle u, v, y_{1} \oplus z_{1}\right\rangle \sim\left\langle u, y_{1}\right\rangle \oplus\left\langle v, z_{1}\right\rangle \sim y \oplus z .
$$

$(1),(3):$ This is proved similarly.
7.3.11 Merging two ordered lists into one. The function $\operatorname{Merge}(x, y)$ merges two ordered lists into one ordered list. The function satisfies

$$
\begin{align*}
& \mathrm{t}_{\mathrm{PA}} \operatorname{Merge}(x, y) \sim x \oplus y \tag{1}\\
& \text { TA }^{\operatorname{Ord}(x) \wedge \operatorname{Ord}(y) \rightarrow \operatorname{Ord} \operatorname{Merge}(x, y)} \tag{2}
\end{align*}
$$

and it is defined by course of values recursion with measure $L(x)+L(y)$ as a p.r. function by

$$
\begin{aligned}
& \operatorname{Merge}(0, y)=y \\
& \operatorname{Merge}\left(\left\langle v_{1}, w_{1}\right\rangle, 0\right)=\left\langle v_{1}, w_{1}\right\rangle \\
& \operatorname{Merge}\left(\left\langle v_{1}, w_{1}\right\rangle,\left\langle v_{2}, w_{2}\right\rangle\right)=\left\langle v_{1}, \operatorname{Merge}\left(w_{1},\left\langle v_{2}, w_{2}\right\rangle\right)\right\rangle \leftarrow v_{1} \leq v_{2} \\
& \left.\operatorname{Merge}\left(\left\langle v_{1}, w_{1}\right\rangle,\left\langle v_{2}, w_{2}\right\rangle\right)=\left\langle v_{2}, \operatorname{Merge}\left(\left\langle v_{1}, w_{1}\right\rangle, w_{2}\right)\right\rangle \leftarrow v_{1}\right\rangle v_{2}
\end{aligned}
$$

Verification. (1): By course of values induction with measure $L(x)+L(y)$. We consider two cases. The case when either $x=0$ or $y=0$ is straightforward. So suppose $x=\left\langle v_{1}, w_{1}\right\rangle$ and $y=\left\langle v_{2}, w_{2}\right\rangle$ for some $v_{1}, w_{1}, v_{2}, w_{2}$. If $v_{1} \leq v_{2}$ then we have

$$
\begin{aligned}
\operatorname{Merge}\left(\left\langle v_{1}, w_{1}\right\rangle,\left\langle v_{2}, w_{2}\right\rangle\right) & \sim\left\langle v_{1}, \operatorname{Merge}\left(w_{1},\left\langle v_{2}, w_{2}\right\rangle\right)\right\rangle \stackrel{\mathrm{IH}}{\sim} \\
& \sim\left\langle v_{1}, w_{1} \oplus\left\langle v_{2}, w_{2}\right\rangle\right\rangle \sim\left\langle v_{1}, w_{1}\right\rangle \oplus\left\langle v_{2}, w_{2}\right\rangle .
\end{aligned}
$$

The subcase when $v_{1}<v_{2}$ has a similar proof.
As a simple consequence of (1) and 7.3.2(5) we get

$$
\begin{equation*}
{ }_{\mathrm{PA}} a \leq \operatorname{Merge}(x, y) \leftrightarrow a \leq x \wedge a \leq y \tag{1}
\end{equation*}
$$

(2): By course of values induction with measure $L(x)+L(y)$. Assume $\operatorname{Ord}(x)$ and $\operatorname{Ord}(y)$, and consider two cases. If $x=0$ or $y=0$ then the property holds trivially. So suppose $x=\left\langle v_{1}, w_{1}\right\rangle$ and $y=\left\langle v_{2}, w_{2}\right\rangle$ for some $v_{1}, w_{1}, v_{2}, w_{2}$. If $v_{1} \leq v_{2}$ then we have

$$
\begin{aligned}
& \operatorname{Ord} \operatorname{Merge}\left(\left\langle v_{1}, w_{1}\right\rangle,\left\langle v_{2}, w_{2}\right\rangle\right) \Leftrightarrow \operatorname{Ord}\left\langle v_{1}, \operatorname{Merge}\left(w_{1},\left\langle v_{2}, w_{2}\right\rangle\right)\right\rangle \stackrel{7.3 .3(2)}{\Leftrightarrow} \\
& \operatorname{Ord} \operatorname{Merge}\left(w_{1},\left\langle v_{2}, w_{2}\right\rangle\right) \wedge v_{1} \leq \operatorname{Merge}\left(w_{1},\left\langle v_{2}, w_{2}\right\rangle\right) \stackrel{\left(\dagger_{1}\right)}{\Leftrightarrow} \\
& \operatorname{Ord} \operatorname{Merge}\left(w_{1},\left\langle v_{2}, w_{2}\right\rangle\right) \wedge v_{1} \leq w_{1} \wedge v_{1} \leq\left\langle v_{2}, w_{2}\right\rangle .
\end{aligned}
$$

The last follows from IH and from assumptions by 7.3.3(2) and 7.3.3(3). The subcase when $v_{1}<v_{2}$ is similar.
7.3.12 Merge sort. The function $\operatorname{Msort}(x)$ sorts a list by dividing it into two equal parts. Each part is then recursively sorted and the resulting lists are merged together. The function $\operatorname{Msort}(x)$ satisfies

$$
\begin{array}{ll}
\text { PA } & \operatorname{Msort}(x) \sim x \\
\mathrm{P}_{\mathrm{PA}} & \operatorname{Ord} \operatorname{Msort}(x) \tag{2}
\end{array}
$$

and it is defined by course of values recursion with measure $L(x)$ as a p.r. function by

$$
\begin{aligned}
& \operatorname{Msort}(x)=x \leftarrow L(x) \leq 1 \\
& \operatorname{Msort}(x)=\operatorname{Merge}(\operatorname{Msort}(y), \operatorname{Msort}(z)) \leftarrow L(x)>1 \wedge \operatorname{Split}(x)=\langle y, z\rangle .
\end{aligned}
$$

Its conditions of regularity

$$
\begin{align*}
& \mathrm{P}_{\mathrm{PA}} L(x)>1 \wedge \operatorname{Split}(x)=\langle y, z\rangle \rightarrow L(y)<L(x) \tag{3}\\
& { }_{\mathrm{PA}} L(x)>1 \wedge \operatorname{Split}(x)=\langle y, z\rangle \rightarrow L(z)<L(x) \tag{4}
\end{align*}
$$

follows from 7.3.5(5) and 7.3.10(2)(3).
Verification. (1): By course of values induction with measure $L(x)$. We consider two cases. The case when $L(x) \leq 1$ is obvious. So suppose $L(x)>1$. By 7.3.10(1) there are y, z such that $\operatorname{Split}(x)=\langle y, z\rangle$. Note that $L(y)<L(x)$ and $L(z)<L(x)$ by (3),(4). We have

$$
\begin{aligned}
\operatorname{Msort}(x) & \sim \operatorname{Merge}(\operatorname{Msort}(y), \operatorname{Msort}(z)) \stackrel{7 \cdot 3 \cdot \sim_{\sim}^{11(1)}}{\sim} \\
& \sim \operatorname{Msort}(y) \oplus \operatorname{Msort}(z) \stackrel{\mathrm{IH}}{\sim} y \oplus z \stackrel{7.3 \cdot 10(2)}{\sim} x .
\end{aligned}
$$

(2): By course of values induction with measure $L(x)$. We consider two cases. The case when $L(x) \leq 1$ is obvious. So suppose $L(x)>1$. By 7.3.10(1) there are y, z such that $\operatorname{Split}(x)=\langle y, z\rangle$. Note that $L(y)<L(x)$ and $L(z)<$ $L(x)$ by (3),(4). We have by IH

$$
\begin{aligned}
& \operatorname{Ord} \operatorname{Msort}(y) \wedge \operatorname{Ord} \operatorname{Msort}(z) \stackrel{7.3 .11(2)}{\Rightarrow} \operatorname{Ord} \operatorname{Merge}(\operatorname{Msort}(y), \operatorname{Msort}(z)) \Rightarrow \\
& \Rightarrow \quad \operatorname{Ord} \operatorname{Msort}(x)
\end{aligned}
$$

