
6.1 Dyadic Words

6.1.1 Arithmetization of word domains with two elements. Consider
the two-elements alphabet Σ = {1,2}. We can code words over Σ with the
help of dyadic successors functions explicitly defined by:

x1 = 2x + 1 x2 = 2x + 2.

It is not difficult to see that every natural number has a unique represen-
tation as a dyadic numeral which are terms built up from the constant 0
by applications of dyadic successors. This is called dyadic representation of
natural numbers.

Consider, for instance, the first eight words from the sequence of words over
the alphabet Σ which is ordered first on the length and then within the same
length lexicographically: ∅,1,2,11,12,21,22,111. The corresponding dyadic
numerals are shown in Fig. 6.1. Arithmetization is so straightforward that,
from now on, we will usually identify dyadic words with their code numbers.

0 = 0

01 = 2 × 0 + 1 = 1 × 20 = 1

02 = 2 × 0 + 2 = 2 × 20 = 2

011 = 2 × (2 × 0 + 1) + 1 = 1 × 21 + 1 × 20 = 3

012 = 2 × (2 × 0 + 1) + 2 = 1 × 21 + 2 × 20 = 4

021 = 2 × (2 × 0 + 2) + 1 = 2 × 21 + 1 × 20 = 5

022 = 2 × (2 × 0 + 2) + 2 = 2 × 21 + 2 × 20 = 6

0111 = 2 × (2 × (2 × 0 + 1) + 1) + 1 = 1 × 22 + 1 × 21 + 1 × 20 = 7.

Fig. 6.1 Dyadic representation of natural numbers

6.1.2 The principle of dyadic case analysis. We have

⊢PA x = 0 ∨ ∃y x = y1 ∨ ∃y x = y2.

6.1.3 The principle of dyadic induction. For every formula φ[x], the
formula of dyadic induction on x for φ is the following one:

ϕ[0] ∧ ∀x(ϕ[x]→ ϕ[x1]) ∧ ∀x(ϕ[x]→ ϕ[x2])→ ∀ϕ[x].

The formula φ may contain additional variables as parameters.

6.1.4 Theorem The principle of dyadic induction holds for each formula.



Proof. Dyadic induction is reduced to complete induction as follows. Assume

ϕ[0] (†1)
∀x(ϕ[x]→ ϕ[x1]) (†2)
∀x(ϕ[x]→ ϕ[x2]) (†3)

and prove by complete induction on x that φ[x] holds for every x. We consider
three cases. If x = 0 then ϕ[0] follows from the assumption (†1). If x = y1 for
some y then, since y < x, we have ϕ[y] from IH and we get ϕ[y1] from (†2).
The case when x = y2 for some y is proved similarly. ⊓⊔

6.1.5 Dyadic length. The dyadic length function L (x) yields the num-
ber of dyadic successors in the dyadic numeral denoting the number x. The
function is the arithmetization of the word function taking a dyadic word and
yielding its length. The function is defined by parameterless dyadic recursion:

L (0) = 0
L (x1) = L (x) + 1
L (x2) = L (x) + 1.

This is a correct definition because recursion decreases the argument since
we clearly have x < x1 and x < x2. The function satisfies the following

⊢PA L (x) = 0↔ x = 0 (1)

⊢PA L (x) = n↔ 2n ≤ x + 1 < 2n+1. (2)

Proof. (1): By a straighforward dyadic case analysis.
(2): By induction on n with induction formula ∀x (2). In the base take

any x and we have

L (x) = 0
(1)
⇔ x = 0⇔ 1 ≤ x + 1 < 2⇔ 20 ≤ x + 1 < 20+1.

In the inductive case take any number x and consider three cases. If x = 0
then the claim follows from the following two simple facts: L (0) = 0 ≠ n + 1
and 2n+1 /≤ 1 = 0 + 1. If x = y1 for some y then we have

L (y1) = n + 1⇔ L (y) + 1 = n + 1⇔ L (y) = n IH⇔ 2n ≤ y + 1 < 2n+1⇔
⇔ 22n ≤ 2(y + 1) < 22n+1⇔ 2n+1 ≤ y1 + 1 < 2n+2.

If x = y2 for some y then we have

L (y2) = n + 1⇔ L (y) + 1 = n + 1⇔ L (y) = n IH⇔ 2n ≤ y + 1 < 2n+1⇔
⇔ 22n ≤ 2(y + 1) + 1 < 22n+1⇔ 2n+1 ≤ y2 + 1 < 2n+2. ⊓⊔



6.1.6 Dyadic concatenation. The binary dyadic concatenation function
x ⋆ y is the arithmetization of the word function concatenating two dyadic
words. The function is defined by dyadic recursion on y:

x ⋆ 0 = x
x ⋆ y1 = (x ⋆ y)1
x ⋆ y2 = (x ⋆ y)2.

The function satisfies the following properties:

⊢PA x ⋆ y = x2L(y) + y (1)

⊢PA x ⋆ y = 0↔ x = 0 ∧ y = 0 (2)

⊢PA 0 ⋆ y = y (3)

⊢PA (x ⋆ y) ⋆ z = x ⋆ (y ⋆ z) (4)

⊢PA L (x ⋆ y) = L (x) +L (y) . (5)

Proof. (1): By dyadic induction on y. In the base case when y = 0 we have

x ⋆ 0 = x = x20 + 0 = x2L(0) + 0.

The induction step for y1 follows from

x ⋆ y1 = (x ⋆ y)1 IH= (x2L(y) + y)1 = x2L(y)+1 + y1 = x2L(y1) + y1.

The other induction step is proved similarly.
(2): By a straightforward dyadic case analysis on y.
(3): By a straightforward dyadic induction.
(4): By dyadic induction on z. In the base case we have

(x ⋆ y) ⋆ 0 = x ⋆ y = x ⋆ (y ⋆ 0).

In the inductive step for z1 we have

(x ⋆ y) ⋆ z1 = ((x ⋆ y) ⋆ z)1 IH= (x ⋆ (y ⋆ z))1 = x ⋆ (y ⋆ z)1 = x ⋆ (y ⋆ z1).

The other induction step is proved similarly.
(5): By a straightforward dyadic induction on y. ⊓⊔

6.1.7 Dyadic reversal. The function Rev is the arithmetization of the
word function reverting the order of the elements of dyadic words. The func-
tion is defined by dyadic recursion as follows:

Rev(0) = 0
Rev(x1) = 01 ⋆Rev(x)
Rev(x2) = 02 ⋆Rev(x).



The function has the following properties:

⊢PA Rev(x) = 0↔ x = 0 (1)

⊢PA Rev(x ⋆ y) = Rev(y) ⋆Rev(x) (2)

⊢PA Rev Rev(x) = x (3)

⊢PA ∃y x = Rev(y) (4)

⊢PA Rev(x) = Rev(y)→ x = y (5)

⊢PA LRev(x) = L (x) . (6)

Proof. (1): By dyadic case analysis with the help 6.1.6(2).
(2): By dyadic induction on y. In the base case we have

Rev(x ⋆ 0) = Rev(x) 6.1.6(3)= 0 ⋆Rev(x).

In the inductive case for y1 we have

Rev(x ⋆ y1) = Rev((x ⋆ y)1) = 01 ⋆Rev(x ⋆ y) IH=

01 ⋆ (Rev(y) ⋆Rev(x)) 6.1.6(4)= (01 ⋆Rev(y)) ⋆Rev(x) = Rev(y1) ⋆Rev(x).

The other induction case is proved similarly.
(3): By dyadic induction on x. The base case follows directly from defini-

tion. In the inductive case for x1 we have

Rev Rev(x1) = Rev(01 ⋆Rev(x)) (2)= Rev Rev(x) ⋆Rev(01) IH= x ⋆ 01 = x1.

The other induction case is proved similarly.
(4),(5): Directly from (3). (6): By a straightforward dyadic induction with

the help 6.1.6(5). ⊓⊔

6.1.8 Cancellation laws for dyadic concatenation. We have

⊢PA x ⋆ z = y ⋆ z → x = y (1)

⊢PA z ⋆ x = z ⋆ y → x = y. (2)

Proof. (1): By dyadic induction on z. The base case follows directly from
definition. In the inductive case for z1 we have

x ⋆ z1 = y ⋆ z1⇒ (x ⋆ z)1 = (y ⋆ z)1⇒ x ⋆ z = y ⋆ z IH⇒ x = y.

(2): It follows from

z ⋆ x = z ⋆ y⇒ Rev(z ⋆ x) = Rev(z ⋆ y)
6.1.7(2)
⇒

Rev(x) ⋆Rev(z) = Rev(y) ⋆Rev(z)
(1)
⇒ Rev(x) = Rev(y)

6.1.7(5)
⇒ x = y. ⊓⊔


