6.1 Dyadic Words

6.1.1 Arithmetization of word domains with two elements. Consider the two-elements alphabet $\Sigma=\{1,2\}$. We can code words over Σ with the help of dyadic successors functions explicitly defined by:

$$
x \mathbf{1}=2 x+1 \quad x \mathbf{2}=2 x+2 .
$$

It is not difficult to see that every natural number has a unique representation as a dyadic numeral which are terms built up from the constant 0 by applications of dyadic successors. This is called dyadic representation of natural numbers.

Consider, for instance, the first eight words from the sequence of words over the alphabet Σ which is ordered first on the length and then within the same length lexicographically: $\varnothing, 1,2,11,12,21,22,111$. The corresponding dyadic numerals are shown in Fig. 6.1. Arithmetization is so straightforward that, from now on, we will usually identify dyadic words with their code numbers.

$$
\begin{aligned}
0 & =0 \\
01 & =2 \times 0+1=1 \times 2^{0}=1 \\
02 & =2 \times 0+2=2 \times 2^{0}=2 \\
0 \mathbf{1 1} & =2 \times(2 \times 0+1)+1=1 \times 2^{1}+1 \times 2^{0}=3 \\
0 \mathbf{1 2} & =2 \times(2 \times 0+1)+2=1 \times 2^{1}+2 \times 2^{0}=4 \\
021 & =2 \times(2 \times 0+2)+1=2 \times 2^{1}+1 \times 2^{0}=5 \\
022 & =2 \times(2 \times 0+2)+2=2 \times 2^{1}+2 \times 2^{0}=6 \\
0 \mathbf{1 1 1} & =2 \times(2 \times(2 \times 0+1)+1)+1=1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}=7
\end{aligned}
$$

Fig. 6.1 Dyadic representation of natural numbers
6.1.2 The principle of dyadic case analysis. We have

$$
\vdash_{\text {PA }} x=0 \vee \exists y x=y \mathbf{1} \vee \exists y x=y \mathbf{2} .
$$

6.1.3 The principle of dyadic induction. For every formula $\varphi[x]$, the formula of dyadic induction on x for φ is the following one:

$$
\phi[0] \wedge \forall x(\phi[x] \rightarrow \phi[x \mathbf{1}]) \wedge \forall x(\phi[x] \rightarrow \phi[x \mathbf{2}]) \rightarrow \forall \phi[x] .
$$

The formula φ may contain additional variables as parameters.
6.1.4 Theorem The principle of dyadic induction holds for each formula.

Proof. Dyadic induction is reduced to complete induction as follows. Assume

$\phi[0]$	$\left(\dagger_{1}\right)$
$\forall x(\phi[x] \rightarrow \phi[x \mathbf{1}])$	$\left(\dagger_{2}\right)$
$\forall x(\phi[x] \rightarrow \phi[x \mathbf{2}])$	$\left(\dagger_{3}\right)$

and prove by complete induction on x that $\varphi[x]$ holds for every x. We consider three cases. If $x=0$ then $\phi[0]$ follows from the assumption $\left(\dagger_{1}\right)$. If $x=y \mathbf{1}$ for some y then, since $y<x$, we have $\phi[y]$ from IH and we get $\phi[y \mathbf{1}]$ from $\left(\dagger_{2}\right)$. The case when $x=y 2$ for some y is proved similarly.
6.1.5 Dyadic length. The dyadic length function $L(x)$ yields the number of dyadic successors in the dyadic numeral denoting the number x. The function is the arithmetization of the word function taking a dyadic word and yielding its length. The function is defined by parameterless dyadic recursion:

$$
\begin{aligned}
L(0) & =0 \\
L(x \mathbf{1}) & =L(x)+1 \\
L(x \mathbf{2}) & =L(x)+1 .
\end{aligned}
$$

This is a correct definition because recursion decreases the argument since we clearly have $x<x \mathbf{1}$ and $x<x 2$. The function satisfies the following

$$
\begin{align*}
& \text { PA } L(x)=0 \leftrightarrow x=0 \tag{1}\\
& \text { PA } L(x)=n \leftrightarrow 2^{n} \leq x+1<2^{n+1 .} . \tag{2}
\end{align*}
$$

Proof. (1): By a straighforward dyadic case analysis.
(2): By induction on n with induction formula $\forall x$ (2). In the base take any x and we have

$$
L(x)=0 \stackrel{(1)}{\Leftrightarrow} x=0 \Leftrightarrow 1 \leq x+1<2 \Leftrightarrow 2^{0} \leq x+1<2^{0+1} .
$$

In the inductive case take any number x and consider three cases. If $x=0$ then the claim follows from the following two simple facts: $L(0)=0 \neq n+1$ and $2^{n+1} \nsubseteq 1=0+1$. If $x=y \mathbf{1}$ for some y then we have

$$
\begin{aligned}
L(y \mathbf{1})=n+1 & \Leftrightarrow L(y)+1=n+1 \Leftrightarrow L(y)=n \stackrel{\mathrm{IH}}{\Leftrightarrow} 2^{n} \leq y+1<2^{n+1} \Leftrightarrow \\
& \Leftrightarrow 22^{n} \leq 2(y+1)<22^{n+1} \Leftrightarrow 2^{n+1} \leq y \mathbf{1}+1<2^{n+2} .
\end{aligned}
$$

If $x=y 2$ for some y then we have

$$
\begin{aligned}
L(y \mathbf{2})=n+1 & \Leftrightarrow L(y)+1=n+1 \Leftrightarrow L(y)=n \stackrel{\text { IH }}{\Leftrightarrow} 2^{n} \leq y+1<2^{n+1} \Leftrightarrow \\
& \Leftrightarrow 22^{n} \leq 2(y+1)+1<22^{n+1} \Leftrightarrow 2^{n+1} \leq y \mathbf{2}+1<2^{n+2} .
\end{aligned}
$$

6.1.6 Dyadic concatenation. The binary dyadic concatenation function $x \star y$ is the arithmetization of the word function concatenating two dyadic words. The function is defined by dyadic recursion on y :

$$
\begin{aligned}
x \star 0 & =x \\
x \star y \mathbf{1} & =(x \star y) \mathbf{1} \\
x \star y \mathbf{2} & =(x \star y) \mathbf{2} .
\end{aligned}
$$

The function satisfies the following properties:

$$
\begin{align*}
& \mathrm{\digamma}_{\mathrm{PA}} x \star y=x 2^{L(y)}+y \tag{1}\\
& \mathrm{\digamma}_{\mathrm{PA}} x \star y=0 \leftrightarrow x=0 \wedge y=0 \tag{2}\\
& \mathrm{\digamma}_{\mathrm{PA}} 0 \star y=y \tag{3}\\
& \mathrm{r}_{\mathrm{PA}}(x \star y) \star z=x \star(y \star z) \tag{4}\\
& \mathrm{\digamma}_{\mathrm{PA}} L(x \star y)=L(x)+L(y) . \tag{5}
\end{align*}
$$

Proof. (1): By dyadic induction on y. In the base case when $y=0$ we have

$$
x \star 0=x=x 2^{0}+0=x 2^{L(0)}+0 .
$$

The induction step for $y \mathbf{1}$ follows from

$$
x \star y \mathbf{1}=(x \star y) \mathbf{1} \stackrel{\mathrm{IH}}{=}\left(x 2^{L(y)}+y\right) \mathbf{1}=x 2^{L(y)+1}+y \mathbf{1}=x 2^{L(y 1)}+y \mathbf{1} .
$$

The other induction step is proved similarly.
(2): By a straightforward dyadic case analysis on y.
(3): By a straightforward dyadic induction.
(4): By dyadic induction on z. In the base case we have

$$
(x \star y) \star 0=x \star y=x \star(y \star 0) .
$$

In the inductive step for $z \mathbf{1}$ we have

$$
(x \star y) \star z 1=((x \star y) \star z) 1 \stackrel{\mathrm{IH}}{=}(x \star(y \star z)) \mathbf{1}=x \star(y \star z) \mathbf{1}=x \star(y \star z 1) .
$$

The other induction step is proved similarly.
(5): By a straightforward dyadic induction on y.
6.1.7 Dyadic reversal. The function Rev is the arithmetization of the word function reverting the order of the elements of dyadic words. The function is defined by dyadic recursion as follows:

$$
\begin{aligned}
& \operatorname{Rev}(0)=0 \\
& \operatorname{Rev}(x \mathbf{1})=0 \mathbf{1} \star \operatorname{Rev}(x) \\
& \operatorname{Rev}(x \mathbf{2})=0 \mathbf{2} \star \operatorname{Rev}(x) .
\end{aligned}
$$

The function has the following properties:

$$
\begin{align*}
& \vdash_{\mathrm{PA}} \operatorname{Rev}(x)=0 \leftrightarrow x=0 \tag{1}\\
& { }_{\mathrm{t}} \mathrm{Rev}(x \star y)=\operatorname{Rev}(y) \star \operatorname{Rev}(x) \tag{2}\\
& { }^{\mathrm{pA}} \operatorname{Rev} \operatorname{Rev}(x)=x \tag{3}\\
& \vdash_{\text {PA }} \exists y x=\operatorname{Rev}(y) \tag{4}\\
& { }_{\text {PA }} \operatorname{Rev}(x)=\operatorname{Rev}(y) \rightarrow x=y \tag{5}\\
& { }_{\mathrm{T} A \mathrm{~A}} L \operatorname{Rev}(x)=L(x) \text {. } \tag{6}
\end{align*}
$$

Proof. (1): By dyadic case analysis with the help 6.1.6(2).
(2): By dyadic induction on y. In the base case we have

$$
\operatorname{Rev}(x \star 0)=\operatorname{Rev}(x) \stackrel{6 \cdot 1.6(3)}{=} 0 \star \operatorname{Rev}(x) .
$$

In the inductive case for $y \mathbf{1}$ we have

$$
\begin{aligned}
& \operatorname{Rev}(x \star y \mathbf{1})=\operatorname{Rev}((x \star y) \mathbf{1})=0 \mathbf{1} \star \operatorname{Rev}(x \star y) \stackrel{\mathrm{IH}}{=} \\
& 0 \mathbf{1} \star(\operatorname{Rev}(y) \star \operatorname{Rev}(x)) \stackrel{6 \cdot 1.6(4)}{=}(0 \mathbf{1} \star \operatorname{Rev}(y)) \star \operatorname{Rev}(x)=\operatorname{Rev}(y \mathbf{1}) \star \operatorname{Rev}(x) .
\end{aligned}
$$

The other induction case is proved similarly.
(3): By dyadic induction on x. The base case follows directly from definition. In the inductive case for $x \mathbf{1}$ we have

$$
\operatorname{Rev} \operatorname{Rev}(x \mathbf{1})=\operatorname{Rev}(0 \mathbf{1} \star \operatorname{Rev}(x)) \stackrel{(2)}{=} \operatorname{Rev} \operatorname{Rev}(x) \star \operatorname{Rev}(0 \mathbf{1}) \stackrel{\mathrm{IH}}{=} x \star 0 \mathbf{1}=x \mathbf{1} .
$$

The other induction case is proved similarly.
(4),(5): Directly from (3). (6): By a straightforward dyadic induction with the help 6.1.6(5).
6.1.8 Cancellation laws for dyadic concatenation. We have

$$
\begin{align*}
& \mathrm{\digamma}_{\mathrm{PA}} x \star z=y \star z \rightarrow x=y \tag{1}\\
& \mathrm{\digamma}_{\mathrm{PA}} z \star x=z \star y \rightarrow x=y \tag{2}
\end{align*}
$$

Proof. (1): By dyadic induction on z. The base case follows directly from definition. In the inductive case for $z \mathbf{1}$ we have

$$
x \star z \mathbf{1}=y \star z 1 \Rightarrow(x \star z) \mathbf{1}=(y \star z) \mathbf{1} \Rightarrow x \star z=y \star z \stackrel{\mathrm{IH}}{\Rightarrow} x=y .
$$

(2): It follows from

$$
\begin{aligned}
& z \star x=z \star y \Rightarrow \operatorname{Rev}(z \star x)=\operatorname{Rev}(z \star y) \stackrel{6.1 .7(2)}{\Rightarrow} \\
& \operatorname{Rev}(x) \star \operatorname{Rev}(z)=\operatorname{Rev}(y) \star \operatorname{Rev}(z) \stackrel{(1)}{\Rightarrow} \operatorname{Rev}(x)=\operatorname{Rev}(y) \stackrel{6.1 .7(5)}{\Rightarrow} x=y .
\end{aligned}
$$

